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AFIA-SFC: Recent advances on unsupervised learning

Kevin Dalleau∗, Miguel Couceiro, Malika Smail-Tabbone

21 of September, 2021
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Unsupervised classification

Unsupervised classification, a.k.a clustering:

• Goal: find homogeneous groups of unlabeled instances.

• Active field, with multiple types of approaches: centroid-based (k-means),

density-based (DBSCAN), hierarchical clustering (HAC), etc.

Many algorithms rely on a distance metric between instances

• Large number of distances in the literature1

1M.M. & E. Deza. Enciclopedia of distances (3rd edition), Springer, 2014
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Motivations and goals

Motivation I. Set of relevant and available distances depends on:

• characteristics of the data: continuous, categorical, ordinal, etc.

• chosen algorithm

Goal: Similarity measure agnostic to data types.

Motivation II. Preprocessing burdern in many practical cases:

• scaling issues

• correlation between variables

• missing values

Goal: Reduce the preprocessing burden.
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Unsupervised Extremely randomized

Trees



Unsupervised Random Forest (URF)

Shi et al.2: method to compute a similarity in unsupervised settings.

• Method based on RF: Unsupervised Random Forest (URF).

• RF: popular tree-based algorithm, extensively used.

• Ensemble method, combining decision trees in order to obtain better

results in supervised learning tasks.

2Unsupervised learning with random forest predictors. Journal of Computational and Graphical

Statistics, 15(1):118–138, 2006.
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Random Forest

A.Verikas et al., Electromyographic Patterns during Golf Swing: Activation

Sequence Profiling and Prediction of Shot Effectiveness, Sensors, 2016.
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Unsupervised Random Forest (URF)

Idea: once the forest constructed, run the training data down each tree.

1. All instances in the same leaf are considered similar.

2. Similarity measure: if two instances i and j are in the same leaf of a tree,

the overall similarity between the two instances is increased by one.

Normalization: all values lie in [0, 1].
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How to build a decision-tree in an unsupervised setting ?

Answer: generation of synthetic instances.
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URF-Synthetic instance generation

Two procedures to generate synthetic instances are presented in Shi et al.3

• addCl1: the synthetic instances are obtained by a random sampling from

the observed distributions of variables.

• addCl2: random sampling in the hyper rectangle containing the observed

instances.

3Unsupervised learning with random forest predictors. Journal of Computational and Graphical

Statistics, 15(1):118–138, 2006.

7



addCl1: an example

Instance Feature #1 Feature #2

1 5.1 3.5

2 7.0 3.2

3 6.4 2.8

Instance Feature #1 Feature #2 Label

1 5.1 3.5 1

2 7.0 3.2 1

3 6.4 2.8 1

8



addCl1: an example

Instance Feature #1 Feature #2

1 5.1 3.5

2 7.0 3.2

3 6.4 2.8

Instance #1 Feature #2 Label

1 5.1 3.5 1

2 7.0 3.2 1

3 6.4 2.8 1

4 5.1 3.2 0

9



addCl1: an example

Instance Feature #1 Feature #2

1 5.1 3.5

2 7.0 3.2

3 6.4 2.8

Instance Feature #1 Feature #2 Label

1 5.1 3.5 1

2 7.0 3.2 1

3 6.4 2.8 1

4 5.1 3.2 0

5 6.4 3.5 0

10



addCl1: an example

Instance Feature #1 Feature #2

1 5.1 3.5

2 7.0 3.2

3 6.4 2.8

Instance Feature #1 Feature #2 Label

1 5.1 3.5 1

2 7.0 3.2 1

3 6.4 2.8 1

4 5.1 3.2 0

5 6.4 3.5 0

6 5.1 2.8 0

11



addCl2: an example

Instance Feature #1 Feature #2

1 5.1 3.5

2 7.0 3.2

3 6.4 2.8

Feature #1 : [5.1, 7.0]

Feature #2 : [2.8, 3.5]

Instance Feature #1 Feature #2 Label

1 5.1 3.5 1

2 7.0 3.2 1

3 6.4 2.8 1

4 5.5 2.9 0

5 6.7 3.1 0

6 5.9 3.4 0
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Limitations

Successfully used in fields such as biology or image processing.

However: The method presents some limitations:

• The generation step is not computationally efficient.

• Bias induced by the generated instances.

• It is necessary to construct many forests with different synthetic instances

and average their results.
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Extremely Randomized Trees (ET)

P.Geurts et al.: Extremely Randomized Trees (ET) 4

• Very similar to RF.

• Another randomization: split threshold selected partially/totally at random

Two important parameters:

1. K , the number of attributes to be randomly selected at each node.

2. nmin (smoothing strength), the minimum instance size for node split.

4Extremely randomized trees. Machine learning, 63(1):3–42, 2006.
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Contributions

Following the tracks of Shi et al. of URF, we propose to use ET.

• Novel approach where the generation of synthetic cases is not necessary.

• addCl3: a method to generate synthetic labels and associate them to the

observed instances.

Result: Unsupervised Extremely randomized Trees (UET)5

Randomization: numerical/ordinal or categorical variables

5K. Dalleau, M. Couceiro, M. Smäıl-Tabbone: Unsupervised Extremely Randomized Trees.

PAKDD (3) 2018: 478-489
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addCl3: example

Instance Feature #1 Feature #2

1 5.1 3.5

2 7.0 3.2

3 6.4 2.8

Table 1: addCl3

Instance Feature #1 Feature #2 Label

1 5.1 3.5 0

2 7.0 3.2 1

3 6.4 2.8 0
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Algorithm

Algorithme 1 : Unsupervised Extremely Randomized Trees

Données : Observations O

1 K, nmin, ntrees

Résultat : Similarity matrix S

2 D ←− addCl3(O);

3 T ←− Build an extra tree ensemble(D) // Here K = 1;

4 S = 0nobs ,nobs // Initialization of a zero matrix of size nobs ;

5 pour di ∈ D faire

6 pour dj ∈ D faire

7 Si,j = number of times the instances di and dj fall in the same leaf

node in each tree of T = {t1, t2, ..., tM};
8 fin

9 fin

10 Si,j =
Si,j
M

;
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Empirical evaluation



Framework

The procedure goes as follows:

1. A similarity matrix is constructed using UET.

2. This similarity matrix is transformed into a dissimilarity matrix using6:

DISij =
√

1− SIMij

3. An hierarchical agglomerative clustering (with average linkage) is

performed using this distance matrix, with the relevant number of clusters

for the labeled dataset.

This procedure is ran 10 times: For each clustering, Adjusted Rand Indices

(ARI) are computed, and are compared using the Kruskal-Wallis test.

6Shi et al. Unsupervised learning with random forest predictors. Journal of Computational and

Graphical Statistics, 15(1):118–138, 2006.
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Parameter settings

First we evaluate the influence of the parameters on the results of UET:

• The number of trees (averaging strength) ntrees .

• The minimum number of instances to split nmin.

Dataset # instances # features # labels

Iris 150 4 3

Wine 178 13 3

Wisconsin 699 9 2

Table 2: Properties of used datasets
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Parameter tuning: ntrees and nmin

Observations:

• ntrees : no significant diff. in ARI for ntrees > 50 (p > 0.1 for all datasets)

• nmin: values between 20% and 30% of the number of instances seems to

lead to the best results.

• UET fails with small values of nmin

Explanation: larger values of nmin are necessary with noisy data7

7P.Geurts et al.: Extremely randomized trees. Machine learning, 63(1):3–42, 2006.
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Cluster discrimination

Question: is UET able to discriminate instances from different clusters?

• 3 generated datasets of 1000 instances: two without any cluster structure

(NoC4 and NoC5), and one with a cluster structure (C4)

• 20 runs of UET: 20 similarity matrices

• Comparison of the mean difference ∆̄ between

1. the mean intracluster similarity µintra
2. the mean intercluster similarity µinter

Dataset ∆̄ σ

NoC4 0.00042 0.00003

NoC50 0.00007 0.00003

C4 0.68417 0.00341

Table 3: Mean difference between intercluster and intracluster similarities in different

settings, on synthetic datasets.
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Benchmarking

We then assessed UET on benchmark datasets:

• Comparison of Normalized Mutual Information (NMI) scores with the

values presented in H. Elghazel et al. 8.

• Comparison of ARI obtained with UET and URF.

• UET computed with ntrees = 50, nmin = d ninstances
3
e.

8H.Elghazel and A.Aussem, Feature selection for unsupervised learning using random cluster

ensembles, Data Mining, 2010
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Benchmarking

Dataset # instances # features # labels

Iris 150 4 3

Wine 178 13 3

Wisconsin 699 9 2

Lung 32 56 3

Breast tissue 106 9 6

Isolet 1559 617 26

Pima 768 8 2

Parkinson 195 22 2

Ionosphere 351 34 2

Segmentation 2310 19 7

Table 4: Datasets used for comparison
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Benchmarking

Comparative evaluation with the results from Elghazel et al. 9.

Dataset UET - NMI Literature - NMI

Wisconsin 78.33 ± 3.25 73.61 ± 0.00

Lung 29.98 ± 6.17 22.51 ± 5.58

Breast tissue 74.48 ± 2.92 51.18 ± 1.38

Isolet 61.22 ± 1.47 69.83 ± 1.74

Parkinson 25.50 ± 6.14 23.35 ± 0.19

Ionosphere 13.47 ± 1.11 12.62 ± 2.37

Segmentation 69.62 ± 2.14 60.73 ± 1.71

9Feature selection for unsupervised learning using random cluster ensembles, Data Mining

(ICDM), 2010
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Benchmarking

Dataset UET (ARI - Time (s)) URF (ARI - Time (s))

Wisconsin 87.13 - 128.42 s 82.92 - 968.71 s

Lung 23.24 - 5.23 s 6.52 - 86.93 s

Breast tissue 58.85 - 9.15 s 39.05 - 99.40 s

Isolet 28.04 - 692.82 s * - * s

Parkinson 25.21 - 16.27 s 12.68 - 279.30 s

Ionosphere 6.04 - 39.13 s 7.28 - 727.30 s

Table 5: Comparative evaluation between URF and UET
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What about the preprocessing tasks we mentioned earlier ?
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Datasets

Here we used two datasets freely available in Scikit-learn

• blob500: 500 instances, 5 features and 3 blob shaped clusters

• moon500: 500 instances, 2 features, 2 moon-shaped clusters

Question: robustness to variable transformations & correlations
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Robustness to monotone transformation of variables

Why:10

• Robustness to change in scales

• Robustness to outliers

Procedure:

• computation of ∆̄ on the original data

• multiplication or addition of n column of the dataset by a scalar

(drawn from U(2, 100))

• computation of new ∆̄

10J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical learning, volume 1.

Springer series in statistics New York, 2001.
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Robustness to monotone transformation of variables

Operation Number of variables ∆̄ σ

Multiplication 0 0.2981 0.0044

Multiplication 1 0.2991 0.0029

Multiplication 2 0.2992 0.0036

Addition 0 0.2987 0.0037

Addition 1 0.2976 0.0045

Addition 2 0.2970 0.0035

Table 6: Influence of a multiplication or addition by a scalar on ∆̄ (moon500)
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Resistance to monotone transformation of variables

Operation Number of variables ∆̄ σ

Multiplication 0 0.3283 0.0072

Multiplication 1 0.3297 0.0060

Multiplication 2 0.3285 0.0067

Addition 0 0.3250 0.0053

Addition 1 0.3296 0.0046

Addition 2 0.3267 0.0059

Table 7: Influence of a multiplication or addition by a scalar on ∆̄ (blob500)
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Behaviour w.r.t correlated variables

Procedure:

• blob500 dataset

• replacement of each column by a random linear combination of another

• ∆̄ and σ computation.
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Bahviour w.r.t correlated variables

Figure 1: Change of difference between mean intracluster and mean intercluster

similarities when (i) changing features by linear combinations of other features and (ii)

changing features by random values. The x axis represents the number of features

modified by the procedure.
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Conclusion

What has been presented:

• A novel stochastic method to compute similarities using decision trees.

• Extension of URF by using extremely randomized trees as a base estimator.

• With no need for instance generation.

Conclusion:

• Essentially one parameter influenced the results: nmin (smoothing).

• Explanation: higher values nmin give better results under noise.
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Advantages and perspectives

Advantages of UET:

1. Synthetic data generation is no longer necessary.

2. 1.5 to more than 10 times faster than URF in our experiments.

3. Adaptability to complex data: attributed graphs
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Application: Graph clustering



Graph clustering

What is a graph ?

• G = (V ,E), V set of vertices and E a set of edges (pairs of vertices).

• Graphs can be attributed: vertices/edges endowed with an attribute tuple.

Goal of graph clustering:

• Two types: between and within graphs.

• Within graphs: find a partition of sets of related vertices in a graph.

• Related: connected by many edges w.r.t. vertices from other clusters.

• Vertex-attributed graphs: attribute homogeneity taken into account

Application of UET?

• A tree-based method for computing vertex (dis)similarities.

• Bridging the gap between random decision trees and graph clustering.

• Handles vertex attributes by building forests with different tree types.

34



Graph clustering

What is a graph ?

• G = (V ,E), V set of vertices and E a set of edges (pairs of vertices).

• Graphs can be attributed: vertices/edges endowed with an attribute tuple.

Goal of graph clustering:

• Two types: between and within graphs.

• Within graphs: find a partition of sets of related vertices in a graph.

• Related: connected by many edges w.r.t. vertices from other clusters.

• Vertex-attributed graphs: attribute homogeneity taken into account

Application of UET?

• A tree-based method for computing vertex (dis)similarities.

• Bridging the gap between random decision trees and graph clustering.

• Handles vertex attributes by building forests with different tree types.

34



Graph-Trees (GT)



Background

Tree-based distances: field with recent interesting developments.

• Shi et al. 11: method to compute distances between samples in

unsupervised settings.

• Dalleau et al. 12: extension using Extremely Randomized Trees, with

better performance.

• Ting et al. 13: mass-based distance using isolation forests.

11Unsupervised learning with random forest predictors. Journal of Computational and Graphical

Statistics, 2006.
12Unsupervised Extra Trees: a stochastic approach to compute similarities in heterogeneous data.

International Journal of Data Science and Analytics, Springer Verlag, 2020
13Overcoming key weaknesses of distance-based neighbourhood methods using a data dependent

dissimilarity measure. Proceedings of the 22nd ACM SIGKDD (2016)

35



Background

idea: use a hierarchical partitioning of the original space into non-overlapping

and non-empty regions Hi ’s

• R(x , y |Hi ) be the smallest local region covering x and y w.r.t. H.

Mass-based dissimilarity: estimated by a number t of models is

me(x , y |D) =
1

t

t∑
i=1

P̃(R(x , y |Hi ))

where P̃(R) = 1
|D|

∑
z∈D 1(z ∈ R).
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Example: Tree-based mass-estimation

1, 2, 3, 4, 5, 6, 7, 8

1, 3, 4, 5

1, 4 3, 5

2, 6, 7, 8

2 6, 7, 8

Figure 2: Ex. of partitioning of 8 instances in non-overlapping non-empty regions

using a random tree structure: me(1, 4) = 1
8

(2) = 0.25, and me(1, 8) = 1
8

(8) = 1.
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Proposed approach: Graph Trees

Idea of Graph Trees (GT)14:

1. Compute several partitions of the vertices using random trees,

2. Compute a dissimilarity measure between the vertices using the partitions.

How are the partitions of vertices obtained?

• The root node of each tree contains all the vertices of the graph.

• At each node, a split is performed. Split:

1. A vertex v1 is randomly sampled from that node

2. Each vertex vk that share an edge with v1 form the left child node

3. While all other vertices from the parent node form the right child node

• The growth is stopped when a stopping criterion is met.

14https://gitlab.inria.fr/kdalleau/graphtrees/
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Graph forests

It is possible to build forests with different types of trees (Graph forests):

1. Graph trees that specialize on the graph structure

2. Trees that specialize on the attribute space.

In our case: Unsupervised Extremely randomized Trees (UET).

Aggregation of the (dis)similarities obtained with the different types of trees.
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Experiments



Experiments on simple graphs

First evaluation: simple graphs with no attributes

1. Distance matrices using GT, with ntrees = 200

2. k-means on the points obtained using t-SNE 15 on the distance matrix

3. → NMI 16

The process repeated 20 times.

15t-Distributed Stochastic Neighbor Embedding
16Normalized Mutual Information
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Experiments on simple graphs

Dataset # vertices # edges Average degree # clusters

Football 115 1226 10.66 10

Email-Eu-Core 1005 25571 33.24 42

Polbooks 105 441 8.40 3

SBM3 450 65994 293.307 3

Table 8: Datasets used for the evaluation of GT clustering on simple graphs

Dataset Graph-trees Louvain17 MCL18

Football 0.923 (0.007) 0.924 (0.000) 0.879 (0.015)

Email-Eu-Core 0.649 (0.008) 0.428 (0.000) 0.589 (0.012)

Polbooks 0.524 (0.012) 0.521 (0.000) 0.544 (0.02)

SBM3 0.998 (0.005) 0.684 (0.000) 0.846 (0.000)

Table 9: Comparison of NMI on benchmark graph datasets. Best in boldface

17Blondel et al.. Fast unfolding of communities in large networks. J. statistical mechanics : theory

and experiment, 2008(10) :P10008, 2008
18Markov Cluster Algo. S. M. Van Dongen.Graph clustering by flow simulation. PhD thesis, 2000.
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Experiments on attributed graphs19 20

Dataset # vertices # edges # attributes # clusters

Parliament 451 11646 108 7

HVR 307 6526 6 2

Lawyers 71 575 70 2

WebKB 877 1480 1703 4

Table 10: Datasets used for the evaluation of GT clustering on attributed graphs

Dataset NMI GT+UET NMI Literature

HVR 1.00 (0.000) 0.89

Parliament 0.65 (0.039) 0.78

Lawyers 0.12 0.66

WebKB 0.999 (0,002) 0.995 (0,002)

Table 11: Comparison of clusterings using GT. Best results from Bojchevski et al.,

and Maekawa et al. on WebKB. Best results are indicated in boldface.

19Bojchevski et al. Bayesian Robust Attributed Graph Clustering: Joint Learning of Partial

Anomalies and Group Structure, 2018
20Maekawa et al.: Non-linear Attributed Graph Clustering by Symmetric NMF with PU Learn.2018
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Experiments on attributed graphs

Dataset GT GT+UET Ground truth

HVR 0.15 0.15 0.15

Parliament 0.46 0.15 0.20

Lawyers 0.27 0.23 0.26

WebKB 0.74 0.70 0.74

Table 12: Results using the dissimilarities from UET and the labels (ground truth).

Best results are indicated in boldface.
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Discussion

• Method based on the construction of random trees to compute similarities

between graph vertices.

• Competitive with state of the art methods in terms of quality of clustering

on non-attributed graphs.

• Computing forests of GT and other trees that specialize in other types of

input data: possible to compute dissimilarities between vertices in

attributed graphs.
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Discussion

Graph forests using UET for the attribute trees seems promising:

• Less preprocessing, can manage mixed types attributes out of the box.

• Some control: importance of the vertex attributes, choice of aggregation

method between the graph trees and the attribute trees

• Real life application: Project RHU Fight-HF21 22

However

• Empirical evaluation: quality that varies greatly between the datasets.

• Choice to consider the attribute space: guided by the distribution of the

variables or a visualization of the embeddings ?

21https://anr.fr/ProjetIA-15-RHUS-0004
22Preud’Homme et al. Head-to-head comparison of clustering methods for heterogeneous data: a

simulation-driven benchmark. Scientific Reports, Nature Publishing Group, 2021, 11 (1), pp.4202.
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Merci de votre attention!

Questions?
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