Extremely randomized trees for clustering complex data

Forêts d'arbres aleatoires pour le clustering de donnés complèxes **AFIA-SFC:** Recent advances on unsupervised learning

Kevin Dalleau*, **Miguel Couceiro**, Malika Smail-Tabbone 21 of September, 2021

Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France * Project RHU Fight-HF: https://anr.fr/ProjetIA-15-RHUS-0004

Outline

- 1. Unsupervised Extremely randomized Trees
- 2. Empirical evaluation
- 3. Application: Graph clustering
- 4. Graph-Trees (GT)
- 5. Experiments
- 6. Discussion

Unsupervised classification, a.k.a clustering:

- Goal: find homogeneous groups of unlabeled instances.
- Active field, with multiple types of approaches: centroid-based (k-means), density-based (DBSCAN), hierarchical clustering (HAC), etc.

Many algorithms rely on a distance metric between instances

• Large number of distances in the literature¹

¹M.M. & E. Deza. *Enciclopedia of distances* (3rd edition), Springer, 2014

Motivation I. Set of relevant and available distances depends on:

- characteristics of the data: continuous, categorical, ordinal, etc.
- chosen algorithm

Goal: Similarity measure agnostic to data types.

Motivation II. Preprocessing burdern in many practical cases:

- scaling issues
- correlation between variables
- missing values

Goal: Reduce the preprocessing burden.

Motivation I. Set of relevant and available distances depends on:

- characteristics of the data: continuous, categorical, ordinal, etc.
- chosen algorithm

Goal: Similarity measure agnostic to data types.

Motivation II. Preprocessing burdern in many practical cases:

- scaling issues
- correlation between variables
- missing values

Goal: Reduce the preprocessing burden.

Unsupervised Extremely randomized Trees

Shi et al.²: method to compute a *similarity* in unsupervised settings.

- Method based on RF: Unsupervised Random Forest (URF).
- RF: popular tree-based algorithm, extensively used.
- Ensemble method, combining decision trees in order to obtain better results in supervised learning tasks.

 $^{^2 {\}sf U}{\sf nsupervised}$ learning with random forest predictors. Journal of Computational and Graphical Statistics, 15(1):118–138, 2006.

Random Forest

A.Verikas *et al.*, Electromyographic Patterns during Golf Swing: Activation Sequence Profiling and Prediction of Shot Effectiveness, Sensors, 2016.

Idea: once the forest constructed, run the training data down each tree.

- 1. All instances in the same leaf are considered similar.
- 2. Similarity measure: if two instances *i* and *j* are in the same leaf of a tree, the overall similarity between the two instances is increased by one.

Normalization: all values lie in [0, 1].

How to build a decision-tree in an unsupervised setting ? Answer: generation of synthetic instances. Two procedures to generate synthetic instances are presented in Shi et al.³

- addCl1: the synthetic instances are obtained by a random sampling from the observed distributions of variables.
- addCl2: random sampling in the hyper rectangle containing the observed instances.

 $^{^3}$ Unsupervised learning with random forest predictors. Journal of Computational and Graphical Statistics, 15(1):118–138, 2006.

Instance	Feature $\#1$	Feature $#2$
1	5.1	3.5
2	7.0	3.2
3	6.4	2.8

Instance	Feature $\#1$	Feature $#2$	Label
1	5.1	3.5	1
2	7.0	3.2	1
3	6.4	2.8	1

Instance	Feature $\#1$	Feature $#2$
1	5.1	3.5
2	7.0	3.2
3	6.4	2.8

Instance	#1	Feature $#2$	Label
1	5.1	3.5	1
2	7.0	3.2	1
3	6.4	2.8	1
4	5.1	3.2	0

Instance	Feature $\#1$	Feature $#2$
1	5.1	3.5
2	7.0	3.2
3	6.4	2.8

Instance	Feature $\#1$	Feature #2	Label
1	5.1	3.5	1
2	7.0	3.2	1
3	6.4	2.8	1
4	5.1	3.2	0
5	6.4	3.5	0

Instance	Feature $\#1$	Feature $#2$
1	5.1	3.5
2	7.0	3.2
3	6.4	2.8

Instance	Feature $\#1$	Feature #2	Label
1	5.1	3.5	1
2	7.0	3.2	1
3	6.4	2.8	1
4	5.1	3.2	0
5	6.4	3.5	0
6	5.1	2.8	0

Instance	Feature $\#1$	Feature $#2$
1	5.1	3.5
2	7.0	3.2
3	6.4	2.8

Feature #1: [5.1, 7.0] Feature #2: [2.8, 3.5]

Instance	Feature $\#1$	Feature #2	Label
1	5.1	3.5	1
2	7.0	3.2	1
3	6.4	2.8	1
4	5.5	2.9	0
5	6.7	3.1	0
6	5.9	3.4	0

Successfully used in fields such as biology or image processing.

However: The method presents some limitations:

- The generation step is not computationally efficient.
- Bias induced by the generated instances.
- It is necessary to construct many forests with different synthetic instances and average their results.

P.Geurts et al.: Extremely Randomized Trees (ET) ⁴

- Very similar to RF.
- Another randomization: split threshold selected partially/totally at random

Two important parameters:

- 1. K, the number of attributes to be randomly selected at each node.
- 2. n_{min} (smoothing strength), the minimum instance size for node split.

⁴Extremely randomized trees. Machine learning, 63(1):3–42, 2006.

Following the tracks of Shi et al. of URF, we propose to use ET.

- Novel approach where the generation of synthetic cases is not necessary.
- addCl3: a method to generate synthetic labels and associate them to the observed instances.

Result: Unsupervised Extremely randomized Trees (UET)⁵

Randomization: numerical/ordinal or categorical variables

⁵K. Dalleau, M. Couceiro, M. Smaïl-Tabbone: Unsupervised Extremely Randomized Trees. PAKDD (3) 2018: 478-489

Instance	Feature $\#1$	Feature $#2$
1	5.1	3.5
2	7.0	3.2
3	6.4	2.8

Table 1: addCl3

Instance	Feature $\#1$	Feature #2	Label
1	5.1	3.5	0
2	7.0	3.2	1
3	6.4	2.8	0

 $\label{eq:algorithme1} \textbf{Algorithme1}: \textsf{Unsupervised Extremely Randomized Trees}$

Données : Observations O

1 K, n_{min}, n_{trees}

Résultat : Similarity matrix S

- 2 $D \leftarrow addCl3(O);$
- 3 $T \leftarrow Build_an_extra_tree_ensemble(D)$ // Here K = 1;

```
4 S = 0_{n_{obs},n_{obs}} // Initialization of a zero matrix of size n_{obs};
5 pour d_i \in D faire
```

```
6 pour d_j \in D faire

7 \begin{vmatrix} S_{i,j} = \text{number of times the instances } d_i \text{ and } d_j \text{ fall in the same leaf} \\ & \text{node in each tree of } T = \{t_1, t_2, ..., t_M\};

8 fin

9 fin
```

10 $S_{i,j} = \frac{S_{i,j}}{M};$

Empirical evaluation

The procedure goes as follows:

- 1. A similarity matrix is constructed using UET.
- 2. This similarity matrix is transformed into a dissimilarity matrix using⁶:

$$DIS_{ij} = \sqrt{1 - SIM_{ij}}$$

3. An hierarchical agglomerative clustering (with average linkage) is performed using this distance matrix, with the relevant number of clusters for the labeled dataset.

This procedure is ran 10 times: For each clustering, Adjusted Rand Indices (ARI) are computed, and are compared using the Kruskal-Wallis test.

⁶Shi *et al.* Unsupervised learning with random forest predictors. Journal of Computational and Graphical Statistics, 15(1):118–138, 2006.

First we evaluate the influence of the parameters on the results of UET:

- The number of trees (averaging strength) n_{trees} .
- The minimum number of instances to split n_{min} .

Dataset	# instances	# features	# labels
Iris	150	4	3
Wine	178	13	3
Wisconsin	699	9	2

Table 2: Properties of used datasets

Observations:

- n_{trees} : no significant diff. in ARI for $n_{trees} > 50$ (p > 0.1 for all datasets)
- *n_{min}*: values between 20% and 30% of the number of instances seems to lead to the best results.
- UET fails with small values of nmin

Explanation: larger values of n_{min} are necessary with noisy data⁷

⁷P.Geurts *et al.*: Extremely randomized trees. Machine learning, 63(1):3–42, 2006.

Question: is UET able to discriminate instances from different clusters?

- 3 generated datasets of 1000 instances: two without any cluster structure (*NoC4* and *NoC5*), and one with a cluster structure (*C4*)
- 20 runs of UET: 20 similarity matrices
- Comparison of the mean difference $\bar{\Delta}$ between
 - 1. the mean intracluster similarity μ_{intra}
 - 2. the mean intercluster similarity μ_{inter}

$\overline{\Delta}$	

 Table 3: Mean difference between intercluster and intracluster similarities in different

 settings, on synthetic datasets.

Question: is UET able to discriminate instances from different clusters?

- 3 generated datasets of 1000 instances: two without any cluster structure (*NoC4* and *NoC5*), and one with a cluster structure (*C4*)
- 20 runs of UET: 20 similarity matrices
- Comparison of the mean difference $\bar{\Delta}$ between
 - 1. the mean intracluster similarity μ_{intra}
 - 2. the mean intercluster similarity μ_{inter}

Dataset	$\bar{\Delta}$	σ
NoC4	0.00042	0.00003
NoC50	0.00007	0.00003
C4	0.68417	0.00341

 Table 3: Mean difference between intercluster and intracluster similarities in different settings, on synthetic datasets.

We then assessed UET on benchmark datasets:

- Comparison of Normalized Mutual Information (NMI) scores with the values presented in H. Elghazel *et al.*⁸.
- Comparison of ARI obtained with UET and URF.
- UET computed with $n_{trees} = 50$, $n_{min} = \lceil \frac{n_{instances}}{3} \rceil$.

⁸H.Elghazel and A.Aussem, Feature selection for unsupervised learning using random cluster ensembles, Data Mining, 2010

Benchmarking

Dataset	# instances	# features	# labels
Iris	150	4	3
Wine	178	13	3
Wisconsin	699	9	2
Lung	32	56	3
Breast tissue	106	9	6
lsolet	1559	617	26
Pima	768	8	2
Parkinson	195	22	2
lonosphere	351	34	2
Segmentation	2310	19	7

Table 4:	Datasets	used fo	r comparison
----------	----------	---------	--------------

Comparative evaluation with the results from Elghazel et al. 9.

Dataset	UET - NMI	Literature - NMI
Wisconsin	$\textbf{78.33} \pm 3.25$	73.61 ± 0.00
Lung	$\textbf{29.98} \pm 6.17$	22.51 ± 5.58
Breast tissue	$\textbf{74.48} \pm 2.92$	51.18 ± 1.38
Isolet	61.22 ± 1.47	$\textbf{69.83} \pm 1.74$
Parkinson	$\textbf{25.50} \pm 6.14$	$\textbf{23.35} \pm 0.19$
lonosphere	$\textbf{13.47} \pm 1.11$	$\textbf{12.62} \pm 2.37$
Segmentation	$\textbf{69.62} \pm 2.14$	60.73 ± 1.71

 $^{^9{\}rm Feature}$ selection for unsupervised learning using random cluster ensembles, Data Mining (ICDM), 2010

Dataset	UET (ARI - Time (s))	URF (ARI - Time (s))
Wisconsin	87.13 - 128.42 s	82.92 - 968.71 s
Lung	23.24 - 5.23 s	6.52 - 86.93 s
Breast tissue	58.85 - 9.15 s	39.05 - 99.40 s
lsolet	28.04 - 692.82 s	* - * s
Parkinson	25.21 - 16.27 s	12.68 - 279.30 s
lonosphere	6.04 - 39.13 s	7.28 - 727.30 s

Table 5: Comparative evaluation between URF and UET

What about the preprocessing tasks we mentioned earlier ?

Here we used two datasets freely available in Scikit-learn

- blob500: 500 instances, 5 features and 3 blob shaped clusters
- moon500: 500 instances, 2 features, 2 moon-shaped clusters

Question: robustness to variable transformations & correlations

Why:¹⁰

- Robustness to change in scales
- Robustness to outliers

Procedure:

- computation of $\bar{\Delta}$ on the original data
- multiplication or addition of *n* column of the dataset by a scalar (drawn from U(2, 100))
- computation of new $\bar{\Delta}$

¹⁰J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical learning, volume 1. Springer series in statistics New York, 2001.

Operation	Number of variables	$\bar{\Delta}$	σ
Multiplication	0	0.2981	0.0044
Multiplication	1	0.2991	0.0029
Multiplication	2	0.2992	0.0036
Addition	0	0.2987	0.0037
Addition	1	0.2976	0.0045
Addition	2	0.2970	0.0035

Table 6: Influence of a multiplication or addition by a scalar on $\overline{\Delta}$ (moon500)

Operation	Number of variables	$\bar{\Delta}$	σ
Multiplication	0	0.3283	0.0072
Multiplication	1	0.3297	0.0060
Multiplication	2	0.3285	0.0067
Addition	0	0.3250	0.0053
Addition	1	0.3296	0.0046
Addition	2	0.3267	0.0059

Table 7: Influence of a multiplication or addition by a scalar on $\overline{\Delta}$ (blob500)

Procedure:

- blob500 dataset
- replacement of each column by a random linear combination of another
- $\bar{\Delta}$ and σ computation.

Bahviour w.r.t correlated variables

Figure 1: Change of difference between mean intracluster and mean intercluster similarities when (i) changing features by linear combinations of other features and (ii) changing features by random values. The *x* axis represents the number of features modified by the procedure.

What has been presented:

- A novel stochastic method to compute similarities using decision trees.
- Extension of URF by using extremely randomized trees as a base estimator.
- With no need for instance generation.

Conclusion:

- Essentially one parameter influenced the results: *n_{min}* (smoothing).
- Explanation: higher values n_{min} give better results under noise.

Advantages of UET:

- 1. Synthetic data generation is no longer necessary.
- 2. 1.5 to more than 10 times faster than URF in our experiments.
- 3. Adaptability to complex data: attributed graphs

Application: Graph clustering

What is a graph ?

- G = (V, E), V set of vertices and E a set of edges (pairs of vertices).
- Graphs can be attributed: vertices/edges endowed with an attribute tuple.

Goal of graph clustering:

- Two types: between and within graphs.
- Within graphs: find a partition of sets of *related* vertices in a graph.
- Related: connected by many edges w.r.t. vertices from other clusters.
- Vertex-attributed graphs: attribute homogeneity taken into account

Application of UET?

- A tree-based method for computing vertex (dis)similarities.
- Bridging the gap between random decision trees and graph clustering.
- Handles vertex attributes by building forests with different tree types.

What is a graph ?

- G = (V, E), V set of vertices and E a set of edges (pairs of vertices).
- Graphs can be attributed: vertices/edges endowed with an attribute tuple.

Goal of graph clustering:

- Two types: between and within graphs.
- Within graphs: find a partition of sets of *related* vertices in a graph.
- Related: connected by many edges w.r.t. vertices from other clusters.
- Vertex-attributed graphs: attribute homogeneity taken into account

Application of UET?

- A tree-based method for computing vertex (dis)similarities.
- Bridging the gap between random decision trees and graph clustering.
- Handles vertex attributes by building forests with different tree types.

Graph-Trees (GT)

Tree-based distances: field with recent interesting developments.

- Shi *et al.* ¹¹: method to compute distances between samples in unsupervised settings.
- Dalleau *et al.* ¹²: extension using Extremely Randomized Trees, with better performance.
- Ting et al. ¹³: mass-based distance using isolation forests.

 $^{^{11}\}mathsf{Unsupervised}$ learning with random forest predictors. Journal of Computational and Graphical Statistics, 2006.

¹²Unsupervised Extra Trees: a stochastic approach to compute similarities in heterogeneous data. International Journal of Data Science and Analytics, Springer Verlag, 2020

¹³Overcoming key weaknesses of distance-based neighbourhood methods using a data dependent dissimilarity measure. Proceedings of the 22nd ACM SIGKDD (2016)

idea: use a hierarchical partitioning of the original space into non-overlapping and non-empty regions H_i 's

• $R(x, y|H_i)$ be the smallest local region covering x and y w.r.t. H.

Mass-based dissimilarity: estimated by a number t of models is

$$m_e(x, y|D) = \frac{1}{t} \sum_{i=1}^t \tilde{P}(R(x, y|H_i))$$

where $ilde{P}(R) = rac{1}{|D|} \sum_{z \in D} \mathbb{1}(z \in R).$

Figure 2: Ex. of partitioning of 8 instances in non-overlapping non-empty regions using a random tree structure: $m_e(1,4) = \frac{1}{8}(2) = 0.25$, and $m_e(1,8) = \frac{1}{8}(8) = 1$.

Idea of Graph Trees (GT)¹⁴:

- 1. Compute several partitions of the vertices using random trees,
- 2. Compute a dissimilarity measure between the vertices using the partitions.

How are the partitions of vertices obtained?

- The root node of each tree contains all the vertices of the graph.
- At each node, a split is performed. Split:
 - 1. A vertex v_1 is randomly sampled from that node
 - 2. Each vertex v_k that share an edge with v_1 form the left child node
 - 3. While all other vertices from the parent node form the right child node
- The growth is stopped when a stopping criterion is met.

¹⁴https://gitlab.inria.fr/kdalleau/graphtrees/

Idea of Graph Trees (GT)¹⁴:

- 1. Compute several partitions of the vertices using random trees,
- 2. Compute a dissimilarity measure between the vertices using the partitions.

How are the partitions of vertices obtained?

- The root node of each tree contains all the vertices of the graph.
- At each node, a split is performed. Split:
 - 1. A vertex v_1 is randomly sampled from that node
 - 2. Each vertex v_k that share an edge with v_1 form the left child node
 - 3. While all other vertices from the parent node form the right child node
- The growth is stopped when a stopping criterion is met.

¹⁴https://gitlab.inria.fr/kdalleau/graphtrees/

It is possible to build forests with different types of trees (Graph forests):

- 1. Graph trees that specialize on the graph structure
- 2. Trees that specialize on the attribute space.

In our case: Unsupervised Extremely randomized Trees (UET).

Aggregation of the (dis)similarities obtained with the different types of trees.

Experiments

First evaluation: simple graphs with no attributes

- 1. Distance matrices using GT, with $n_{trees} = 200$
- 2. k-means on the points obtained using t-SNE 15 on the distance matrix
- 3. \rightarrow NMI 16

The process repeated 20 times.

¹⁵t-Distributed Stochastic Neighbor Embedding ¹⁶Normalized Mutual Information

Experiments on simple graphs

Dataset	# vertices	# edges	Average degree	# clusters
Football	115	1226	10.66	10
Email-Eu-Core	1005	25571	33.24	42
Polbooks	105	441	8.40	3
SBM3	450	65994	293.307	3

Table 8: Datasets used for the evaluation of GT clustering on simple graphs

Dataset	Graph-trees	Louvain ¹⁷	MCL ¹⁸
Football	0.923 (0.007)	0.924 (0.000)	0.879 (0.015)
Email-Eu-Core	0.649 (0.008)	0.428 (0.000)	0.589 (0.012)
Polbooks	0.524 (0.012)	0.521 (0.000)	0.544 (0.02)
SBM3	0.998 (0.005)	0.684 (0.000)	0.846 (0.000)

Table 9: Comparison of NMI on benchmark graph datasets. Best in boldface

¹⁷Blondel *et al.*. Fast unfolding of communities in large networks. J. statistical mechanics : theory and experiment, 2008(10) :P10008, 2008

¹⁸Markov Cluster Algo. S. M. Van Dongen.Graph clustering by flow simulation. PhD thesis, 2000.

Experiments on attributed graphs^{19 20}

Dataset	# vertices	# edges	# attributes	# clusters
Parliament	451	11646	108	7
HVR	307	6526	6	2
Lawyers	71	575	70	2
WebKB	877	1480	1703	4

Table 10: Datasets used for the evaluation of GT clustering on attributed graphs

Dataset	NMI GT+UET	NMI Literature	
HVR	1.00 (0.000)	0.89	
Parliament	0.65 (0.039)	0.78	
Lawyers	0.12 0.66		
WebKB	0.999 (0,002)	0.995 (0,002)	

Table 11: Comparison of clusterings using GT. Best results from Bojchevski *et al.*, and Maekawa *et al.* on WebKB. Best results are indicated in boldface.

¹⁹Bojchevski et al. Bayesian Robust Attributed Graph Clustering: Joint Learning of Partial Anomalies and Group Structure, 2018

²⁰Maekawa et al.: Non-linear Attributed Graph Clustering by Symmetric NMF with PU Learn.2018

Dataset	GT	GT+UET	Ground truth
HVR	0.15	0.15	0.15
Parliament	0.46	0.15	0.20
Lawyers	0.27	0.23	0.26
WebKB	0.74	0.70	0.74

 Table 12: Results using the dissimilarities from UET and the labels (ground truth).

 Best results are indicated in boldface.

Discussion

- Method based on the construction of random trees to compute similarities between graph vertices.
- Competitive with state of the art methods in terms of quality of clustering on non-attributed graphs.
- Computing forests of GT and other trees that specialize in other types of input data: possible to compute dissimilarities between vertices in attributed graphs.

Graph forests using UET for the attribute trees seems promising:

- Less preprocessing, can manage mixed types attributes out of the box.
- **Some control:** importance of the vertex attributes, choice of aggregation method between the graph trees and the attribute trees
- Real life application: Project RHU Fight-HF^{21 22}

However

- Empirical evaluation: quality that varies greatly between the datasets.
- Choice to consider the attribute space: guided by the distribution of the variables or a visualization of the embeddings ?

²¹https://anr.fr/ProjetIA-15-RHUS-0004

²²Preud'Homme *et al.* Head-to-head comparison of clustering methods for heterogeneous data: a simulation-driven benchmark. Scientific Reports, Nature Publishing Group, 2021, 11 (1), pp.4202.

Merci de votre attention! Questions?