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AD / ADAS: Huge increase of the number of systems

2015 2022

ADAS SYSTEMS
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AD / ADAS: Huge increase of car complexity

Front camera

Around view camera

HD Map
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AD / ADAS: Huge increase of car complexity

2015: https://informationisbeautiful.net/visualizations/million-lines-of-code/
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AD / ADAS: High reliability requirements

AD/ADAS
(L1, L2)

AD
(L3, L4, L5)

Driver is the last resort System is the last resort

Driver reliability proof System reliability proof

Driver training + experience
Massive 

mile accumulation + simulation

7
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Naive estimation of the required number of cars for validation

 For a reliability of 𝟏𝟎ି𝟖 and a confidence of 95%, using a Poisson distribution we find

- Required driving time = 3 × 10଼ hours
- Number of kilometers at 50kph = 1.5 × 10ଵ଴ km

 A (partial) solution: numerical validation

≈ 𝟏𝟎𝟓 cars should be dedicated to AD/ADAS validation
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Scope of the talk

Typical design of experiment for AD/ADAS validation

Vehicle

Scenarios 
description

Specifications

Ground

Traffic

Dynamical model

Control logic

Sensors

Multivariate time
series

Key performance 
indicators

Simulation tool

Simulation #1

Simulation #2
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Opportunities and challenges

 Business opportunities from time series mining:
- Identify operating modes of the vehicle – multivariate time series (co-)clustering problem
- Identify anomalies

 Scientific challenges
- Many simulations (e.g. 10k)
- Many signals (e.g. 300)
- Many timesteps (signal sampling @ 20Hz)
- Dataset size up to 1Tb
- Different time series lengths per simulation
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Clustering of AD / ADAS simulations
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Clustering of simulations via multivariate time series analysis

Multivariate time series

Simulation 1

Simulation 2

… Simulations 
clustering
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FFT + log-periodogram interpolation
Caiado, J., Crato, N., & Peña, D. (2009). Comparison of times 
series with unequal length in the frequency domain.
Communications in Statistics—Simulation and Computation

Discretization of 
univariate TS

Discretization of 
simulations

Clustering of 
simulations

From raw time series to simulation clustering
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Complexity 
bottleneck

From raw time series to simulation clustering

U1

U2

U2

U1 U2 U2
U1 = 

U2 = 

PCA

PCA

MDS

DBSCAN,
GMM, SOM,
K-Means,

…

Symbolic Variant

Reduced Variant

Raw Variant

Scenarios
Clustering

PCA

PCA
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Use case: AEB-CCRm

 Advanced Emergency Braking – Car to Car Rear Moving (AEB-CCRm)
- 20000 simulations
- Varying speeds
- Varying overlaps
- Analysis based on 30 signals

 Analysis performed with the reduced variant of the pipeline

Car speed w.r.t. time
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Use case: AEB-CCRm

 Focus on multivariate time series: can we extract more informations?
 Yes: combine clustering with classification methods:

- feature: design of experiment / input simulation parameters
- label: assigned cluster

Multivariate
time series

Key performance 
indicators

Simulation tool

Design of 
experiment

Car speed vs Overlap vs Cluster

Confidential

Decision tree:
DOE classification

predicting cluster labels



2021/09/21CEA Loïc GIRALDI

CEA - www.cea.fr

Co-clustering of AD / ADAS simulations



2021/09/21CEA Loïc GIRALDI

Simulation clustering

Multivariate Time series

Simulation 1

Simulation 2

… Simulations 
Clustering
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Simulation co-clustering

Signals Clustering

Multivariate Time series

Simulation 1

Simulation 2

…

Simulations Clustering
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Simulation conditional co-clustering

Signals Clustering

Simulation 1

Simulation 2

…

Simulations Clusterings

Multivariate Time series

Each cluster of signals
tell a different story
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Model-based formulation

 Notations:
- 𝑥௜௝௦ ௜௝௦

, dataset with 𝒏 observations of 𝒑 features in 𝒅 dimensions (ie. After FFT + PCA + PCA)

- Abuse of language and notations 
 the slice 𝑥𝒊௝௦ ௝௦

is called a “row”

 the slice 𝑥௜𝒋௦ ௜௦
is called a “column”

 the index 𝑠 will be omitted
- 𝑧௜௞ ௜௞ row cluster assignment variable
- 𝑤௝௟ ௝௟

column cluster assignment variable

- 𝜃 hyperparameters

 Model based methods for clustering
- Partitions will be represented with a mixture model
- Cluster assignment uncertainty
- Probabilistic outlier detection
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Model based formulation

 Clustering with mixture models

𝒑 𝒙 𝜽 = ෍ 𝒑 𝒙 𝒛; 𝜽 𝒑(𝒛; 𝜽)

 

𝒛

 Co-clustering with latent block models

𝒑 𝒙 𝜽 = ෍ 𝒑 𝒙 𝒛, 𝒘; 𝜽 𝒑 𝒛; 𝜽 𝒑 𝒘; 𝜽

 

𝒛,𝒘

 Multi-clustering with latent block models

𝒑 𝒙 𝜽 = ෍ 𝒑 𝒙 𝒛, 𝒘; 𝜽 𝒑 𝒛 𝒘; 𝜽 𝒑(𝒘; 𝜽)

 

𝒛,𝒘

 Gaussian assumption à la GMM
𝒑 𝒙𝒊𝒋 𝒛𝒊 = 𝒌, 𝒘𝒋 = 𝒍; 𝜽 ∼ 𝑵(𝝁𝒌𝒍, 𝚺𝐤𝐥)
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Inference process & model selection

 Inference process for latent block models: Stochastic Gibbs EM

- SE step: sample 𝑝(𝑧, 𝑤 ∣ 𝑥, 𝜃) with a Gibbs sampler
 Sample 𝑝(𝑧 ∣ 𝑤, 𝑥, 𝜃)
 Sample 𝑝 𝑤 𝑧, 𝑥, 𝜃

- M step:
 Update 𝜃 given (𝑧, 𝑤)

 Model selection (MS) using the integrated classification likelihood

 Issues
- Model selection is expensive
- Without MS, the user must input additional parameters

 Possible solution: introduce non-parametric Dirichlet Process
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Dirichlet process introduction

 Intuitive formulation of the Dirichlet process 𝑫𝑷 𝜶, 𝑮𝟎

(Chinese Restaurant Process)

𝒑(𝒁𝒏ା𝟏 ∣ 𝒁𝒏, … , 𝒁𝟏) ∝ 𝜶 𝑮𝟎 + ෍ 𝒏𝒌
∗ 𝜹𝒁𝒌

∗

𝑲

𝒌ୀ𝟏

 Useful formulation of the Dirichlet process 𝑫𝑷 𝜶, 𝑮𝟎

(Stick Breaking Process)

𝑔௞ ∼ 𝐺଴, 𝑘 = 1, …

𝜋௞ 𝒓 = 𝑟௞ ෑ(1 − 𝑟௛)

௞ିଵ

௛ୀଵ

,  𝑟௛ ∼ 𝐵𝑒𝑡𝑎 1, 𝛼

𝐺 = ෍ 𝜋௞

ஶ

௞ୀଵ

𝑟 𝛿௚ೖ
∼ 𝐷𝑃 𝛼, 𝐺଴

Sampling from the previous classesSampling from the distribution 𝑮𝟎
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Symmetric Dirichlet process for co-clustering

 Model formulation

 Bayesian Inference of 𝒑 𝒛, 𝒘 𝒙, 𝜶, 𝜷, 𝑮𝟎 with a Gibbs sampler
- Sample row assignments 𝑝 𝑧 𝑥, 𝑤, 𝛼, 𝛽, 𝐺଴ row by row with the CRP 
- Sample column assignments 𝑝 𝑤 𝑥, 𝑧, 𝛼, 𝛽, 𝐺଴ column by column with the CRP

 Complexity of the inference

𝑥௜,௝ ∣ 𝑧௜ = 𝑘, 𝑤௝ = 𝑙, 𝜃௞,௟ ∼ 𝐹 𝜃௞,௟ ,  𝜃௞,௟ ∼ 𝐺଴

𝒛 ∼ 𝑀𝑢𝑙𝑡 𝝅 , 𝒘 ∼ 𝑀𝑢𝑙𝑡(𝝆)

𝑥௜,௝ 

𝑙

𝑘  𝜃௞,௟ 

𝜋௞ 𝒓 = 𝑟௞ ෑ(1 − 𝑟௛)

௞ିଵ

௛ୀଵ

, 𝑟௛ ∼ 𝐵𝑒𝑡𝑎 1, 𝛼

𝜌௟ 𝒔 = 𝑠௟ ෑ(1 − 𝑠௟)

௟ିଵ

௛ୀଵ

, 𝑠௟ ∼ 𝐵𝑒𝑡𝑎 1, 𝛽

ଶ ଷ
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Benchmark on a synthetic dataset

 Synthetic dataset
- 5 row clusters with (20, 30, 40, 30, 20) observations
- 5 column clusters with (40, 20, 30, 20, 30) observations
- Each block has a Gaussian distribution
- 19600 time series

 Computer
- 12 processors Intel(R) Core(TM) i7-8850H CPU @ 2.60GHz
- 32 Gb RAM
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Use case: ELK

 Emergency Lane Keeping (ELK)
- 400 simulations
- 22 variables
- Varying speeds
- Varying decentering
- Varying drifting angle
- ...

 Result representation
22 variables

400 simulations
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Row clusters interpretations
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Main row clusters:
• Light Green: drifting left and ELK fails
• Dark Green: drifting right and ELK fails
• Orange: ELK works

Other row clusters are outliers:
• ELK system activates too late
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Conclusions & perspectives

 Summary Part I
- Industrial simulation clustering workflow from large time series database
- Main procedure in 4 steps

 Vector representation of univariate time series
 Dimension reduction of univariate vectors
 Dimension reduction of multivariate components
 Clustering in the reduced feature space

- Classification based methodology in order to interpret clusters

 Summary Part II
- Use pre-processing pipelines for co-clustering
- Application of non-parametric co-clustering methodology for joined clustering of simulations and signals

 Perspectives
- Better time series representation – replace FFT with wavelets, polynomials, ...
- Scalability of the Dirichlet Process method
- Multi-clustering visualization

 For more details:
- E. Goffinet, M. Lebbah, H. Azzag, L. Giraldi and A. Coutant. A New Multivariate Time Series Co-clustering

Non-Parametric Model Applied to Driving-Assistance Systems Validation, AALTD 2021
- E. Goffinet, M. Lebbah, H. Azzag, L. Giraldi and A. Coutant. Multivariate Time Series Multi-Coclustering. 

Application to Advanced Driving Assistance System Validation. ESANN 2021
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Merci de votre attention


