

DE LA RECHERCHE À L'INDUSTRIE

CCO

DE LA RECHERCHE À L'INDUSTRIE

Co-clustering de séries temporelles multivariées pour la

validation du véhicule autonome

^{21 spendide 2221} validation du véhicule autonome

21 septembre 2021

Loïc GIRALDI

avec Etienne GOFFINET (LIPN, Renault), Anthony COUTANT (LIPN, HephIA), Mustapha LEBBAH (LIPN, HephIA), Hanane AZZAG (LIPN)

▶ 1. Industrial Context

▶ 2. Clustering of autonomous vehicle simulations

▶ 3. Co-clustering of autonomous vehicle simulations

AD / ADAS: Huge increase of car complexity

AD / ADAS: Huge increase of car complexity

2015: https://informationisbeautiful.net/visualizations/million-lines-of-code/

Naive estimation of the required number of cars for validation **ive estimation of the required number of cars for validation**
or a reliability of 10⁻⁸ and a confidence of 95%, using a Poisson distribut
- Required driving time = 3×10^8 hours
- Number of kilometers at 50kph = $1.$ i the required number of cars for validation
 -8 and a confidence of 95%, using a Poisson dist
 $e = 3 \times 10^8$ hours
 es at 50kph = 1.5 \times 10¹⁰ km
 \simeq 10⁵ cars should be dedicated to AD/ADAS validation
numerical v

\blacktriangleright For a reliability of 10^{-8} and a confidence of 95%, using a Poisson distribution we find **ive** estimation of the required number of cars for validation
or a reliability of 10⁻⁸ and a confidence of 95%, using a Poisson distribution we fir
- Required driving time = 3 × 10⁸ hours
- Number of kilometers at 50

-
- Required driving time = 3×10^8 hours
- Number of kilometers at 50kph = 1.5×10^{10} km

 $\approx 10^5$ cars should be dedicated to AD/ADAS validation

▶ A (partial) solution: numerical validation

Typical design of experiment for AD/ADAS validation

Opportunities and challenges

\blacktriangleright Business opportunities from time series mining:

- Identify operating and challenges
- Identify operating modes of the vehicle multivariate time series (co-)clustering problem
- Identify anomalies
- Identify anomalies

\blacktriangleright Scientific challenges

- **Many simulations** (e.g. 10k)
- Many signals (e.g. 300)
- **Many timesteps** (signal sampling $@$ 20Hz)
- Dataset size up to 1Tb
- Different time series lengths per simulation

Clustering of AD / ADAS simulations

Clustering of simulations via multivariate time series analysis

From raw time series to simulation clustering

Listing Carrier (CRM)

Advanced Emergency Braking – Car to Car Rear Moving (AEB-CCRm)

- 20000 simulations

- Varying overlaps

- Analysis hased on 30 signals

- 20000 simulations
- Varying speeds
- **Varying overlaps**
- Analysis based on 30 signals

\blacktriangleright Analysis performed with the reduced variant of the pipeline

Car speed w.r.t. time

- ▶ Focus on multivariate time series: can we extract more informations?
- ▶ Yes: combine clustering with classification methods:
	- feature: design of experiment / input simulation parameters
	- label: assigned cluster

Car speed vs Overlap vs Cluster

Decision tree: DOE classification predicting cluster labels

Co-clustering of AD / ADAS simulations

Model-based formulation

Notations:

- σ $(x_{ijs})_{ijs}$, dataset with *n* observations of *p* features in *d* dimensions (ie. After FFT + PCA + PCA) **odel-based formulation**
 otations:
 $(x_{ijs})_{ijs}$, dataset with *n* **observations** of *p* **features** in *d* **dimensions**
 - the slice $(x_{is})_{is}$ is called a "row"
 - the slice $(x_{is})_{is}$ is called a "column"
 - the i
- Abuse of language and notations
	- the slice $(x_{\boldsymbol{i}js})_{js}$ is called a "**row**"
	- the slice $(x_{ijs})_{is}$ is called a " ${\bm c}$ olumn"
	- \blacksquare the index s will be omitted
-
- $(w_{jl})_{il}$ column cluster assignment variable
- θ hyperparameters

\blacktriangleright Model based methods for clustering

- Partitions will be represented with a mixture model
- Cluster assignment uncertainty
- Probabilistic outlier detection

Model based formulation

▶ Clustering with mixture models

$$
p(x | \theta) = \sum_{z} p(x | z; \theta) p(z; \theta)
$$

▶ Co-clustering with latent block models

 $p(x | \theta) = \sum_{z,w} p(x | z,w; \theta) p(z; \theta) p(w; \theta)$

▶ Multi-clustering with latent block models

$$
p(x | \theta) = \sum_{z,w} p(x | z,w; \theta) p(z | w; \theta) p(w; \theta)
$$

► Gaussian assumption à la GMM
 $p(x_{ij} | z_i = k, w_j = l; \theta) \sim N(\mu_{kl}, \Sigma_{kl})$

CEA Loïc GIRALDI 2021/09/21 PARTICLE 2021/09/21 PARTICLE 2021/09/21 PARTICLE 2021/09/21 PARTICLE 2021/09/21 PARTICLE 2021/09

Inference process & model selection

▶ Inference process for latent block models: Stochastic Gibbs EM **nce process & model selection**
 nce process for latent block models: Stochastic Gibbs EM

: step: sample $p(z, w | x, \theta)$ with a Gibbs sampler
 - Sample $p(z | w, x, \theta)$

- Sample $p(w | z, x, \theta)$

step:

- Update θ given $(z,$

- SE step: sample $p(z, w | x, \theta)$ with a Gibbs sampler
	- Sample $p(z | w, x, \theta)$
	-
- M step:
	- **Update** θ **given** (z, w)

▶ Model selection (MS) using the integrated classification likelihood

Issues

- Model selection is **expensive**
- Without MS, the user must input additional parameters

▶ Possible solution: introduce non-parametric Dirichlet Process

 \blacktriangleright Useful formulation of the Dirichlet process $DP(\alpha, G_0)$ (Stick Breaking Process)

$$
g_k \sim G_0, \qquad k = 1, \dots
$$

\n
$$
\pi_k(r) = r_k \prod_{\substack{h=1 \ \infty}}^{k-1} (1 - r_h), \qquad r_h \sim Beta(1, \alpha)
$$

\n
$$
G = \sum_{k=1}^{n} \pi_k(r) \delta_{g_k} \sim DP(\alpha, G_0)
$$

Symmetric Dirichlet process for co-clustering

Model formulation Model formulation
 $x_{i,j} \mid \{z_i = k, w_j = l, \theta_{k,l}\} \sim F(\theta_{k,l}), \theta_{k,l} \sim G_0$
 $z \sim Mult(\pi), w \sim Mult(\rho)$
 $\pi_k(r) = r_k \prod_{h=1}^{k-1} (1 - r_h), r_h \sim Beta(1, \alpha)$
 $\rho_l(s) = s_l \prod_{h=1}^{l-1} (1 - s_l), s_l \sim Beta(1, \beta)$

Bayesian Inference of $p(z, w \mid x, \alpha, \beta, G_0)$ with a Gi between the sample row assignments $p(u \mid z_i \in k, w_j = l, \theta_{k,l})$, $\theta_{k,l} \sim \theta_0$
 $z \sim Mult(\pi), w \sim Mult(\rho)$
 $\pi_k(\mathbf{r}) = \eta_k \prod_{n=1}^{k-1} (1 - \eta_n), \eta_n \sim Beta(1, \alpha)$
 $\rho_l(\mathbf{s}) = s_l \prod_{n=1}^{k-1} (1 - s_l), s_l \sim Beta(1, \beta)$

ayesian Inference of $p(z, w \mid x, \alpha, \beta$ $x_{i,i}$ | { $z_i = k, w_i = l, \theta_{k,i}$ } ~ $F(\theta_{k,i}), \theta_{k,i}$ ~ G_0 irichlet process for co-clustering

ation
 $\{z_i = k, w_j = l, \theta_{k,l}\} \sim F(\theta_{k,l}), \theta_{k,l} \sim G_0$
 $\mathbf{z} \sim Mult(\boldsymbol{\pi}), \mathbf{w} \sim Mult(\boldsymbol{\rho})$
 $k-1$
 $\begin{bmatrix}\n\mathbf{x}_{i,j} \\
\mathbf{x}_{i,j}\n\end{bmatrix}$, , ∼ hlet process for co-clustering
 $\begin{array}{c}\n1 \\
= k, w_j = l, \theta_{k,l} \times F(\theta_{k,l}), \theta_{k,l} \sim G_0\n\end{array}$
 $z \sim Mult(\pi), w \sim Mult(\rho)$
 $= r_k \prod_{h=1}^{k-1} (1 - r_h), r_h \sim Beta(1, \alpha)$ Dirichlet process for co-clustering

llation
 $\int_{J} \{z_i = k, w_j = l, \theta_{k,l}\} \sim F(\theta_{k,l}), \theta_{k,l} \sim G_0$
 $z \sim Mult(\pi), w \sim Mult(\rho)$
 $\pi_k(\mathbf{r}) = r_k \prod_{h=1}^{k-1} (1 - r_h), r_h \sim Beta(1, \alpha)$
 $\rho_l(s) = s_l \prod_{h=1}^{l-1} (1 - s_l), s_l \sim Beta(1, \beta)$ $k-1$ $h=1$ s for co-clustering
 $\sim F(\theta_{k,l}), \theta_{k,l} \sim G_0$
 $\sim Mult(\rho)$
 $\cdot r_h \sim Beta(1, \alpha)$
 $s_l \sim Beta(1, \beta)$ Dirichlet process for co-clustering
 $\begin{array}{c}\n\text{1}\n\text{1}\n\text{1}\n\text{1}\n\text{1}\n\text{1}\n\text{1}\n\text{2}\n\text{1}\n\text{2}\n\text{2}\n\text{2}\n\text{3}\n\text{4}\n\text{4}\n\text{5}\n\text{5}\n\text{6}\n\text{6}\n\text{7}\n\text{7}\n\text{8}\n\text{7}\n\text{9}\n\text{1}\n\text{1}\n\text{1}\n\text{1}\n\text{1}\n\$ $l-1$ $h=1$ s for co-clustering
 $\sim F(\theta_{k,l}), \theta_{k,l} \sim G_0$
 $\sim Mult(\rho)$
 $\pi_h \sim Beta(1, \alpha)$
 $S_l \sim Beta(1, \beta)$
 \downarrow

- -
	-

▶ Complexity of the inference

$$
O(npd^2 + (n+p)\overline{K}\overline{L}d^3)
$$

Benchmark on a synthetic dataset

▶ Synthetic dataset

-
- 5 row clusters with (20, 30, 40, 30, 20) observations **nchmark on a synthetic dataset

"
thetic dataset

- 5 row clusters with (20, 30, 40, 30, 20) observations

- 5 column clusters with (40, 20, 30, 20, 30) observations

- Each block has a Gaussian distribution

- 19600 time**
- Each block has a Gaussian distribution
- 19600 time series

▶ Computer

- 12 processors Intel(R) Core(TM) i7-8850H CPU @ 2.60GHz
- 32 Gb RAM

CEA Loïc GIRALDI 2021/09/21 PARTICLE 2021/09/21 PARTICLE 2021/09/21 PARTICLE 2021/09/21 PARTICLE 2021/09/21 PARTICLE 2021/09

Use case: ELK

▶ Emergency Lane Keeping (ELK)

- 400 simulations
- 22 variables
- Varying speeds
- Varying decentering
- Varying drifting angle
- ...

Row clusters interpretations

Main row clusters:

- Light Green: drifting left and ELK fails ELK system activates too late
- Dark Green: drifting right and ELK fails
- Orange: ELK works

France Conter Time
Time
Other row clusters are outliers:
• ELK system activates too late

Other row clusters are outliers:

Conclusions & perspectives

▶ Summary Part I

- Industrial simulation clustering workflow from large time series database
- Main procedure in 4 steps
	- **•** Vector representation of univariate time series
	- Dimension reduction of univariate vectors
	- Dimension reduction of multivariate components
	- Clustering in the reduced feature space
- Classification based methodology in order to interpret clusters

▶ Summary Part II

- Use pre-processing pipelines for co-clustering
- Application of non-parametric co-clustering methodology for joined clustering of simulations and signals **Example 19 Series FFT**

- Industrial simulation clustering workflow from large time series database

- Main procedure in 4 steps

- Vector representation of univariate temesers

- Dimension reduction of univariate exector

Perspectives

-
-
- Multi-clustering visualization

\blacktriangleright For more details:

-
- Vector representation of univariate time series

 Dimension reduction of multivariate components

 Clustering in the reduced feature space

 Clustering in the reduced feature space

 Clustering in the reduced feature • Dimension reduction of unwarate vectors
• Clustering in the reduced feature space

Clustering in the reduced feature space
 Clustering in the reduced feature space
 Clustering Application of non-parametric co-cluste - E. Goffinet, M. Lebbah, H. Azzag, L. Giraldi and A. Coutant. Multivariate Time Series The Sere-processing pipelines for co-clustering
- Application of non-parametric co-clustering methodology for joined clustering of sim Application to Advanced Driving Assistance System Validation. ESANN 2021

Merci de votre attention