Modèles de blocs latents semi-supervisés par champ de Markov cachés Journées AFIA SFC 2021

Paul Riverain^{1, 2} Simon Fossier¹ Mohamed Nadif²

 1 Thales

²Université de Paris

21/09/21

P. Riverain, S. Fossier, M. Nadif

2 Motivations

6 Application : Classification de réseaux attribués

P. Riverain, S. Fossier, M. Nadif

2 Motivations

- 3 Modèle
- 4 Algorithmes
- 5 Expériences

6 Application : Classification de réseaux attribués

P. Riverain, S. Fossier, M. Nadif

Contexte

Supervision réseau de transport

Figure: Un poste de contrôle centralisé pour une ligne de métro

P. Riverain, S. Fossier, M. Nadif

Objectif général :

Résumer les flux de passagers sur le réseau avec des groupes homogènes de stations : classification non-supervisée.

 \implies On ne présente à l'opérateur que les interactions entre groupes

Co-clustering Clustering des nœuds d'un graphe biparti

Flux passagers dans un réseau sur une période donnée :

- $i \in I$ station de départ
- $j \in J$ station d'arrivée
- x_{ij} nombre de trajets en cours de i à j sur la période donnée
- X décrit les flux passager (entrée/sortie) sur le réseau

Objectif technique

On distingue les stations d'entrée et de sortie : on cherche à faire du co-clustering sur le graphe des flux passager

P. Riverain, S. Fossier, M. Nadif

6 Application : Classification de réseaux attribués

P. Riverain, S. Fossier, M. Nadif

Objectif de ces travaux

Permettre à l'opérateur d'exprimer de façon simple de la connaissance a priori sur les données et de l'introduire dans l'algorithme

Applications

- L'opérateur s'approprie l'algorithme de co-clustering en confrontant ses a priori sur les données avec les sorties de l'algorithme
- Permet de d'adapter marginalement un modèle de co-clustering pour qu'il offre des partitions plus souhaitables pour l'opérateur

P. Riverain, S. Fossier, M. Nadif

6 Application : Classification de réseaux attribués

P. Riverain, S. Fossier, M. Nadif

Co-clustering

Matrice de données $X = (x_{ij})$ de taille $n \times d$, n individus, d attributs.

Co-clustering :

Classification simultanée des lignes et des colonnes de X

⇒ Classification et réduction de dimensionalité simultanément.

Thales/Université de Paris

d'attributs

Un modèle probabiliste pour le Co-clustering

Latent Block Model (LBM) (Govaert and Nadif 2003)

- x_{ij} échantillonnés à partir d'une distribution paramétrique ϕ
- x_{ij} dépend du cluster de ligne z_i et du cluster de colonne w_j
 - $\bullet \ g$ clusters en ligne et m clusters en colonne
 - $z_i = k \Leftrightarrow z_{ik} = 1$, idem $w_j = \ell \Leftrightarrow w_{j\ell} = 1$

$$z_i \stackrel{iid}{\sim} \mathsf{Categorielle}(\alpha_1, \dots, \alpha_g)$$
$$w_j \stackrel{iid}{\sim} \mathsf{Categorielle}(\beta_1, \dots, \beta_m)$$
$$x_{ij} \stackrel{iid}{\sim} \phi(.; \epsilon_{ijz_iw_j})$$

Paramètres du modèle : ${oldsymbol{\Theta}}=\{oldsymbol{lpha},\,oldsymbol{eta},\,oldsymbol{\epsilon}\}$

P. Riverain, S. Fossier, M. Nadif

Thales/Université de Paris

11/46

Inférence et apprentissage

$$P(\boldsymbol{X}|\boldsymbol{Z},\boldsymbol{W};\boldsymbol{\Theta}) = \prod_{ij} \phi(x_{ij};\epsilon_{ijz_iw_j}) = \prod_{ijk\ell} \phi(x_{ij};\epsilon_{ijk\ell})^{z_{ik}w_{j\ell}}.$$

P. Riverain, S. Fossier, M. Nadif

Inférence et apprentissage

$$\begin{split} \log P(\overbrace{\boldsymbol{X}}^{\text{observ}\acute{e}}, \overbrace{\boldsymbol{Z}, \boldsymbol{W}}^{\text{latent}}; & \overbrace{\boldsymbol{\Theta}}^{\text{a apprendre}}) = \sum_{ik} z_{ik} \log \alpha_k + \sum_{j\ell} w_{j\ell} \log \beta_\ell \\ &+ \sum_{ijk\ell} z_{ik} w_{j\ell} \log \phi(x_{ij}; \epsilon_{ijk\ell}). \end{split}$$

Maximum de vraisemblance:

$$P(\boldsymbol{X};\boldsymbol{\Theta}) = \sum_{\boldsymbol{Z}, \boldsymbol{W} \in \mathcal{Z} \times \mathcal{W}} P(\boldsymbol{X}, \boldsymbol{Z}, \boldsymbol{W}; \boldsymbol{\Theta})$$

Mais
$$|\mathcal{Z} \times \mathcal{W}| = g^n \times m^d$$

P. Riverain, S. Fossier, M. Nadif

Inférence et apprentissage

EM classique

La fonction auxiliaire $Q(\boldsymbol{\Theta}, \boldsymbol{\Theta}^{(c)}) = \mathbb{E}(\log P(\boldsymbol{X}, \boldsymbol{Z}, \boldsymbol{W}; \boldsymbol{\Theta}) | \boldsymbol{X}, \boldsymbol{\Theta}^{(c)})$ requiert $P(z_{ik}w_{j\ell} = 1 | \boldsymbol{X}, \boldsymbol{\Theta}^{(c)})$, qui n'est *pas tractable*, contrairement à un mélange de modèles classique.

⇒ Variantes EM : EM Variationel, EM Classifiant, EM Stochastique

P. Riverain, S. Fossier, M. Nadif

Objectif de ces travaux

Permettre à l'opérateur d'exprimer de façon simple de la connaissance a priori sur les données et de l'introduire dans l'algorithme

Approche

- Rendre les variables latentes (z_i) (resp. (w_j)) a priori dépendantes les unes des autres
- L'utilisateur détermine les dépendances entre les variables et rend certaines partitions $({m Z},{m W})$ plus ou moins probables.

⇒ Utilisation d'un champ de Markov caché (Hidden MRF : HMRF)

P. Riverain, S. Fossier, M. Nadif

- Segmentation d'images non supervisée/classification avec contraintes spatiales avec mélanges de modèles
 - Neighborhood EM (Ambroise and Govaert 1998)
 - HMRF + Mean field (Celeux, Forbes, and Peyrard 2003)

- Segmentation d'images non supervisée/classification avec contraintes spatiales avec mélanges de modèles
 - Neighborhood EM (Ambroise and Govaert 1998)
 - HMRF + Mean field (Celeux, Forbes, and Peyrard 2003)
- Classification semi-supervisée ou sous contraintes
 - Constrained k-means (K. Wagstaff et al. 2001)
 - HMRF k-means (Basu, Bilenko, and Mooney 2004)

- Segmentation d'images non supervisée/classification avec contraintes spatiales avec mélanges de modèles
 - Neighborhood EM (Ambroise and Govaert 1998)
 - HMRF + Mean field (Celeux, Forbes, and Peyrard 2003)
- Classification semi-supervisée ou sous contraintes
 - Constrained k-means (K. Wagstaff et al. 2001)
 - HMRF k-means (Basu, Bilenko, and Mooney 2004)
- Régularisation Laplacienne
 - Modèles de mélange + régularisation Laplacienne (Zhu and Lafferty 2005)
 - Régularisation Laplacienne issue d'information auxiliaire (Salah and Nadif 2017)

Contraintes :

- Pas de connaissance sur tous les individus \implies supervision partielle
- Pas de vérité terrain \implies pas de supervision directe
- Interactions avec l'algorithme ⇒ certaines contraintes peuvent ne pas être respectées

Champ de Markov : généralités

Un graphe G non orienté décrit les dépendances d'un ensemble de variables aléatoires. Le nœud i dépend de ses voisins directs $i' \in \mathcal{N}_i$

Champ de Markov : généralités

Un graphe G non orienté décrit les dépendances d'un ensemble de variables aléatoires. Le nœud i dépend de ses voisins directs $i' \in N_i$

 $c_1: \psi(\mathbf{Z}_{c_1}, \mathbf{S}_{c_1})$

• $\Gamma(S)$ fonction de partition du MRF, assurant $\sum_{Z \in \mathcal{Z}} P(Z; S) = 1$.

- Z la matrice des attributs des nœuds du MRF
- Z_c la matrice Z restreinte aux nœuds de la clique c
- $\psi(\mathbf{Z}_c; \mathbf{S}_c) > 0$ le potentiel de la clique c

P. Riverain, S. Fossier, M. Nadif

Champ de Markov : généralités Exemple du modèle d'Ising : potentiels de noeuds et d'arêtes

Dipôles magnétiques à états $z_i \in \{-1, +1\}$ \mathcal{G} est un treillis 2D Le MRF est défini par paires Potentiel de l'arête :

$$\psi_{ij}(z_i, z_j) = \begin{cases} \exp(J) \text{ si } z_i = z_j \\ \exp(-J) \text{ si } z_i \neq z_j \end{cases}$$

Figure: Modèle d'Ising

 ${\cal J}$ constante de couplage

Champ magnétique externe h_i qui s'applique au dipôle iPotentiel du dipôle : $\psi_i(z_i) = \exp(h_i z_i)$ $h_i > 0$: le dipôle i veut s'aligner avec la direction +1.

P. Riverain, S. Fossier, M. Nadif

Champ de Markov : généralités

Exemple du modèle de Potts : le couplage entraîne des phénomènes complexes

Similaire à un modèle d'Ising, mais chaque z_i prend ses valeurs dans $\{1, \ldots, K\}$

$$\psi_{ij}(z_i, z_j) = \begin{cases} \exp(J) \text{ si } z_i = z_j \\ 1 \text{ sinon} \end{cases}$$

Figure: Échantillons d'un modèle de Potts à K = 10 états pour différentes valeurs de J. De gauche à droite : J = 1.42, J = 1.44, J = 1.46. (D'après Sudderth)

P. Riverain, S. Fossier, M. Nadif

MRF cachés pour le LBM: HLBM

Un graphe \mathcal{G} décrit les dépendances d'un ensemble de variables aléatoires. Le nœud i dépend de ses voisins directs $i' \in \mathcal{N}_i$

En général :

- le graphe des dépendances est donné
- les $(z_i)_i$ sont observées
- On cherche à estimer les paramètres *S*

P. Riverain, S. Fossier, M. Nadif

Dans notre cas :

- le graphe des dépendances \mathcal{G} est donné
- les $(\boldsymbol{z}_i)_i$ sont inférées
- Les paramètres $oldsymbol{S}$ donnés

HMRFs pour le LBM: HLBM

Figure: Modèle graphique du HLBM

P. Riverain, S. Fossier, M. Nadif

Définir les potentiels :

• Must Link (\mathcal{M}) • Cannot Link (\mathcal{C})

$$\psi_{ii'}^r(\boldsymbol{z}_i, \boldsymbol{z}_{i'}; \boldsymbol{\Xi}^r) = \begin{cases} \exp\left(-\lambda_r \xi_{ii'}^r \mathbb{1}(z_{i'} \neq z_i)\right) & (i, i') \in \mathcal{M}^r \\ \exp\left(-\lambda_r \xi_{ii'}^r \mathbb{1}(z_{i'} = z_i)\right) & (i, i') \in \mathcal{C}^r. \end{cases}$$

On peut montrer que : $\Gamma = \Gamma(\boldsymbol{\Xi}^r)$

P. Riverain, S. Fossier, M. Nadif

Reparamétrisation :

$$s_{ii'}^r = \begin{cases} \xi_{ii'}^r & (i,i') \in \mathcal{M}^r \\ -\xi_{ii'}^r & (i,i') \in \mathcal{C}^r \\ 0 & \text{otherwise.} \end{cases}$$

Pour tout (i, i'),

$$\psi_{ii'}^r(oldsymbol{z}_i,oldsymbol{z}_{i'};oldsymbol{S}^r) \propto \exp(\lambda_r s_{ii'}^r \sum_k z_{ik} z_{i'k})$$

P. Riverain, S. Fossier, M. Nadif

Log-vraisemblance des données complètes

$$\begin{split} &\log P(\boldsymbol{X}, \boldsymbol{Z}, \boldsymbol{W}; \boldsymbol{\Theta}) = \\ &\sum_{i \in \overline{\Upsilon}_r} \sum_{k} z_{ik} \log \alpha_k + \sum_{j \in \overline{\Upsilon}_c} \sum_{\ell} w_{j\ell} \log \beta_\ell \\ &+ \frac{\lambda_r}{2} \sum_{ii'k} s^r_{ii'} z_{ik} z_{i'k} + \frac{\lambda_c}{2} \sum_{jj'\ell} s^c_{jj'} w_{j\ell} w_{j'\ell} \\ &+ \sum_{ijk\ell} z_{ik} w_{j\ell} \log \phi(x_{ij}; \epsilon_{ijk\ell}) + \mathsf{cste} \end{split}$$

Difficulté

Nouvelles dépendances $z_{ik}z_{i'k}$ et $w_{j\ell}w_{j'\ell}$

P. Riverain, S. Fossier, M. Nadif

Thales/Université de Paris

24/46

6 Application : Classification de réseaux attribués

P. Riverain, S. Fossier, M. Nadif

2 approches

- Variational EM (VEM) : Construire une approximation tractable de la distribution postérieure sur les partitions P(Z, W|X; Θ).
- Classification EM : à chaque étape de EM, affectations fermes (~ k-means). Convergence rapide et matrices creuses.

Par rapport au LBM

Les étapes M sont similaires et ne posent pas de problème Seules les étape E sont distinctes (\leftarrow dépendances $z_{ik}z_{i'k}$ et $w_{j\ell}w_{j'\ell}$)

P. Riverain, S. Fossier, M. Nadif

Iterated Conditional Modes (ICM), algorithme de montée de coordonnées pour maximiser $\log P(\mathbf{X}, \mathbf{Z}, \mathbf{W}; \Theta)$ par rapport à \mathbf{Z} ($z_i \in \{1, \dots, g\}$)

Pour i dans le MRF, étape CE :

$$z_i = \operatorname*{argmax}_{z_i} \log P(\boldsymbol{X}, z_i, (z_{i'})_{i' \neq i}, \boldsymbol{W}; \boldsymbol{\Theta})$$

Finalement,

$$z_{i} = \underset{k}{\operatorname{argmax}} \begin{cases} \lambda_{r} \sum_{i'} s_{ii'}^{r} z_{i'k} + \sum_{j\ell} w_{j\ell} \log \phi(x_{ij}; \epsilon_{ijk\ell}) & i \in \Upsilon_{r} \\ \log \alpha_{k} + \sum_{j\ell} w_{j\ell} \log \phi(x_{ij}; \epsilon_{ijk\ell}) & i \in \overline{\Upsilon}_{r}. \end{cases}$$

P. Riverain, S. Fossier, M. Nadif

Algorithme VEM pour le HLBM Fonction objectif

Soit Q une distribution sur $\mathcal{Z} \times \mathcal{W}$. L'objectif en VEM est de minimiser la "distance" de Q à la vraie distribution postérieure $P^*(\mathbf{Z}, \mathbf{W}; \mathbf{\Theta}) = P(\mathbf{Z}, \mathbf{W} | \mathbf{X}; \mathbf{\Theta}) : \min D_{\mathsf{KL}}(Q || P^*).$

Comme $D_{\mathsf{KL}}(Q||P^*) \ge 0$, on a une borne inférieure de la log-vraisemblance dont l'optimisation peut être rendue tractable.

$$F(\tilde{Z}, \tilde{W}, \Theta) = \mathbb{E}_Q (\log P(X, Z, W; \Theta)) + \mathbb{H}(Q) \le \log P(X; \Theta)$$

Algorithme VEM pour le HLBM Fonction objectif

Soit Q une distribution sur $\mathcal{Z} \times \mathcal{W}$. L'objectif en VEM est de minimiser la "distance" de Q à la vraie distribution postérieure $P^*(\mathbf{Z}, \mathbf{W}; \mathbf{\Theta}) = P(\mathbf{Z}, \mathbf{W} | \mathbf{X}; \mathbf{\Theta}) : \min D_{\mathsf{KL}}(Q || P^*).$

Comme $D_{\mathsf{KL}}(Q||P^*) \ge 0$, on a une borne inférieure de la log-vraisemblance dont l'optimisation peut être rendue tractable.

$$F(\tilde{\boldsymbol{Z}}, \tilde{\boldsymbol{W}}, \boldsymbol{\Theta}) = \mathbb{E}_Q \big(\log P(\boldsymbol{X}, \boldsymbol{Z}, \boldsymbol{W}; \boldsymbol{\Theta}) \big) + \mathbb{H}(Q) \le \log P(\boldsymbol{X}; \boldsymbol{\Theta})$$

Q paramétrée par $\tilde{\pmb{Z}}=(\tilde{z}_{ik})$ and $\tilde{\pmb{W}}=(\tilde{w}_{j\ell}),$ telle que

$$Q(\boldsymbol{Z}, \boldsymbol{W}; \tilde{\boldsymbol{Z}}, \tilde{\boldsymbol{W}}) = Q(\boldsymbol{Z}; \tilde{\boldsymbol{Z}})Q(\boldsymbol{W}; \tilde{\boldsymbol{W}}) = \prod_{ik} \tilde{z}_{ik}^{z_{ik}} \prod_{j\ell} \tilde{w}_{j\ell}^{w_{j\ell}}$$

28/46

où $\sum_k \tilde{z}_{ik} = 1$ et $Q(z_{ik} = 1) = \tilde{z}_{ik}$

P. Riverain, S. Fossier, M. Nadif Thales/Université de Paris

Dépendances entre les variables latentes voisines dans le HMRF : montée de coordonnées sur : $(\tilde{z}_1, \dots, \tilde{z}_n) \mapsto F(\tilde{Z}, \tilde{W}, \Theta)$

Finalement,

$$\tilde{z}_{ik} \propto \begin{cases} \exp\left(\lambda_r \sum_{i'} s_{ii'}^r \tilde{z}_{i'k}\right) \prod_{j\ell} \phi(x_{ij}; \epsilon_{ijk\ell})^{\tilde{w}_{j\ell}} & i \in \Upsilon_r \\ \alpha_k \prod_{j\ell} \phi(x_{ij}; \epsilon_{ijk\ell})^{\tilde{w}_{j\ell}} & i \in \overline{\Upsilon}_r. \end{cases}$$

 \implies revient à introduire un terme de régularisation $\lambda_r \sum_{i'} s_{ii'}^r \tilde{z}_{i'k}$ à la place des proportions de mélange pour les nœuds dans le HMRF

P. Riverain, S. Fossier, M. Nadif

Inclure les proportions de mélange dans le HMRF

On considère en plus un potentiel de nœud dans le MRF (⇔ champ magnétique extérieur) Etape VE :

$$\tilde{z}_{ik} \propto \alpha_k \exp\left(\lambda_r \sum_{i'} s^r_{ii'} \tilde{z}_{i'k}\right) \prod_{j\ell} \phi(x_{ij}; \epsilon_{ijk\ell})^{\tilde{w}_{j\ell}}$$

Etape CE :

$$z_i = \underset{k}{\operatorname{argmax}} \left(\log \alpha_k + \lambda_r \sum_{i'} s_{ii}^r z_{i'k} + \sum_{j\ell} w_{j\ell} \log \phi(x_{ij}; \epsilon_{ijk\ell}) \right)$$

Difficulté

Dépendance fonction de partition $\Gamma = \Gamma(\alpha, \beta)$ Dépendance négligée pour l'étape M de α et β : pas de problème rencontré expérimentalement.

P. Riverain, S. Fossier, M. Nadif

Thales/Université de Paris

30/46

Risque des mises à jour parallèles

Oscillations

En VEM, on applique un *amortissement* $\tilde{z}_{ik}^{(c+\frac{1}{2})}$ probabilité variationelle postérieure après une étape E $\eta\in(0,1)$

$$\tilde{z}_{ik}^{(c+1)} = (1 - \eta)\tilde{z}_{ik}^{(c+\frac{1}{2})} + \eta\tilde{z}_{ik}^{(c)}$$

Contrainte

Pas de version stochastique de EM (Celeux, Forbes, and Peyrard 2003)

P. Riverain, S. Fossier, M. Nadif

Initialisation

Dans le LBM classique

- Dépendances étape E lignes $(Z) \Leftrightarrow$ étape E colonnes (W): on ne peut pas initialiser l'algorithme uniquement avec Θ (\neq modèles de mélange)
- $\boldsymbol{Z}^{(0)} = \texttt{clustering}(\boldsymbol{X}), \; \boldsymbol{W}^{(0)} = \texttt{clustering}(\boldsymbol{X}^T)$
- En fonction du modèle : clustering = *k*-means, spherical *k*-means, ...

Dans HLBM

- ullet Initialisation LBM sur des matrices transformées M^r et M^c
- On moyenne les attributs des voisins pour les relations ML uniquement : $m_{ij}^r = x_{ij} + \frac{1}{s_{i}^{r+}} \sum_{i'} s_{ii'}^{r+} x_{i'j}$
 - \implies Données moins creuses

P. Riverain, S. Fossier, M. Nadif

Potentiels du MRF :

$$\psi_{ii'}^r(\boldsymbol{z}_i, \boldsymbol{z}_{i'}; \boldsymbol{S}^r) \propto \exp(\lambda_r s_{ii'}^r \sum_k z_{ik} z_{i'k})$$

$$\psi_{jj'}^c(\boldsymbol{w}_j, \boldsymbol{w}_{j'}; \boldsymbol{S}^c) \propto \exp(\lambda_c s_{jj'}^c \sum_{\ell} w_{j\ell} w_{j'\ell})$$

Difficulté expérimentale : choix des facteurs d'échelle λ_r , λ_c

Compromis entre le poids du prior et de la vraisemblance. Revient à déterminer la constante de couplage J dans un modèle de Potts

P. Riverain, S. Fossier, M. Nadif

2 Motivations

3 Modèle

6 Application : Classification de réseaux attribués

P. Riverain, S. Fossier, M. Nadif

Fixer le poids des contraintes Sensibilité aux paramètres

Figure: Distribution des valeurs de CARI

Fixer le poids des contraintes En fonction du bruit

Figure: CARI median pour différentes valeurs de bruit dans les matrices de contraintes S^r and S^c

P. Riverain, S. Fossier, M. Nadif

Appliquer une fermeture transitive?

Figure: CARI avec et sans fermeture transitive

P. Riverain, S. Fossier, M. Nadif

2 Motivations

- 3 Modèle
- 4 Algorithmes

6 Application : Classification de réseaux attribués

P. Riverain, S. Fossier, M. Nadif

Caractéristiques des jeux de données

Réseaux attribués de la forme (A, X) $a_{ii'}$: nombre de fois où papier *i* cite papier *i'* x_i attributs bag-of-words issus de l'abstract du papier *i* Classes : domaine de recherche du papier

Hypothèse

Des nœuds voisins dans le graphe ont plus de chances d'être dans le même cluster

$A \nleftrightarrow S$

Datasets	Normalization X	Type $oldsymbol{A}$	n	d	g	$n_{NZX}(\%)$	#Edges	Balance (%)
Cora	binary	binary	2708	1433	7	98.73	5294	22
Citeseer	binary	binary	3312	3703	6	99.14	4732	35
Wiki	tfidf	weighted	2405	4973	17	86.46	17981	2
Pubmed	tfidf	binary	19717	500	3	89.98	44338	52

P. Riverain, S. Fossier, M. Nadif

Approche :

 $\epsilon_{ijk\ell} = \mu_i \nu_j \gamma_{k\ell}$ ϕ : pmf de Poisson *Marges* μ_i et ν_j pour absorber les degrés

$$x_{ij} \stackrel{iid}{\sim} \phi(.; \mu_i \nu_j \gamma_{k\ell})$$

P. Riverain, S. Fossier, M. Nadif

Thales/Université de Paris

40/46

Résultats classification réseaux attribués

Métriques

	Cora		Citeseer		W	'iki	Pubmed	
	ACC	NMI	ACC	NMI	ACC	NMI	ACC	NMI
GAE(*)	53.25	40.69	41.26	18.34	17.33	11.93	64.08	22.97
VGAE(*)	55.95	38.85	44.38	22.71	28.67	30.28	65.48	25.09
ARGE	64.00	44.90	57.3	35.0	41.40(*)	39.50(*)	59.12(*)	23.17(*)
ARVGE	63.80	45.00	54.4	26.10	41.55(*)	40.01(*)	58.22(*)	20.62(*)
MGAE	63.43	45.57	63.56	39.75	50.14	47.97	43.88(*)	8.60(*)
DAEGC	70.04	52.8	67.20	39.70	N/A	N/A	67.10	26.60
AGC	68.92	53.68	67.00	41.13	47.65	45.28	69.78	31.59
PHLBMCEM	68.6 ± 1.9	49.8 ± 0.9	66.2 ± 1.9	40.8 ± 1.4	53.3 ± 3.7	51.9 ± 1.3	67.4 ± 0.6	30.8 ± 0.9
PHLBMVEM	65.9 ± 2.6	49.7 ± 1.6	67.6 ± 1.2	42.1 ± 1.3	54.8 ± 2.4	52.2 ± 0.9	67.0 ± 1.6	30.9 ± 0.8

Contributions

- LBM semi-supervisé avec contraintes par paires
- Étude de la sensibilité aux poids des contraintes
- Application à la classification de réseaux attribués

Pistes pour de futurs travaux

- Approches stochastiques (SEM)
- MRF plus complexes (n-uplets)
- Heuristiques/méthodologie et théorie pour déterminer les facteurs d'échelle λ_r et λ_c des contraintes

P. Riverain, S. Fossier, M. Nadif

- Ambroise and Govaert (Aug. 1998). "Convergence of an EM-Type Algorithm for Spatial Clustering". In: *Pattern Recogn. Lett.* 19.10, pp. 919–927. ISSN: 0167-8655.
- Basu, Sugato, Mikhail Bilenko, and Raymond J. Mooney (2004). "A Probabilistic Framework for Semi-Supervised Clustering". In: *SIGKDD*, pp. 59–68.
- Celeux, Gilles, Florence Forbes, and Nathalie Peyrard (2003). "EM procedures using mean field-like approximations for Markov model-based image segmentation". In: *Pattern Recognition* 36.1, pp. 131–144. ISSN: 0031-3203.
- Davidson, Ian, Kiri L. Wagstaff, and Sugato Basu (2006). "Measuring Constraint-Set Utility for Partitional Clustering Algorithms". In: *PKDD*.
 Ed. by Johannes Fürnkranz, Tobias Scheffer, and Myra Spiliopoulou, pp. 115–126.

P. Riverain, S. Fossier, M. Nadif

Govaert and Nadif (2003). "Clustering with block mixture models". In: *Pattern Recognition* 36.2, pp. 463–473.

- Miele, Vincent, Franck Picard, and Stéphane Dray (2014). "Spatially constrained clustering of ecological networks". In: *Methods in Ecology and Evolution* 5.8, pp. 771–779.
- Salah and Nadif (Sept. 2017). "Social Regularized von Mises—Fisher Mixture Model for Item Recommendation". In: *Data Min. Knowl. Discov.* 31.5, pp. 1218–1241. ISSN: 1384-5810.
- Wagstaff, Kiri et al. (2001). "Constrained K-Means Clustering with Background Knowledge". In: *ICML*, pp. 577–584.
- Zhu, Xiaojin and John Lafferty (2005). "Harmonic Mixtures: Combining Mixture Models and Graph-Based Methods for Inductive and Scalable Semi-Supervised Learning". In: *ICML*, pp. 1052–1059.

P. Riverain, S. Fossier, M. Nadif

Merci pour votre attention

P. Riverain, S. Fossier, M. Nadif

Algorithm 1: PHLBMVEM

Input: Data matrix X, constraints matrices S^r and S^c , number of row and column clusters g and m, damping factor η . **Output:** Classification matrices Z, W, parameters α, β, γ Initialization: Initialize \tilde{Z}, \tilde{W} and set $\alpha_k = \frac{\tilde{z}_{,k}}{n}, \ \beta_\ell = \frac{\tilde{w}_{,\ell}}{d}, \ \gamma_{k\ell} = \frac{x_{k\ell}^{2W}}{\pi \tilde{z}_{,n} \tilde{w}}$ while Not converged do Compute $x_{i\ell}^{\tilde{W}} = \sum_{j} \tilde{w}_{j\ell} x_{ij};$ Row VE-step: • In parallel, $\forall i, \ \tilde{z}_{ik} \propto \alpha_k \exp\left(\lambda_r \sum_{i'} s^r_{ii'} \tilde{z}_{i'k} + \sum_{\ell} x^{\tilde{W}}_{i\ell} \log \gamma_{k\ell}\right)$; • Normalize \tilde{Z} and apply damping: Row M-step: $\alpha_k = \frac{\tilde{z}_{,k}}{n}, \ \gamma_{k\ell} = \frac{\sum_i \tilde{z}_{ik} x_{i\ell}^W}{x^W \sum \tilde{z}_{,i} x_{i\ell}};$ Compute $x_{kj}^{\tilde{Z}} = \sum_{i} \tilde{z}_{ik} x_{ij};$ Column VE-step: • In parallel, $\forall j, \tilde{w}_{j\ell} \propto \beta_{\ell} \exp\left(\lambda_c \sum_{i'} s^c_{ij'} \tilde{w}_{j'\ell} + \sum_k x^{\tilde{Z}}_{kj} \log \gamma_{k\ell}\right);$ • Normalize \tilde{W} and apply damping; **Column M-step:** $\beta_{\ell} = \frac{\tilde{w}_{,\ell}}{d}, \ \gamma_{k\ell} = \frac{\sum_{j} \tilde{w}_{j\ell} x_{kj}^{Z}}{r^{\tilde{z}} \sum_{j} \tilde{w}_{j\ell} x_{kj}^{T}};$ end

P. Riverain, S. Fossier, M. Nadif

Mesurer la concordance d'une partition avec les contraintes données

Pour une partition \mathcal{P} des lignes ou des colonnes, on défini

$$\mathcal{R}(\boldsymbol{S}, \mathcal{P}) = \frac{\sum_{ii'} |s_{ii'}| \mathsf{unsat}(\mathcal{P}, s_{ii'})}{\sum_{ii'} |s_{ii'}|},$$

où,

$$\mathsf{unsat}(\mathcal{P}, s_{ii'}) = \begin{cases} 1 \text{ si la contrainte } s_{ii'} \text{ est non vérifiée dans } \mathcal{P} \\ 0 \text{ si la contrainte } s_{ii'} \text{ est vérifiée dans } \mathcal{P} \text{ ou si } s_{ii'} = 0 \end{cases}$$

P. Riverain, S. Fossier, M. Nadif

Mesurer la concordance d'une partition avec les contraintes données

Pour une partition ${\mathcal P}$ des lignes ou des colonnes, on défini

$$\mathcal{R}(\boldsymbol{S}, \mathcal{P}) = \frac{\sum_{ii'} |s_{ii'}| \mathsf{unsat}(\mathcal{P}, s_{ii'})}{\sum_{ii'} |s_{ii'}|},$$

Plusieurs applications selon la nature de \mathcal{P} :

- *P* partition renvoyée par l'algorithme sans régularisation (λ_r = λ_c = 0) : proportion pondérée de contraintes qui ne sont pas déjà dans les données (Davidson, K. L. Wagstaff, and Basu 2006)
- \mathcal{P} vraie partition : mesure du bruit dans la matrice de contraintes S (Miele, Picard, and Dray 2014).
- \mathcal{P} partition retournée par l'algorithme avec régularisation ($\lambda_r \lambda_c \neq 0$), proportion de contraintes qui n'ont pas été respectées par l'algorithme après convergence.

P. Riverain, S. Fossier, M. Nadif

Résultats classification réseaux attribués

Effets des contraintes

P. Riverain, S. Fossier, M. Nadif