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What is scheduling ?

« Scheduling is concerned with the allocation 
of scarce resources to activities over time 
with the objective of optimizing one or more 
performance measures. »
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Examples of scheduling problems

Resource-Constrained Project Scheduling (RCPSP)
Notorious NP-Hard problem in combinatorial optimization 
(>5000 references on Google Scholar)
N tasks with precedence constraints 
M resources of limited capacity
Minimize project makespan
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Examples of scheduling problems

In the real life, scheduling problems are more complex
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Examples of scheduling problems

Complex objectives: 
resource costs, 

tardiness, throughput

Complex constraints:
activities, resources

Overconstrained
Ill-defined

Large 
(e.g. 1000000 tasks)

Require fast
solving time

In the real life, scheduling problems are more complex

Heterogeneous
decisions
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What is CP Optimizer ?

Historically developed since 2007 by ILOG, now IBM

Our team has 20+ years of experience in designing 
combinatorial optimization tools for real-life industrial 
problems, and particularly scheduling problems

#1 objective of CP Optimizer : lower the barrier to entry 
for efficiently solving industrial scheduling problems

Targeted audience goes beyond CP experts:
OR experts
Data scientists
Software engineers
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What is CP Optimizer ?

Model & run approach:

User focuses on a declarative mathematical model of 
the problem using the classical ingredients of 
combinatorial optimization: variables, constraints, 
expressions, objective function

Resolution is performed by an automated search 
algorithm with the following properties: complete, 
deterministic, anytime, efficient, robust, continuously 
improving ...
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What is CP Optimizer ?

Model & run approach: wait … this already exists: it looks 
like Mixed Integer Linear Programming (MILP) !

Right: we borrowed a lot from the MILP paradigm when 
designing CP optimizer

Wrong: MILP is usually not good for scheduling problems
Difficult to model them
Many modeling tricks exist but they are brittle
Large models (typically in n2 or n3 with problem size)
Poor performance, especially on large problems
Often it takes long even to get a feasible solution (not 
anytime)
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What’s wrong with MILP (and classical CP) for scheduling ?

It’s missing the essential ingredient of scheduling: time

Interestingly, time is a very relevant topic in AI 
Temporal reasoning
Reasoning on action and change
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Time in AI: examples

Allen’s interval algebra (1983)

Temporal constraint networks (1991)   
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Time in AI: examples

Temporal planning in PDDL 2.1 (2003)
 (define (domain jug-pouring)
    (:requirements :typing :fluents)
    (:types jug)
    (:functions
       (amount ?j - jug)
       (capacity ?j - jug))
    (:action pour
       :parameters (?jug1 ?jug2 - jug)
       :precondition (>= (- (capacity ?jug2) (amount ?jug2)) (amount ?jug1))
       :effect (and (assign (amount ?jug1) 0)
                    (increase (amount ?jug2) (amount ?jug1)))
 ) 

?jug1

?jug2

time

amount
pour(?jug1,?jug2)
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Time in AI: examples

MILP (and classical CP) models only deal with numerical 
values ( x∈    , x∈    ) 

A set of other simple mathematical concepts seem to 
naturally emerge when dealing with time:

Intervals   :  a = [s,e) = { x∈    | s≤x<e }   
Functions : f:        →

Permutations   
Occurrence / non-occurrence of an event : optional interval

ℝ
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ℝ ℤ
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What is CP Optimizer ?

What if we integrate these mathematical concepts in the 
model …

And keep all the good ideas of MILP:
Model & run
Exact algorithm
Input/output file format
Language versatility (C++, Python, Java, C#, OPL)
Modeling assistance (warnings, …)
Conflict refiner
Warm-start
…

That’s exactly what CP Optimizer is about !
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Overview of CP Optimizer

CP Optimizer 
model

C++

OPL

Python

Java

C# On cloud

Local

...

Solve
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Interval variables

An optional interval variable has an additional possible 
value in its domain (absence value)

Domain of values for an optional interval variable x:
 Dom(x) ⊆  {⊥}  ∪  { [s,e) | s,e ∈ Z, s≤e }

Example: interval x optional in 1000..2000 size 10..20

Constraints and expressions on interval variables specify 
how they handle the case of absent intervals (in general it 
is very intuitive) 

Absent interval Interval of integers
(when interval is present)
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CP Optimizer model for RCPSP

A set of decision variables of type interval 
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CP Optimizer model for RCPSP

A set of precedence constraints aggregated 
into a global temporal constraint network
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CP Optimizer model for RCPSP

A cumul function expression that can be constrained
(here ≤ Dr)
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CP Optimizer model for RCPSP
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CP Optimizer modeling concepts

Allows easy modeling of:
Variable activity duration, partially preemptive tasks
Optional activities, oversubscribed problems
Hierarchical problems (Work Breakdown Structures)
Alternative resources and modes (MM-RCPSP)
Resource calendars and breaks
Cumulative resources, inventories, reservoirs
Parallel batches, activity incompatibilities
Unary resources with setup times and costs
Complex objective functions

Unlike MILP, in CP Optimizer the size of the model in 
general grows linearly with the size of the problem 
instance 
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CP Optimizer model for Work-Breakdown Structures

task

dec
OR

OR

Note the similarities with Hierarchical Task Network (HTN) in A.I. Planning
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CP Optimizer model for semiconductor manufacturing

Step 1 Step 2 ...Lot 1

Lot 2

...

S. Knopp et al. Modeling Maximum Time Lags 
in Complex Job-Shops with Batching in 
Semiconductor Manufacturing. PMS 2016.
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CP Optimizer automatic search - Performance

Results published in CPAIOR-2015 (using V12.6)
Job-shop 

15 instances closed out of 48 open ones
Job-shop with operators 

208 instances closed out of 222 open ones
Flexible job-shop

74 instances closed out of 107 open ones
RCPSP

52 new lower bounds   + 39 instances closed in 2019
RCPSP with maximum delays

51 new lower bounds out of 58 small-medium instances
     + 372 bounds improved on large instances in 2019

Multi-mode RCPSP
535 instances closed out of 552

Multi-mode RCPSP with maximum delays
All 85 open instances of the benchmark closed
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Performance evolution

Objective
landscapes

Failure-directed
search

Iterative 
diving 
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Under the hood

Artificial Intelligence Operations Research

Constraint 
propagation

Learning

Temporal
constraint
networks

2-SAT
networks

No-goods

Linear 
relaxations

Problem 
specific
scheduling
algorithms

Tree searchRestarts
LNS Randomization

Model presolveHeuristics
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Conclusion

CP Optimizer ⊂  AI  ∪  OR

CP Optimizer ≠  CP

CP Optimizer =  Exact algorithm for optimality proofs +
 Fast heuristic for finding feasible
 solutions and optimizing them

CP Optimizer ecosystem  ≈  MILP ecosystem :
Model & run paradigm
Clean combinatorial optimization framework
Language versatility: C++, Python, Java, C#, OPL
Well documented improvements of automatic search
I/O file format
Modeling assistance
Conflict refiner
Warm-start
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Most of CP Optimizer’s ideas have been published !

P. Laborie, J. Rogerie. Reasoning with Conditional Time-Intervals. In: Proc. FLAIRS-
2008.
P. Laborie, J. Rogerie, P. Shaw, P. Vilím. Reasoning with Conditional Time-Intervals. 
Part II: An Algebraical Model for Resources. In: Proc. FLAIRS-2009. 

P. Laborie. CP Optimizer for detailed scheduling illustrated on three problems. In: 
Proc. CPAIOR-2009.
P. Laborie, B. Messaoudi. New Results for the GEO-CAPE Observation Scheduling 
Problem. In Proc. ICAPS-2017.
P. Laborie. An Update on the Comparison of MIP, CP and Hybrid Approaches for 
Mixed Resource Allocation and Scheduling. In Proc. CPAIOR-2018.

P. Laborie, D. Godard. Self-Adapting Large Neighborhood Search: Application to 
Single-Mode Scheduling Problems. In: Proc. MISTA-2007.
P. Vilím. Timetable Edge Finding Filtering Algorithm for Discrete Cumulative 
Resources. In: Proc. CPAIOR-2011.
P. Vilím, P. Laborie, P. Shaw. Failure-directed Search for Constraint-based Scheduling. 
In: Proc. CPAIOR-2015.
P. Laborie, J. Rogerie. Temporal Linear Relaxation in IBM ILOG CP Optimizer. Journal 
of Scheduling, 19(4), 391–400 (2016).
P. Laborie. Objective Landscapes for Constraint Programming. In Proc. CPAIOR-2018.

P. Laborie, J. Rogerie, P. Shaw, P. Vilím. IBM ILOG CP Optimizer for Scheduling. 
Constraints Journal, 23(2), 210-250 (2018). http://ibm.biz/Constraints2018 
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