

CP Optimizer pour la planification et l'ordonnancement

Philippe Laborie IBM, IBM Data & Al laborie@fr.ibm.com

Association française pour l'Intelligence Artificielle

What is scheduling ?

CHAPMAN & HALL/CRC COMPUTER and INFORMATION SCIENCE SERIES

Handbook of SCHEDULING

Algorithms, Models, and Performance Analysis

« *Scheduling* is concerned with the allocation of scarce **resources** to **activities** over **time** with the objective of **optimizing** one or more performance measures. »

What is scheduling ?

CHAPMAN & HALL/CRC COMPUTER and INFORMATION SCIENCE SERIES

Handbook of SCHEDULING

Algorithms, Models, and Performance Analysis

« Scheduling is concerned with the allocation of scarce **resources** to **activities** over **time** with the objective of **optimizing** one or more performance measures. *»*

Examples of scheduling problems

- Resource-Constrained Project Scheduling (RCPSP)
 - Notorious NP-Hard problem in combinatorial optimization (>5000 references on Google Scholar)
 - N tasks with precedence constraints
 - M resources of limited capacity
 - Minimize project makespan

Examples of scheduling problems

In the real life, scheduling problems are more complex

PDIA 2019

5/28

Examples of scheduling problems

- Historically developed since 2007 by ILOG, now IBM
- Our team has 20+ years of experience in designing combinatorial optimization tools for real-life industrial problems, and particularly scheduling problems
- #1 objective of CP Optimizer : lower the barrier to entry for efficiently solving industrial scheduling problems
- Targeted audience goes beyond CP experts:
 - OR experts
 - Data scientists
 - Software engineers

Model & run approach:

- User focuses on a declarative mathematical model of the problem using the classical ingredients of combinatorial optimization: variables, constraints, expressions, objective function
- Resolution is performed by an automated search algorithm with the following properties: complete, deterministic, anytime, efficient, robust, continuously improving ...

Model & run approach: wait ... this already exists: it looks like Mixed Integer Linear Programming (MILP) !

- Right: we borrowed a lot from the MILP paradigm when designing CP optimizer
- Wrong: MILP is usually not good for scheduling problems
 - Difficult to model them
 - Many modeling tricks exist but they are brittle
 - Large models (typically in n² or n³ with problem size)
 - Poor performance, especially on large problems
 - Often it takes long even to get a feasible solution (not anytime)

What's wrong with MILP (and classical CP) for scheduling?

- It's missing the essential ingredient of scheduling: **time**
- Interestingly, time is a very relevant topic in AI
 - Temporal reasoning
 - Reasoning on action and change

Time in AI: examples

Allen's interval algebra (1983)

Temporal constraint networks (1991)

Time in AI: examples

Temporal planning in PDDL 2.1 (2003)

Time in AI: examples

- MILP (and classical CP) models only deal with numerical values (x∈ ℝ, x∈Z)
- A set of other simple mathematical concepts seem to naturally emerge when dealing with time:
 - Intervals : $a = [s,e) = \{ x \in \mathbb{R} | s \le x \le e \}$
 - Functions : $f: \mathbb{R} \to \mathbb{Z}$
 - Permutations
 - Occurrence / non-occurrence of an event : optional interval

What is CP Optimizer?

- What if we integrate these mathematical concepts in the model ...
- And keep all the good ideas of MILP:
 - Model & run
 - Exact algorithm
 - Input/output file format
 - Language versatility (C++, Python, Java, C#, OPL)
 - Modeling assistance (warnings, ...)
 - Conflict refiner
 - Warm-start
 - ...
- That's exactly what CP Optimizer is about !

Overview of CP Optimizer

15/28

Interval variables

- An **optional** interval variable has an additional possible value in its domain (absence value)
- Domain of values for an optional interval variable x: Dom(x) ⊆ {⊥} ∪ { [s,e) | s,e ∈ Z, s≤e }

 Absent interval
 Interval of integers
 (when interval is present)
- Example: interval x optional in 1000..2000 size 10..20
- Constraints and expressions on interval variables specify how they handle the case of absent intervals (in general it is very intuitive)

CP Optimizer model for RCPSP

CP Optimizer model for RCPSP

CP Optimizer modeling concepts

- Allows easy modeling of:
 - Variable activity duration, partially preemptive tasks
 - Optional activities, oversubscribed problems
 - Hierarchical problems (Work Breakdown Structures)
 - Alternative resources and modes (MM-RCPSP)
 - Resource calendars and breaks
 - Cumulative resources, inventories, reservoirs
 - Parallel batches, activity incompatibilities
 - Unary resources with setup times and costs
 - Complex objective functions
- Unlike MILP, in CP Optimizer the size of the model in general grows linearly with the size of the problem instance

CP Optimizer model for Work-Breakdown Structures

```
using CP;
 1
    tuple Dec { int task; {int} subtasks; };
 2
 3
    int n = ...;
 4
    int compulsory[1..n] = ...;
 5
    {Dec} Decs = ...;
    int nbDecs[i in 1..n] = card( {d | d in Decs : d.task==i} );
 6
 7
    int nbParents[i in 1..n] = card( {d | d in Decs : i in d.subtasks} );
 8
 9
    dvar interval task[i in 1..n] optional;
10
    dvar interval dec[d in Decs] optional;
11
12
    constraints {
13
      forall(i in 1..n) {
14
        if (nbParents[i]==0 && 0<compulsory[i])</pre>
15
          presenceOf(task[i]);
        if (nbDecs[i]>0) {
16
17
          alternative(task[i], all(d in Decs: d.task==i) dec[d]);
18
          forall(d in Decs: d.task==i)
19
            span(dec[d], all(j in d.subtasks) task[j]);
20
        }
21
      }
22
      forall(d in Decs, j in d.subtasks: 0<compulsory[j])</pre>
23
        presenceOf(dec[d]) => presenceOf(task[j]);
24
    7
```


Note the similarities with Hierarchical Task Network (HTN) in A.I. Planning

CP Optimizer model for semiconductor manufacturing

S. Knopp et al. Modeling Maximum Time Lags in Complex Job-Shops with Batching in Semiconductor Manufacturing. PMS 2016.

```
1
    using CP;
    tuple Lot { key int id; int n; float w; int rd; int dd; }
    tuple Stp { key Lot 1; key int pos; int f; }
 4
    tuple Lag { Lot 1; int pos1; int pos2; int a; int b; float c; }
    tuple Mch { key int id; int capacity; }
    tuple MchFml { Mch m; int f; int pt; }
 6
    tuple MchStp { Mch m; Stp s; int pt; }
 7
    tuple Setup { int f1; int f2; int dur; }
 8
 9
10
    \{Lot\}\ Lots = \ldots;
11
   \{Stp\} Stps = \ldots;
    \{Lag\}\ Lags = \ldots;
12
    \{Mch\}\ Mchs = \ldots;
13
    {MchFml} MchFmls = ...;
14
15
    {Setup} MchSetups[m in Mchs] = ...;
16
17
    [MchStp] MchStps = {<c.m,s,c.pt> | s in Stps, c in MchFmls: c.f==s.f};
18
19
    dvar interval lot[1 in Lots] in 1.rd..48*60;
    dvar interval stp[s in Stps];
20
21
    dvar interval mchStp[ms in MchStps] optional size ms.pt;
22
23
    dvar int lag[Lags];
24
25
    stateFunction batch[m in Mchs] with MchSetups[m];
26
    cumulFunction load [m in Mchs] =
27
      sum(ms in MchStps: ms.m==m) pulse(mchStp[ms],ms.s.l.n);
28
29
    minimize staticLex(
30
      sum(d in Lags) minl(d.c, d.c*maxl(0,lag[d]-d.a)^2/(d.b-d.a)^2),
      sum(l in Lots) l.w*maxl(0, endOf(lot[l])-l.dd));
31
    subject to {
32
33
      forall(1 in Lots)
        span(lot[1], all(s in Stps: s.l==1) stp[s]);
34
35
      forall(s in Stps) {
        alternative(stp[s], all(ms in MchStps: ms.s==s) mchStp[ms]);
36
37
        if (s.pos>1)
          endBeforeStart(stp[<s.1,s.pos-1>],stp[s]);
38
39
      }
40
      forall(ms in MchStps)
        alwaysEqual(batch[ms.m], mchStp[ms], ms.s.f, true, true);
41
42
      forall(m in Mchs)
43
        load[m] <= m.capacity:</pre>
44
      forall(d in Lags)
        endAtStart(stp[<d.1,d.pos1>], stp[<d.1,d.pos2>], lag[d]);
45
46
    7
```

CP Optimizer automatic search - Performance

- Results published in CPAIOR-2015 (using V12.6)
 - Job-shop
 - 15 instances closed out of 48 open ones
 - Job-shop with operators
 - 208 instances closed out of 222 open ones
 - Flexible job-shop
 - 74 instances closed out of 107 open ones
 - RCPSP
 - 52 new lower bounds + 39 instances closed in 2019
 - RCPSP with maximum delays
 - 51 new lower bounds out of 58 small-medium instances
 + 372 bounds improved on large instances in 2019
 - Multi-mode RCPSP
 - 535 instances closed out of 552
 - Multi-mode RCPSP with maximum delays
 - All 85 open instances of the benchmark closed

Performance evolution

Under the hood

Artificial Intelligence

Operations Research

- Constraint propagation
- Learning
- Temporal constraint networks
- 2-SAT networks

No-goods

Heuristics Model presolve

Linear relaxations

Problem specific scheduling algorithms

Restarts LNS Tree search Randomization

PDIA 2019

- CP Optimizer \subset Al \cup OR
- CP Optimizer ≠ CP
- CP Optimizer = Exact algorithm for optimality proofs + Fast heuristic for finding feasible solutions and optimizing them
- CP Optimizer ecosystem ≈ MILP ecosystem : Model & run paradigm Clean combinatorial optimization framework Language versatility: C++, Python, Java, C#, OPL Well documented improvements of automatic search I/O file format Modeling assistance Conflict refiner Warm-start

Most of CP Optimizer's ideas have been published !

- P. Laborie, J. Rogerie. Reasoning with Conditional Time-Intervals. In: Proc. FLAIRS-2008.
- P. Laborie, J. Rogerie, P. Shaw, P. Vilím. Reasoning with Conditional Time-Intervals. Part II: An Algebraical Model for Resources. In: Proc. FLAIRS-2009.
- P. Laborie. CP Optimizer for detailed scheduling illustrated on three problems. In: Proc. CPAIOR-2009.
- P. Laborie, B. Messaoudi. New Results for the GEO-CAPE Observation Scheduling Problem. In Proc. ICAPS-2017.
- P. Laborie. An Update on the Comparison of MIP, CP and Hybrid Approaches for Mixed Resource Allocation and Scheduling. In Proc. CPAIOR-2018.
- P. Laborie, D. Godard. Self-Adapting Large Neighborhood Search: Application to Single-Mode Scheduling Problems. In: Proc. MISTA-2007.
- P. Vilím. Timetable Edge Finding Filtering Algorithm for Discrete Cumulative Resources. In: Proc. CPAIOR-2011.
- P. Vilím, P. Laborie, P. Shaw. Failure-directed Search for Constraint-based Scheduling. In: Proc. CPAIOR-2015.
- P. Laborie, J. Rogerie. Temporal Linear Relaxation in IBM ILOG CP Optimizer. Journal of Scheduling, 19(4), 391–400 (2016).
- P. Laborie. Objective Landscapes for Constraint Programming. In Proc. CPAIOR-2018.
- P. Laborie, J. Rogerie, P. Shaw, P. Vilím. IBM ILOG CP Optimizer for Scheduling. Constraints Journal, 23(2), 210-250 (2018). http://ibm.biz/Constraints2018

28/28

© 2019 IBM Corporation

Jerieu

