
Oct. 10, 2019Oct. 10, 2019 PDIA 2019PDIA 2019 © 2019 IBM Corporation© 2019 IBM Corporation

CP Optimizer
pour la planification
et l’ordonnancement

Philippe Laborie

IBM, IBM Data & AI
laborie@fr.ibm.com

2 / 28 PDIA 2019 © 2019 IBM Corporation

What is scheduling ?

« Scheduling is concerned with the allocation
of scarce resources to activities over time
with the objective of optimizing one or more
performance measures. »

3 / 28 PDIA 2019 © 2019 IBM Corporation

What is scheduling ?

« Scheduling is concerned with the allocation
of scarce resources to activities over time
with the objective of optimizing one or more
performance measures. »

activity

R2

time

resources

R3

R1

4 / 28 PDIA 2019 © 2019 IBM Corporation

Examples of scheduling problems

Resource-Constrained Project Scheduling (RCPSP)
Notorious NP-Hard problem in combinatorial optimization
(>5000 references on Google Scholar)
N tasks with precedence constraints
M resources of limited capacity
Minimize project makespan

1

1
2

2

4

4

3

3

5

5

6

6

0 7

R1

R2

1

2

3

4

5

6

p1=2

(1,2)

C1=2

C2=3

time

5 / 28 PDIA 2019 © 2019 IBM Corporation

Examples of scheduling problems

In the real life, scheduling problems are more complex

6 / 28 PDIA 2019 © 2019 IBM Corporation

Examples of scheduling problems

Complex objectives:
resource costs,

tardiness, throughput

Complex constraints:
activities, resources

Overconstrained
Ill-defined

Large
(e.g. 1000000 tasks)

Require fast
solving time

In the real life, scheduling problems are more complex

Heterogeneous
decisions

7 / 28 PDIA 2019 © 2019 IBM Corporation

What is CP Optimizer ?

Historically developed since 2007 by ILOG, now IBM

Our team has 20+ years of experience in designing
combinatorial optimization tools for real-life industrial
problems, and particularly scheduling problems

#1 objective of CP Optimizer : lower the barrier to entry
for efficiently solving industrial scheduling problems

Targeted audience goes beyond CP experts:
OR experts
Data scientists
Software engineers

8 / 28 PDIA 2019 © 2019 IBM Corporation

What is CP Optimizer ?

Model & run approach:

User focuses on a declarative mathematical model of
the problem using the classical ingredients of
combinatorial optimization: variables, constraints,
expressions, objective function

Resolution is performed by an automated search
algorithm with the following properties: complete,
deterministic, anytime, efficient, robust, continuously
improving ...

9 / 28 PDIA 2019 © 2019 IBM Corporation

What is CP Optimizer ?

Model & run approach: wait … this already exists: it looks
like Mixed Integer Linear Programming (MILP) !

Right: we borrowed a lot from the MILP paradigm when
designing CP optimizer

Wrong: MILP is usually not good for scheduling problems
Difficult to model them
Many modeling tricks exist but they are brittle
Large models (typically in n2 or n3 with problem size)
Poor performance, especially on large problems
Often it takes long even to get a feasible solution (not
anytime)

10 / 28 PDIA 2019 © 2019 IBM Corporation

What’s wrong with MILP (and classical CP) for scheduling ?

It’s missing the essential ingredient of scheduling: time

Interestingly, time is a very relevant topic in AI
Temporal reasoning
Reasoning on action and change

11 / 28 PDIA 2019 © 2019 IBM Corporation

Time in AI: examples

Allen’s interval algebra (1983)

Temporal constraint networks (1991)

12 / 28 PDIA 2019 © 2019 IBM Corporation

Time in AI: examples

Temporal planning in PDDL 2.1 (2003)
 (define (domain jug-pouring)
 (:requirements :typing :fluents)
 (:types jug)
 (:functions
 (amount ?j - jug)
 (capacity ?j - jug))
 (:action pour
 :parameters (?jug1 ?jug2 - jug)
 :precondition (>= (- (capacity ?jug2) (amount ?jug2)) (amount ?jug1))
 :effect (and (assign (amount ?jug1) 0)
 (increase (amount ?jug2) (amount ?jug1)))
)

?jug1

?jug2

time

amount
pour(?jug1,?jug2)

13 / 28 PDIA 2019 © 2019 IBM Corporation

Time in AI: examples

MILP (and classical CP) models only deal with numerical
values (x∈ , x∈)

A set of other simple mathematical concepts seem to
naturally emerge when dealing with time:

Intervals : a = [s,e) = { x∈ | s≤x<e }
Functions : f: →

Permutations
Occurrence / non-occurrence of an event : optional interval

ℝ

ℝ

ℝ ℤ

ℤ

14 / 28 PDIA 2019 © 2019 IBM Corporation

What is CP Optimizer ?

What if we integrate these mathematical concepts in the
model …

And keep all the good ideas of MILP:
Model & run
Exact algorithm
Input/output file format
Language versatility (C++, Python, Java, C#, OPL)
Modeling assistance (warnings, …)
Conflict refiner
Warm-start
…

That’s exactly what CP Optimizer is about !

15 / 28 PDIA 2019 © 2019 IBM Corporation

Overview of CP Optimizer

CP Optimizer
model

C++

OPL

Python

Java

C# On cloud

Local

...

Solve

16 / 28 PDIA 2019 © 2019 IBM Corporation

Interval variables

An optional interval variable has an additional possible
value in its domain (absence value)

Domain of values for an optional interval variable x:
 Dom(x) ⊆ {⊥} ∪ { [s,e) | s,e ∈ Z, s≤e }

Example: interval x optional in 1000..2000 size 10..20

Constraints and expressions on interval variables specify
how they handle the case of absent intervals (in general it
is very intuitive)

Absent interval Interval of integers
(when interval is present)

17 / 28 PDIA 2019 © 2019 IBM Corporation

CP Optimizer model for RCPSP

A set of decision variables of type interval

18 / 28 PDIA 2019 © 2019 IBM Corporation

CP Optimizer model for RCPSP

A set of precedence constraints aggregated
into a global temporal constraint network

19 / 28 PDIA 2019 © 2019 IBM Corporation

CP Optimizer model for RCPSP

A cumul function expression that can be constrained
(here ≤ Dr)

20 / 28 PDIA 2019 © 2019 IBM Corporation

CP Optimizer model for RCPSP

21 / 28 PDIA 2019 © 2019 IBM Corporation

CP Optimizer modeling concepts

Allows easy modeling of:
Variable activity duration, partially preemptive tasks
Optional activities, oversubscribed problems
Hierarchical problems (Work Breakdown Structures)
Alternative resources and modes (MM-RCPSP)
Resource calendars and breaks
Cumulative resources, inventories, reservoirs
Parallel batches, activity incompatibilities
Unary resources with setup times and costs
Complex objective functions

Unlike MILP, in CP Optimizer the size of the model in
general grows linearly with the size of the problem
instance

22 / 28 PDIA 2019 © 2019 IBM Corporation

CP Optimizer model for Work-Breakdown Structures

task

dec
OR

OR

Note the similarities with Hierarchical Task Network (HTN) in A.I. Planning

23 / 28 PDIA 2019 © 2019 IBM Corporation

CP Optimizer model for semiconductor manufacturing

Step 1 Step 2 ...Lot 1

Lot 2

...

S. Knopp et al. Modeling Maximum Time Lags
in Complex Job-Shops with Batching in
Semiconductor Manufacturing. PMS 2016.

24 / 28 PDIA 2019 © 2019 IBM Corporation

CP Optimizer automatic search - Performance

Results published in CPAIOR-2015 (using V12.6)
Job-shop

15 instances closed out of 48 open ones
Job-shop with operators

208 instances closed out of 222 open ones
Flexible job-shop

74 instances closed out of 107 open ones
RCPSP

52 new lower bounds + 39 instances closed in 2019
RCPSP with maximum delays

51 new lower bounds out of 58 small-medium instances
 + 372 bounds improved on large instances in 2019

Multi-mode RCPSP
535 instances closed out of 552

Multi-mode RCPSP with maximum delays
All 85 open instances of the benchmark closed

25 / 28 PDIA 2019 © 2019 IBM Corporation

Performance evolution

Objective
landscapes

Failure-directed
search

Iterative
diving

26 / 28 PDIA 2019 © 2019 IBM Corporation

Under the hood

Artificial Intelligence Operations Research

Constraint
propagation

Learning

Temporal
constraint
networks

2-SAT
networks

No-goods

Linear
relaxations

Problem
specific
scheduling
algorithms

Tree searchRestarts
LNS Randomization

Model presolveHeuristics

27 / 28 PDIA 2019 © 2019 IBM Corporation

Conclusion

CP Optimizer ⊂ AI ∪ OR

CP Optimizer ≠ CP

CP Optimizer = Exact algorithm for optimality proofs +
 Fast heuristic for finding feasible
 solutions and optimizing them

CP Optimizer ecosystem ≈ MILP ecosystem :
Model & run paradigm
Clean combinatorial optimization framework
Language versatility: C++, Python, Java, C#, OPL
Well documented improvements of automatic search
I/O file format
Modeling assistance
Conflict refiner
Warm-start

28 / 28 PDIA 2019 © 2019 IBM Corporation

Most of CP Optimizer’s ideas have been published !

P. Laborie, J. Rogerie. Reasoning with Conditional Time-Intervals. In: Proc. FLAIRS-
2008.
P. Laborie, J. Rogerie, P. Shaw, P. Vilím. Reasoning with Conditional Time-Intervals.
Part II: An Algebraical Model for Resources. In: Proc. FLAIRS-2009.

P. Laborie. CP Optimizer for detailed scheduling illustrated on three problems. In:
Proc. CPAIOR-2009.
P. Laborie, B. Messaoudi. New Results for the GEO-CAPE Observation Scheduling
Problem. In Proc. ICAPS-2017.
P. Laborie. An Update on the Comparison of MIP, CP and Hybrid Approaches for
Mixed Resource Allocation and Scheduling. In Proc. CPAIOR-2018.

P. Laborie, D. Godard. Self-Adapting Large Neighborhood Search: Application to
Single-Mode Scheduling Problems. In: Proc. MISTA-2007.
P. Vilím. Timetable Edge Finding Filtering Algorithm for Discrete Cumulative
Resources. In: Proc. CPAIOR-2011.
P. Vilím, P. Laborie, P. Shaw. Failure-directed Search for Constraint-based Scheduling.
In: Proc. CPAIOR-2015.
P. Laborie, J. Rogerie. Temporal Linear Relaxation in IBM ILOG CP Optimizer. Journal
of Scheduling, 19(4), 391–400 (2016).
P. Laborie. Objective Landscapes for Constraint Programming. In Proc. CPAIOR-2018.

P. Laborie, J. Rogerie, P. Shaw, P. Vilím. IBM ILOG CP Optimizer for Scheduling.
Constraints Journal, 23(2), 210-250 (2018). http://ibm.biz/Constraints2018

Ex
am

pl
es

Se
ar

ch
al

go
rit

hm

O
ve

rv
ie

w

M
od

el
in

g
co

nc
ep

ts

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

