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Proposal

• Call
• Chair of research and teaching in artificial intelligence

• Agence de l’Innovation de Défense
• 4 projects / 40 selected projects

• Topics of interests
• Data processing from various sensors (radar, sonar, SAR and IR imagery, hyperspectral ...) 
• Reliability, robustness, vulnerabilities and countermeasures of A.I. 
• Distributed processing and applications for network communications 
• AI for cyber-security, risks of misinformation and fake news 

• Chaire SAIDA supported by
• DGA, Thales, Airbus Defense & Space, Naval Group, ZAMA



Motivations
• Robustness gives a false sense of Security

• Robustness:  To operate as expected even under perturbations (Innocuous)
• Security: To operate as expected even in hostile environnments (Malicious)

• Little bits of history repeating
• I’ve seen it before: Digital Watermarking
• I’ve seen again: Content Based Image Retrieval
• The next big thing is here: Machine Learning

• Motto: « Security of M.L. before M.L. for security »
• Better study the intrasinc security of a tool before using it in security applications



Goal

• Establish the principles for designing reliable and secure AI systems
• a reliable AI maintains good performance even under uncertainties
• a secure AI resists attacks in hostile environments

• at training and testing time

• Combining theory with applied and heuristic studies
• to guarantee the applicability
• to cope with real world settings 



Scope
1. Theoretical investigations

1.1 Local Intrinsic Dimensionality–LID collab. NII, Japan

1.2 Reliability and Rare Event analysis Ph.d Thales

1.3 Immune training _

2. Lessons learned from Information Forensics and Security 

2.1 Inputs from Watermarking

2.2 Inputs from Steganalysis and Image Forensics

2.3 Black box Attacks Ph.d Inria

3. Protection of the data/network
3.1 Leakage about training data _

3.2 Poisoning of training data _

3.3 Secret-keyed network  Ph.d ZAMA.ai

Ph.d. DGA



Focus #1: High LID facilitates adversarial attack

Deluding Nearest Neighbors Search in large collection
• k-NN is ubiquous in data mining

Targeted Mismatch Adversarial Attack:

Query with a Flower to Retrieve the Tower

Giorgos Tolias Filip Radenovic Ondřej Chum
Visual Recognition Group, Faculty of Electrical Engineering, Czech Technical University in Prague

Abstract

Access to online visual search engines implies sharing of

private user content – the query images. We introduce the

concept of targeted mismatch attack for deep learning based

retrieval systems to generate an adversarial image to con-

ceal the query image. The generated image looks nothing

like the user intended query, but leads to identical or very

similar retrieval results. Transferring attacks to fully un-

seen networks is challenging. We show successful attacks to

partially unknown systems, by designing various loss func-

tions for the adversarial image construction. These include

loss functions, for example, for unknown global pooling op-

eration or unknown input resolution by the retrieval system.

We evaluate the attacks on standard retrieval benchmarks

and compare the results retrieved with the original and ad-

versarial image.

1. Introduction

Information about users is a valuable article. Websites,
service providers, and even operating systems collect and
store user data. The collected data have various forms,
e.g. visited websites, interactions between users in social
networks, hardware fingerprints, keyboard typing or mouse
movement patterns, etc. Internet search engines record what
the users search for, as well as the responses, i.e. clicks, to
the returned results.

Recent development in computer vision allowed efficient
and precise large scale image search engines to be launched,
such as Google Image Search. Nevertheless, similarly to
text search engines, queries – the images – are stored and
further analyzed by the provider1. In this work, we protect
the user image (target) by constructing a novel image. The
constructed image is visually dissimilar to the target, how-
ever, when used as a query, identical results are retrieved as
with the target image. Large-scale search methods require
short-code image representation, both for storage minimiza-
tion and for search efficiency, which are usually extracted

1Google Search Help: “The pictures you upload in your search may be stored by
Google for 7 days. They won’t be a part of your search history, and we’ll only use
them during that time to make our products and services better.”
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Query Retrieval results

Figure 1. Top two rows show retrieval results to the user query
image (target). Bottom two rows show the results of our attack
where a carrier image (flower, Notre Dame) is perturbed to have
identical descriptor to that of the target in the first row. Identical
results are obtained without disclosing the target.

with Convolutional Neural Networks (CNN). We formulate
the problem as an adversarial attack on CNNs.

Adversarial attacks, as introduced by Szegedy et al. [35],
study imperceptible non-random image perturbations to
mislead a neural network. The first attacks were intro-
duced and tested on image classification. In that context,
adversarial attacks are divided into two categories, namely
non-targeted and targeted. The goal of non-targeted attacks
is to change the prediction of a test image to an arbitrary
class [25, 24], while targeted attacks attempt to make a spe-
cific change of the network prediction, i.e. to misclassify the
test image to a predefined target class [35, 7, 10].

Similarly to image classification, adversarial attacks
have been proposed in the domain of image retrieval too.
An non-targeted attack attempts to generate an image that
for a human observer carries the same visual information,
while for the neural network it appears dissimilar to other
images of the same object [19, 20, 37]. This way, a user
protects personal images and does not allow them to be in-
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is to change the prediction of a test image to an arbitrary
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NN search

Query with a Flower to Retrieve the Tower, Tolias et al., CVPR19
Deluding image recognition by attacking keypoints, Do et al., ICASSP12



Focus #1: High LID facilitates adversarial attack

Our work: Theoretical evidence
Local Intrinsic Dimensionality caracterizes the neighbourhood of a point

Scenario: perturbate query s.t. k-th NN becomes 1st

! ≈ 1 − %&
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AMSALEG, BAILEY, BARBE, ERFANI, FURON, HOULE, RADOVANOVIĆ AND VINH
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(a) Closer+query case: distributional rank Fyn .
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(b) Closer+target case: distributional rank Fzn .
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(c) Farther+query case: distributional rank Fyn .
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(d) Farther+target case: distributional rank Fzn .

Figure 5: Probability of attack success (color-coded) as a function of perturbation level � (y-axis)
and LID (x-axis) for n = 10

6 and k = 1000. Red curve shows the theoretical sufficiency bound
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(a) BIGANN_SIFT1B
n = 1.0⇥ 10

9, k = 100
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(b) ImageNet
n = 1.3⇥ 10

6, k = 1, 000
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(c) CIFAR-10
n = 5.0⇥ 10

4, k = 1, 000

Figure 6: Experiments on three real data sets, plotting the minimum perturbation required � (y-axis)
vs. estimated LID (x-axis). Red curve: theoretical bound from Theorem 4. Green bars: empirical
mean and standard deviation.

the existence of efficient back-propagation mechanisms (Szegedy et al., 2013; Nguyen et al., 2015).
Very recent works apply such local inversion techniques in the context of adversarial image retrieval,

16

LID

! ImageNet – ResNet 50

amount of perturbation
of the query ,

kth NN becomes 1st NN

LID around query ,

ID AND ADVERSARIAL RETRIEVAL

Figure 2: The random distance variables X and Y have different LID values at distance r. Although
the total probability measures within distance r are the same (that is, Fx(r) = Fy(r)), IDFY(r) is
greater than one would expect for a locally uniform distribution of points in R2, while IDFX(r) is
less.

Definition 1 (Houle (2013)) Let F be the cumulative distribution function of a random distance
variable. If there exists an open interval I containing r > 0 over which F is non-zero and continuously
differentiable, then the local intrinsic dimensionality (LID) of F at r is given by

IDF(r) , lim
✏!0+

ln (F((1+ ✏)r)/F(r))

ln(1+ ✏)
=

r · F 0(r)

F(r)
.

The second equality follows by applying l’Hôpital’s rule to the limit.

The distributional interpretation is based on the the following statistical model. Consider the
Euclidean vector space Rd with distance metric d(x, y) , kx - yk, and S ⇢ Rd a set of random
points with probability measure µ. For a given point x 2 S within the space, we denote by Fx the
cumulative distribution function of the distances from x, as induced by µ. The definition of the local
ID denoted as LID(x) characterizes the close neighborhood of point x by taking the limit of IDFx(r)
as r ! 0+, whenever this limit exists:

LID(x) , lim
r!0+

IDFx(r) .

The smallest distances from point x can be regarded as ‘extreme events’ associated with the
lower tail of the underlying distribution. The modeling of neighborhood distance values can thus be
investigated from the viewpoint of extreme value theory (EVT). In Houle (2015), it is shown that the
EVT representation of the cumulative distribution Fx completely determines function IDFx, and that
the EVT index is in fact identical to LID(x).

Theorem 2 (Houle (2015)) Let F : R�0 ! R be a real-valued function, and let v > 0 be a
value for which IDF(v) exists. Let r and w be positive values for which F(r) and F(w) are both
positive. If F is non-zero and continuously differentiable everywhere in an open interval containing
[min{r,w},max{r,w}], then

F(r)

F(w)
=

⇣ r

w

⌘IDF(v)
·GF,v,w(r), where

GF,v,w(r) , exp
✓Zw

r

IDF(v)- IDF(t)

t
dt
◆

,

5

Low LID Large LID



Focus #2: Adversarial examples

Perturbate input image to delude a classifier

In literature, most attacks forge adversarial images … which are not images!
• Machine learners work with floating point ! ∈ [0,1](∗*∗+
• Naïve rounding ruins the attack
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Focus #2: Adversarial examples

Our work: design a quantization maintaining adversariality
• Apply your favorite attack
• We turn it into real images (PNG or JPEG) 

original
shopping_cart

JPEG75
shopping_cart

Attack+PNG
basset_hound

Attack+JPEG75
basset_hound



Focus #2: Adversarial examples

Surprizingly:
• Quantization is not a strong constraint (if treated carefully)
• The attack is for free w.r.t. distortion
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Classifier:EfficientNet-b0 (google)
Attack: BP (Inria)
Dataset: ImageNet



Focus #3: Black box attack

• Difficult scenario
• No knowledge of the classifier
• Access as an oracle

• Choose input, observe ouput (hard predicted label)

• SotA attacks are very long ( ~5,000 calls per image) 

"# $%(')
)(% = 1)
)(% = 2)
)(% = -)

…+

Generate new perturbation
. / , $% / , 1 ≤ 2 ≤ 3 − 1. '

predicted label



Focus #3: Black box attack

• Our work: SurFree
• Designed for speed

(few calls to the oracle)
• Still competitive in the long run
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target K = 500 queries K = 1, 000 queries K = 2, 000 queries
dt HSJA [3] GeoDA [22] QEBA [13] SurFree HSJA [3] GeoDA [22] QEBA [13] SurFree HSJA [3] GeoDA [22] QEBA [13] SurFree
30 0.56 0.79 0.71 0.90 0.88 0.93 0.88 0.96 0.98 0.96 0.97 0.99

10 0.13 0.25 0.32 0.44 0.23 0.52 0.46 0.57 0.40 0.70 0.69 0.73

5 0.07 0.14 0.17 0.23 0.09 0.21 0.30 0.31 0.13 0.39 0.47 0.50

Table 2. Success rate S(dt,K) for achieving a targeted distortion dt under a limited query budget K (ImageNet).

attack K = 100 K = 500 K = 1000 K = 100 K = 500 K = 1000 K = 100 K = 500 K = 1000

SurFree
amer. dipper- 2.6 amer. dipper- 1.3 amer. dipper- 0.9 stone wall- 14.9 stone wall- 8.7 stone wall- 5.4 cliff dwelling- 21.9 cliff dwelling- 18.4 triceratops- 13.5

QEBA [13]
stingray- 60.6 stingray- 33.7 stingray- 20.8 stone wall- 25.2 stone wall- 4.8 stone wall- 2.6 wombat- 58.3 wombat- 24.3 wombat- 13.6

GeoDA [22]
brambling- 18.9 brambling- 9.7 brambling- 5.8 stone wall- 15.8 megalith- 4.5 megalith- 2.6 armadillo- 49.4 tusker- 31.3 tusker- 18.9

Table 3. Visual trajectories for an easy (chickadee), a medium (king penguin), and a difficult image (warthog) - predicted label and distortion

corresponding papers. SurFree dives significantly faster
than all attacks to lower distortions (most notably from 1
to 750 queries), while QEBA [13] prevails at around 3, 750
queries. Note that SurFree is also first with DCT full but
for a shorter period (⇡ 800 queries). For completeness,
here are the scores at 10,000 queries: 2.09 (QEBA [13]) <
2.72 (SurFree) < 3.48 (HSJA 10) < 4.63 (GeoDA [22]).
Although a small query budget drives its design, SurFree
is not off in the long run. Similar results are observed for
MNIST (in the pixel domain, without dimension reduction)
where SurFree is ahead up to ⇡ 5, 000 queries.

Performance evaluation: Success rate We now consider
three query budgets, K 2 {500, 1, 000, 2, 000}, which are
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Figure 7. Success rate S(dt,K) (10) vs. target distortion dt with
K = 500 queries over ImageNet.

rather low with regards to the state-of-the-art (see Sect. 2.2).
Table 2 details how the success rate S(dt,K) varies for

some setup (dt,K) (10). Fig. 7 shows the success rate
S(dt, 500) increase with dt. GeoDA [22] is superior to
QEBA [13] for large target distortions only. Both schemes
outperform HSJA [3]. SurFree remains the best attack
for any target distortion up to this 2, 000 query budget.

Finally, Table 3 displays the visual trajectories of three
attacked images witnessed as easy, medium, and difficult to
attack for SurFree. While all three attacks affect differ-
ently the images, SurFree gives relatively less annoying
artefacts. We also note a drawback of QEBA [13]: the adver-
sarials often keep the label of the random starting point (e.g.
stingray), hence sometimes converging to a local minimum
which is far from the optimal solution (1).

7. Conclusion

The performance of black box decision-based attacks re-
veals important gaps when it comes to the required amount
of queries. Core to the three state-of-the-art approaches this
papers considers is the estimation of gradients. This step
is particularly costly, with regards to our novel geometri-
cal attack SurFree. The trial of multiple directions to-
gether with a simple mechanism getting the best distortion
decrease along a given direction allow a fast convergence
to qualitative adversarials, within an order of hundreds of
queries solely. This sets a new stage for future works.
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Focus #4: Certification of neural networks

• Is this property true?
∀" ∈ $("&), ) " = )("&)

• Formal proof
• NP-hard for Deep Neural Networks
• Some librairies (ReLuPLEX, ERAN, PROVEN)

• simple networks, simple neighborhoods
• May time out, may give up

"& ) " ≠ )("&)) " = )("&) "& ) " ≠ )("&)) " = )("&)

No! Yes!



Focus #4: Certification

• Our work: statistical approach
1. Consider random input !~#[%('()]

2. Estimate + = Prob 1 ! ≠ 1 '(
with Rare Event Simulation

3. Certify if + < +4
with +4 extremely small ~10-30

• Fast but not sound
• Incorrect if 0 < + ≪ +4
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Figure 1: Estimated probabilities of false positive, false negative, and not sound certification, vs. true
violation probability p in the ideal setup where pc = 10�30, ↵ = 0.01. Estimation over 1000 runs.
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Figure 2: ACAS Xu – runtimes of ERAN [DeepPoly+MILP] and Last Particle [N = 2, pc =
10�50, t = 40]

compress a large lookup table (2GB) containing discrete decisions (’Clear-of-conflicts’, ’weak right’,242

’strong right’,’weak left’, or ’strong left’) as well as 5 input/output properties. This makes 45⇤5 = 225243

cases. We compare our method with the complete certification based on DeepPoly [Singh et al.,244

2019] and Mixed-Integer Programming from the ERAN benchmark.245

Table 2 contains the confusion matrix taking into account the cases for which the ERAN complete246

certification fails because the Gurobi optimizer either outputs an ‘infeasible’ status or reaches a247

timeout (set to 600 seconds). Unsurprisingly, our method is complete in the sense that it certifies248

all cases certified by ERAN. It is not sound as it admits 9 false positives. This is due to the critical249

probability pc which is not low enough (the decisions were exactly the same over 10 runs). Yet, our250

method takes a decision on the 6 unsolved cases by ERAN. Among them, 4 are uncertified because251

our method succeeds to find a violation. In addition our method is faster for all ACAS Xu properties252

except for the property 4.253

Table 2: ACAS Xu – Confusion matrix comparing ERAN [DeepPoly+MILP] and Last Particle
[N = 2, pc = 10�50, t = 40]

ERAN

Certified Uncertified Infeasible TimeOut

Last Particle Certified 107 9 1 1
Uncertified 0 103 4 0

8



The global picture: Security of M.L.

Inference

LearningTraining data

Testing data Result

Model

Extension to different data types and learning frameworks (X - learning)

These three contents need protection
• Values to be protected
• Integrity
• Confidentiality
• Ownership 15


