SAIDA

Security of AI for Defense Applications

Teddy Furon, LinkMedia

Centre Inria Rennes Bretagne Atlantique

Présenté par Laurent Amsaleg, LinkMedia IRISA, Rennes

Proposal

- Call
 - Chair of research and teaching in artificial intelligence
- Agence de l'Innovation de Défense
 - 4 projects / 40 selected projects
 - Topics of interests
 - Data processing from various sensors (radar, sonar, SAR and IR imagery, hyperspectral ...)
 - Reliability, robustness, vulnerabilities and countermeasures of A.I.
 - Distributed processing and applications for network communications
 - Al for cyber-security, risks of misinformation and fake news
- Chaire SAIDA supported by
 - DGA, Thales, Airbus Defense & Space, Naval Group, ZAMA

Motivations

- Robustness gives a false sense of Security
 - Robustness: To operate as expected even under perturbations
 - Security: To operate as expected even in hostile environnments (Malicious)
- Little bits of history repeating
 - I've seen it before:
 - I've seen again:
 - The next big thing is here:
- Digital Watermarking
- Content Based Image Retrieval

(Innocuous)

- Machine Learning
- Motto: « Security of M.L. before M.L. for security »
 - Better study the intrasinc security of a tool before using it in security applications

Goal

- Establish the principles for designing reliable and secure AI systems
 - a reliable AI maintains good performance even under uncertainties
 - a secure AI resists attacks in hostile environments
 - at training and testing time
- Combining theory with applied and heuristic studies
 - to guarantee the applicability
 - to cope with real world settings

Scope

1. Theoretical investigations

- 1.1 Local Intrinsic Dimensionality–LID
- 1.2 Reliability and Rare Event analysis
- 1.3 Immune training

2. Lessons learned from Information Forensics and Security

- 2.1 Inputs from Watermarking2.2 Inputs from Steganalysis and Image Forensics2.3 Black box Attacks
- 3. Protection of the data/network
 - 3.1 Leakage about training data
 - 3.2 Poisoning of training data
 - 3.3 Secret-keyed network

collab. NII, Japan Ph.d Thales

Ph.d. DGA

Ph.d Inria

Ph.d ZAMA.ai

Focus #1: High LID facilitates adversarial attack

Deluding Nearest Neighbors Search in large collection

• k-NN is ubiquous in data mining

Query with a Flower to Retrieve the Tower, Tolias et al., CVPR19 *Deluding image recognition by attacking keypoints,* Do et al., ICASSP12

Focus #1: High LID facilitates adversarial attack

Our work: Theoretical evidence

Local Intrinsic Dimensionality caracterizes the neighbourhood of a point

Focus #2: Adversarial examples

Perturbate input image to delude a classifier

In literature, most attacks forge adversarial images ... which are not images!

- Machine learners work with floating point $x \in [0,1]^{3*L*C}$
- Naïve rounding ruins the attack

Focus #2: Adversarial examples

Our work: design a quantization maintaining adversariality

- Apply your favorite attack
- We turn it into real images (PNG or JPEG)

shopping cart

JPEG75 shopping_cart

Attack+PNG basset_hound

Attack+JPEG75 basset_hound

Focus #2: Adversarial examples

Surprizingly:

- Quantization is not a strong constraint (if treated carefully)
- The attack is for free w.r.t. distortion

Focus #3: Black box attack

- Difficult scenario
 - No knowledge of the classifier
 - Access as an oracle
 - Choose input, observe ouput (hard predicted label)

SotA attacks are very long (~5,000 calls per image)

Focus #3: Black box attack

Focus #4: Certification of neural networks

• Is this property true?

- Formal proof
 - NP-hard for Deep Neural Networks
 - Some librairies (ReLuPLEX, ERAN, PROVEN)
 - simple networks, simple neighborhoods
 - May time out, may give up

Focus #4: Certification

- Our work: statistical approach
 - 1. Consider random input $X \sim \mathcal{U}[N(x_o)]$
 - 2. Estimate $p = \operatorname{Prob}(f(X) \neq f(x_o))$ with Rare Event Simulation
 - 3. Certify if $p < p_c$ with p_c extremely small ~10⁻³⁰
- Fast but not sound
 - Incorrect if 0

The global picture: Security of M.L.

Extension to different data types and learning frameworks (X - learning)

These three contents need protection

- Values to be protected
 - Integrity
 - Confidentiality
 - Ownership