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Context: Semantic Web Data

@ Increasing number of datasets published in languages proposed by the
W3C (RDF(s)/OWL)
o Represented by triples < S, P,V >
o Contain the data and the schema
o Difficult exploitation of these datasets

e Incomplete or missing schema
e Data do not always follow the schema
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Our Goal: Toward a Scalable Schema Discovery Approach

@ Our goal is to automatically discover the underlying schema given an

RDF dataset
@ Descriptive schema for the entities within a dataset
@ Ensuring the scalability of our approach

o Implement our proposal using a big data technology
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General Principle

Grouping similar entities into clusters

@ Similar entities are those having common properties
. . N leineg;|
o Evaluated using Jaccard Index: J(e;, ) = o0

o ¢ similarity threshold

A cluster represents a class in the descriptive schema

SC-DBSCAN, Density-Based clustering algorithm inspired by
DBSCAN

e Scalable schema discovery approach

o Implemented using Spark

e Provides the same results as the sequential DBSCAN



Overview of Our Approach (SC-DBSCAN)

Partitioning the data
Identifying the cores

Computing the partial clusters

Merging the partial clusters
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Data Partitioning

Principle

@ The entities are distributed over the calculating nodes according to
the properties

@ Partitions

o A partition part,_ is a subset containing entities described by the
property px

@ The question is how to assign entities to partitions ?
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Data Partitioning

Entity assignment

@ Naive assignment

o Basically, assign an entity e to a partition part,_if e is described by p,
o This assignment ensures that all similar entities are compared
e Many meaningless comparisons

@ Optimized assignment
o Assign the entities to a minimum number of partitions ensuring all
similar entities are compared
e Reduce the number of partitions
o Reduce the number of entities in each partition
e Skip more meaningless comparisons



Data Partitioning

Optimized assignment

@ An entity ¢ is similar to e; if they share at least |e;| * € properties

° I:,DZI Ze <= leNegl>eUe*e
o leUgl xe>lelxe=leiNel > e xe

o Dissimilarity threshold ke, = |e;| — ([|ei| x€]) + 1
@ Assigning an entity e; to ke, chosen partitions

e Reduces the duplication

e Ensures comparing e; with all its neighbors
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Core ldentification

@ An entity is a core entity if the number of entities in its
e-neighborhood is greater than minPts.

e minPts density threshold
e ¢ similarity threshold

@ The neighborhood of an entity may span across several partitions
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Core ldentification

@ Neighborhood computation

e The neighbors of each entity in each partition are computed in parallel
o Merge for each entity the lists of its neighbors

@ The entities having a number of neighbors greater than minPts are
cores
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Partial Clustering

@ For each core entity e

e A cluster C that contains e and its neighbors is created
e Recursively the neighbors of the cores in C are added to C
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Partial Clustering

@ For each core entity e

e A cluster C that contains e and its neighbors is created
o Recursively the neighbors of the cores in C are added to C
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Partial Clustering

@ For each core entity e

e A cluster C that contains e and its neighbors is created
o Recursively the neighbors of the cores in C are added to C
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Merging Partial Clusters

@ The partial clusters having a core entity in their intersection are
merged

@ Each resulting cluster represents a class of the descriptive schema
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Evaluating our Approach

@ Scalability of the clustering

o Execution time
e Using synthetic datasets [IBM Quest Synthetic Data Generator]
o Environment

e Ubuntu Linux, Apache Spark 2.0
e Scala
e 5 nodes (1 master and 4 slaves), 30 GB of RAM and 12 Core CPU
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Scalability of the Clustering

@ Evaluating the similarity using Jaccard Index

@ Parameters: € = 0.8, minPts = 3
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Existing Approaches for Discovering the Structure of a

Dataset

@ Schema discovery using clustering algorithms

@ Cluster similar entities into classes that form the schema

@ Do not scale-up [K. K-Menouer, Z.Kedad, TLKDS 2016, K.Christodoulou et al., TLKDS 2013]

@ Schema discovery for big data

@ Grouping entities having the same type declaration and propose a descriptive
schema [M.Baazizi et al., EDBT 2017, D.Ruiz et al., ER 2015]

@ Not suitable when the schema is incomplete or missing

@ Scalable versions of DBSCAN

@ Duplicating the whole datasets in all the calculating nodes is too costly [M.Patwary et
al.,, SC 2012]

@ Some approaches are probabilistic and do not provide the same result as DBSCAN
[G. Luo et al., BDCloud 2016, I. Savvas et al., WETICE 2016, A. Lulli et al., VLDB 2016]

@ Because of the high dimensionality of web data, the algorithms that require to order
the data or partitioning the data using methods such as BSP are not efficient [D. Han
et al., IPDPS 2016, Y. HE et al., IPDPS 2013]



Conclusion

@ Contribution towards the scalability of schema discovery

e Extracting a descriptive schema in large RDF datasets
o Facilitating RDF datasets exploitation

o SC-DBSCAN: a novel distributed clustering algorithm

o Implemented using big data technology
e Providing the same clustering result as DBSCAN

o Key ideas of SC-DBSCAN

e Partitioning according to properties
o Parallelize the clustering
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@ Perform more experiments on SC-DBSCAN

e Number of properties describing the data
e The size of the entities
o Use Spark clusters of different configurations

@ Study the evolution issues

o Update the schema
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Quality Evaluation
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Figure: Evaluation of Schema Discovery in Conference (a) BNF (b) and DBpedia
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