
Schema Discovery in Large Web Data Sources

Redouane Bouhamoum, Zoubida Kedad, Stéphane Lopes

Journée thématique
EGC et IA

Université Paris Sud, CNRS, Université Paris Saclay, France,

May 10, 2019

1 / 18

Context: Semantic Web Data

Increasing number of datasets published in languages proposed by the
W3C (RDF(s)/OWL)

Represented by triples < S ,P,V >
Contain the data and the schema

Difficult exploitation of these datasets

Incomplete or missing schema
Data do not always follow the schema

2 / 18

Our Goal: Toward a Scalable Schema Discovery Approach

Our goal is to automatically discover the underlying schema given an
RDF dataset

Descriptive schema for the entities within a dataset

Ensuring the scalability of our approach

Implement our proposal using a big data technology

3 / 18

General Principle

Grouping similar entities into clusters

Similar entities are those having common properties

Evaluated using Jaccard Index: J(ei , ej) =
|ei∩ej |
|ei∪ej |

ε similarity threshold

A cluster represents a class in the descriptive schema

SC-DBSCAN, Density-Based clustering algorithm inspired by
DBSCAN

Scalable schema discovery approach
Implemented using Spark
Provides the same results as the sequential DBSCAN

4 / 18

Overview of Our Approach (SC-DBSCAN)

Partitioning the data

Identifying the cores

Computing the partial clusters

Merging the partial clusters

5 / 18

Data Partitioning
Principle

The entities are distributed over the calculating nodes according to
the properties

Partitions

A partition partpx is a subset containing entities described by the
property px

The question is how to assign entities to partitions ?

6 / 18

Data Partitioning
Entity assignment

Naive assignment

Basically, assign an entity e to a partition partpx if e is described by px
This assignment ensures that all similar entities are compared
Many meaningless comparisons

Optimized assignment

Assign the entities to a minimum number of partitions ensuring all
similar entities are compared
Reduce the number of partitions
Reduce the number of entities in each partition
Skip more meaningless comparisons

7 / 18

Data Partitioning
Optimized assignment

An entity ej is similar to ei if they share at least |ei | ∗ ε properties
|ei∩ej |
|ei∪ej | > ε ⇐⇒ |ei ∩ ej | > |ei ∪ ej | ∗ ε
|ei ∪ ej | × ε > |ei | ∗ ε =⇒ |ei ∩ ej | > |ei | ∗ ε

Dissimilarity threshold kei = |ei | − (d|ei | ∗ εe) + 1

Assigning an entity ei to kei chosen partitions
Reduces the duplication
Ensures comparing ei with all its neighbors

8 / 18

Core Identification

An entity is a core entity if the number of entities in its
ε-neighborhood is greater than minPts.

minPts density threshold
ε similarity threshold

The neighborhood of an entity may span across several partitions

9 / 18

Core Identification

Neighborhood computation

The neighbors of each entity in each partition are computed in parallel
Merge for each entity the lists of its neighbors

The entities having a number of neighbors greater than minPts are
cores

10 / 18

Partial Clustering

For each core entity e

A cluster C that contains e and its neighbors is created
Recursively the neighbors of the cores in C are added to C

11 / 18

Partial Clustering

For each core entity e

A cluster C that contains e and its neighbors is created
Recursively the neighbors of the cores in C are added to C

11 / 18

Partial Clustering

For each core entity e

A cluster C that contains e and its neighbors is created
Recursively the neighbors of the cores in C are added to C

11 / 18

Merging Partial Clusters

The partial clusters having a core entity in their intersection are
merged

Each resulting cluster represents a class of the descriptive schema

12 / 18

Evaluating our Approach

Scalability of the clustering

Execution time
Using synthetic datasets [IBM Quest Synthetic Data Generator]

Environment

Ubuntu Linux, Apache Spark 2.0
Scala
5 nodes (1 master and 4 slaves), 30 GB of RAM and 12 Core CPU

13 / 18

Scalability of the Clustering

Evaluating the similarity using Jaccard Index

Parameters: ε = 0.8 , minPts = 3

14 / 18

Existing Approaches for Discovering the Structure of a
Dataset

Schema discovery using clustering algorithms

Cluster similar entities into classes that form the schema

Do not scale-up [K. K-Menouer, Z.Kedad, TLKDS 2016, K.Christodoulou et al., TLKDS 2013]

Schema discovery for big data

Grouping entities having the same type declaration and propose a descriptive
schema [M.Baazizi et al., EDBT 2017, D.Ruiz et al., ER 2015]

Not suitable when the schema is incomplete or missing

Scalable versions of DBSCAN
Duplicating the whole datasets in all the calculating nodes is too costly [M.Patwary et

al., SC 2012]

Some approaches are probabilistic and do not provide the same result as DBSCAN
[G. Luo et al., BDCloud 2016, I. Savvas et al., WETICE 2016, A. Lulli et al., VLDB 2016]

Because of the high dimensionality of web data, the algorithms that require to order
the data or partitioning the data using methods such as BSP are not efficient [D. Han

et al., IPDPS 2016, Y. HE et al., IPDPS 2013]

15 / 18

Conclusion

Contribution towards the scalability of schema discovery

Extracting a descriptive schema in large RDF datasets
Facilitating RDF datasets exploitation

SC-DBSCAN: a novel distributed clustering algorithm

Implemented using big data technology
Providing the same clustering result as DBSCAN

Key ideas of SC-DBSCAN

Partitioning according to properties
Parallelize the clustering

16 / 18

Future Works

Perform more experiments on SC-DBSCAN

Number of properties describing the data
The size of the entities
Use Spark clusters of different configurations

Study the evolution issues

Update the schema

17 / 18

18 / 18

Quality Evaluation

Figure: Evaluation of Schema Discovery in Conference (a) BNF (b) and DBpedia
(c).

18 / 18

