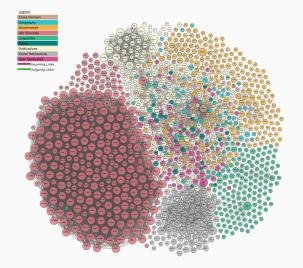


# Revealing the Conceptual Schemas of RDF Datasets

Subhi Issa, Pierre-Henri Paris, Fayçal Hamdi, Samira Si-Said Cherfi 10 May, 2019


Conservatoire National des Arts et Métiers - CEDRIC

#### Table of contents

- 1. Introduction
- 2. Completeness
- 3. LOD-CM Prototype
- 4. Use cases
- 5. Conclusion & Future Works

# Introduction

# Linked Open Data is everywhere, but how good is it?



#### Introduction

What is the meaning of "Quality"?

A popular definition for Quality is **fitness for use**. This means that data quality depends on the actual use case

Data Quality Dimension : a set of data quality attributes that represent a single aspect or construct of data quality  $\frac{1}{2}$ 

# **Linked Data Quality Dimensions**

Completeness Availability Performance Interlinking **Timeliness** Licensing Versatility Consistency Interoperability Trustworthiness Understandability Relevancy Semantic Syntactic Interpretability Conciseness validity accuracy Representation Security conciseness

# Completeness

### **Linked Data Completeness**

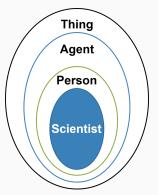
**Completeness** refers to the degree which all required information is presented in a particular dataset.

#### LD Completeness:

- Schema completeness, the degree where the classes and properties of an ontology are represented
- Property completeness, measure of the missing values for a specific property
- Population completeness, the percentage of all real-world objects of a particular type
- Interlinking completeness, the degree where instances in the dataset are interlinked

A reference schema (or gold standard) is required to assess completeness!

### **Motivating Example**


Giving the properties-values of 100 scientists

# Algorithm 1 Scientists Descriptions

```
String Query1 = "SELECT ?subject where{}
                 ?subject rdf:type dbo:Scientist
                 } I.TMTT 100"
Result S = \text{ExecQuery}(Query1)
for each subject \in S do
   String Query2 = "SELECT"?property ?value where{
                    subject ?property ?value}"
   Result R = \text{ExecQuery}(Query2)
   Descriptions.put(subject, < property, value >)
return Descriptions
```

# **Motivating Example**

 $Scientist \sqsubseteq Person \sqsubseteq Agent \sqsubseteq Thing$ 



# **Motivating Example**

$$Comp(Albert\_Einstein) = \frac{|Properties\ on\ Albert\_Einstein|}{|Scientist\_Schema|}$$

$$= \frac{21}{664} = 3,61\%$$

The property *weapon* is in *Scientist\_Schema*, but it is not relevant to the *Albert\_Einstein* instance

#### We postulate that :

 Property frequently used by several instances of a given class is more important than less often used for the same instance

#### We propose to:

 Find properties used more frequently than others to describe instances of a given class

# 1<sup>st</sup> step: properties mining

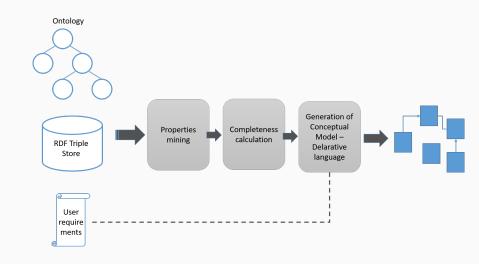
| Subject       | Predicate     | Object      |
|---------------|---------------|-------------|
| The Godfather | director      | Coppola     |
| The Godfather | musicComposer | Rota        |
| Goodfellas    | director      | Scorsese    |
| Goodfellas    | editing       | Schoonmaker |
| True Lies     | director      | Cameron     |
| True Lies     | editing       | Buff        |
| True Lies     | musicComposer | Fiedel      |

| Resource      | Transaction                        |
|---------------|------------------------------------|
| The Godfather | {director, musicComposer}          |
| Goodfellas    | {director, editing}                |
| True Lies     | {director, editing, musicComposer} |

# 2<sup>nd</sup> step: completeness calculation

$$MFP = \{\{director, musicCompoer\}, \\ \{director, editing\}\}$$

| Resource      | Transaction                        |   |
|---------------|------------------------------------|---|
| The Godfather | {director, musicComposer}          |   |
| Goodfellas    | {director, editing}                | ١ |
| True Lies     | {director, editing, musicComposer} |   |


$$CP(I) = \frac{1}{|T|} \sum_{k=1}^{|T|} \sum_{j=1}^{|MFP|} \frac{\delta(P(t_k, p_j))}{|MPF|}$$

$$CP(I) = \frac{\left(\frac{1}{2}\right) + \left(\frac{1}{2}\right) + \left(\frac{2}{2}\right)}{3} = 0.67$$

#### Recover a Conceptual Schema from RDF Datasets

- Infer conceptual schemas from existing data No predefined schema
- Conceptual Schema depends on :
  - Universe of discourse
  - User's requirements
- Enhance user's understanding of the representative system
- Provide a point of reference for system designers to extract schema specifications tagged with the completeness value

# Recover a Conceptual Schema from RDF Datasets



#### Recover a Conceptual Data Model from RDF Datasets

#### Types of properties:

- Attribute: relate instances of class to literal data (e.g., string, number, etc.)
- Relationship : relate instances to other instances

#### Types of links:

- Inheritance link: describes the relation between the class and the superclass
- Association link: describes the relation between two classes and point to the property
- Dotted link: expresses that a class has been inferred to complete the relationship

# LOD-CM Prototype

# **Experimental setup**

- DBpedia version 2016-10
  - English edition
  - 1.1 billion RDF triples
  - 468 classes
  - 1378 properties
- Data HDT dumps
- Implemented in C#
- PlantUML tool to create diagrams

# Welcome

A tool designed to help users of RDF knowledge graphs.

#### What is LOD-CM?

LOD-CM is a tool that produces a Conceptual Model (CM) through a UML class diagram. It mines maximal frequent patterns (also known as maximal frequent itemset) upon properties used by instances of a given OWL class to build the most appropriate CMs.

For a given dataset, you can **choose a class** among its classes, then **choose a threshold** corresponding to the minimum percentage of instances having a set of properties, and we compute CMs. For each group of properties simultaneously present above the threshold, we create a class diagram.

But why would I use that?

- UML class diagrams are easy to read and understand.
- CMs allow a user to explore dataset without prior knowledge.
- A user can easily compare two CMs to choose the better suited dataset.

#### Let's try it!

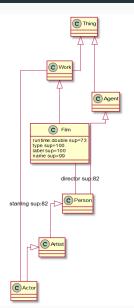
Select a dataset 
Select a class

Select a threshold 
Let's go!

1. http://cedric.cnam.fr/lod-cm

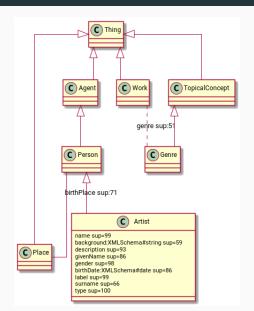
#### LOD-CM

Example : Class name : Film, Completeness : 50%


#### Select a group of maximal frequent itemset:

Each property group is present simultaneously in 50% of instances.

- o director, label, name, runtime, starring, type
- O director, label, name, starring, type, writer
- O label, name, runtime, type, writer


#### LOD-CM

Example: Class name: Film, Completeness: 50%



#### LOD-CM

Example : Class name : Artist, Completeness : 50%



### Use cases

#### Use cases

- Browse dataset without examining data in detail
- Choose the dataset that will be most suitable for its intended use
- Facilitate data browsing
   Based on user requirements :
  - Inheritance relationship
  - Relations between classes
  - Completeness value of each property

**Conclusion & Future Works** 

#### **Conclusion & Future works**

- Reveal conceptual schemas from RDF data sources
- Extract schema and present it as a model using user-specified threshold
- Model composes classes, relationships and properties enriched with completeness value

#### We plan to:

- Investigate the effectiveness of our prototype against additional Linked Open Data datasets such as Yago, Wikidata, etc.
- allow the user to compare conceptual schemas from different datasets

The proposed method

• Properties mining:

$$\mathcal{MFP} = \{\hat{P} \in \mathcal{FP} \mid \forall \hat{P}' \supseteq \hat{P} : \frac{|T(\hat{P}')|}{|T|} < \xi\}$$

where  $\xi$  is a user-specified threshold

• Completeness calculation :

$$\mathcal{CP}(\mathcal{I}') = rac{1}{|\mathcal{T}|} \sum_{k=1}^{|\mathcal{T}|} \sum_{j=1}^{|\mathcal{MFP}|} rac{\delta(E(t_k), \hat{P}_j)}{|\mathcal{MFP}|}$$

such that 
$$: \hat{P}_j \in \mathcal{MFP}$$
, and  $\delta(E(t_k), \hat{P}_j) = \begin{cases} 1 & \text{if } \hat{P}_j \subset E(t_k) \\ 0 & \text{otherwise} \end{cases}$