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Context

@ Agents coordinate to achieve tasks in their environment.
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Context

@ Agents coordinate to achieve tasks in their environment.

@ They need to agree on their knowledge about the environment.

N PN

—Huntable Huntable —Huntable

“\ ’ ‘ —Huntable Huntable

SUCCESS

o If a disagreement happens, agents adapt their knowledge.
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Problem

How is agent knowledge affected when they adapt it to agree with each other?
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Q3 Can agents preserve the diversity of their knowledge?
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Experimental framework
Requirements:

@ Agents have knowledge about their environment.

@ Agents accomplish tasks in the environment using their knowledge.

@ Agents need to agree with each other to interact successfully.
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Agent-to-agent interaction
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Agent-to-agent interaction
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Hypotheses

H1 Agent interactions become successful.
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Hypotheses

H1 Agent interactions become successful.
H2 Agent knowledge about the environment will becomes more accurate.

H3 Agents do not necessarily converge to the same ontologies.
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Experiment plan

For each variation of parameters, the experiment is run 10 times.

Parameter Range
Number of agents {2,5,10, 20,40}
Number of features {3,4,5}
Number of decision classes {2,3,4}
Task ratio {0.2,0.4,0.6,0.8}
Training ratio {0.1,0.3,0.5}
Number of iterations 40000
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Results: Success rate

The success rate converges to 1. Hypothesis 1 accepted.
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Results: Accuracy
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Results: Accuracy

The accuracy drops in 3.5% of the runs.

Agents 2 5 10 20 40 | total
runs 141 44 4 0 0| 189
percentage | 243 0.75 005 0 0 | 3.23

Table: Number of runs with negative accuracy difference by number of agents and task ratio (each cell
= 1440 runs).
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Results: Ontology distance

Agents maintain different ontologies in 90.78% of the runs.
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Results: Ontology distance

Agents maintain different ontologies in 90.78% of the runs.  Hypothesis 3 accepted.

L —— o097  ——o0098 /T\
0.8 - Dyt
@ = B "
e 0.68 0.67 PG
g - S
3 0.57
g 05| 0.49 <
o 4 <
2 e ﬁp/ \62
o
=(p1 A _\p3)/ \Pl /Xﬁp3
— 006 ——o007 03
0 ! !
start end

Yasser Bourahla 12/20



Results: Factor effects

ANOVA test results.

Factor Success rate | Distance | Accuracy
Number of agents < 0.01 0.475 | <« 0.01
Number of features < 0.01 < 0.01 0.40
Number of decision classes < 0.01 <001 | <x0.01
Task ratio < 0.01 <0.01 | 0.01
Training ratio < 0.01 <001 | <x0.01
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Results: Factor effects

Effect of number of agents on accuracy.
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Results: Factor effects

Effect of number of features on ontology distance.
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Comparison with AMAIL on real data

Experiment repeated by generating the environment from the Zoology dataset.

@ Ontafién, Santiago and Plaza, Enric (2015)
Coordinated Inductive Learning Using Argumentation-Based Communication
Autonomous Agents and Multi-Agent Systems 29, 2, 266 — 304.
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Comparison with AMAIL on real data

Experiment repeated by generating the environment from the Zoology dataset.

@ The environment objects and their decisions are generated from the dataset instead of
randomly with a random number of features.

@ The task ratio and training ratio are fixed to 0.2.

ﬁ Ontafién, Santiago and Plaza, Enric (2015)
Coordinated Inductive Learning Using Argumentation-Based Communication
Autonomous Agents and Multi-Agent Systems 29, 2, 266 — 304.
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Comparison with AMAIL on real data

Method  ||A[|Precision|F-measure | Recall | Accuracy
2 0.88 0.87 0.86 | 0.951
5 0.91 0.89 0.88 | 0.964

Simulation| 10| 0.94 0.92 0.91 | 0.977
20| 0.96 094 | 093 0.984
40| 0.95 0.94 0.93 | 0.983
2 0.97 0.85 0.75 | 0.950
3 0.98 0.89 0.81 | 0.968

AMALL 007 0.90 [ 0.84 [ 0.966
5 0.98 0.93 0.88 | 0.980
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Conclusion

We designed an experimental framework and used it to show that:
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Conclusion

Teach next generation
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Thank you!
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