

Master of Science and Technology

Artificial Intelligence and advanced Visual Computing

PROGRAM OVERVIEW

WHY ARTIFICIAL INTELLIGENCE AND VISUAL COMPUTING?

Intelligent Systems operating on their own

- To help humans or achieve challenging tasks by themselves
 - Decision, creation, autonomous motion...
- Based on two complementary approaches
 - Modeling knowledge & reasoning mechanisms
 - Learning from examples (Machine learning, Deep learning, Reinforcement learning)

At the fence between **Computer Science** and **Applied Maths**:

- Requiring both theoretical & strong programming backgrounds
- Students need a Bachelor's in either maths or computer science, with at least some background in the other topic and strong motivation

PROGRAM OVERVIEW

Artificial Intelligence refers to intelligent systems that can independently perform tasks that were originally restricted to humans.

Al is based on two complementary approaches:

- Traditional AI: modeling existing knowledge and reasoning mechanisms in an efficient way
- Machine learning: systems that gain knowledge on their own, either with training examples or instantly, with the use of reinforcement learning

Visual Computing involves processing multimedia content:

- Analyzing & editing masses of online contents (sound, video, 3D)
- Great domains to illustrate Al methods
- Brings challenges (editing tasks) & solutions (artificial examples)

Synthesizing Obama: Learning Lip Sync from Audio SIGGRAPH2017

PROGRAM OVERVIEW

KEY FEATURES

- Two-year course
- Entirely taught in English
- Full-time basis only
- Industry-oriented program
- Courses by world-class professors, associated research centers, academic partners and top industry professionals
- 2 compulsory internships

PROGRAM STRUCTURE

YEAR 1

PERIOD 1

Machine Learning I

Constraint-based Modeling and Algorithms for Decision Making Problems

Image Analysis and Computer Vision

Digital Representation and Analysis of Shapes

Signal Processing

Marketing and Strategy
Introduction

PERIOD 2

Machine Learning 2

Computer Animation

Algorithmic Geometry: from theory to applications

Image Synthesis: theory and practice

Statistics in action

Advanced Topics in Artificial Intelligence

Technology-based entrepreneurship and new business creation

Languages

Humanities and French Culture

Sports

PROGRAM STRUCTURE

YEAR 2

PERIOD 1

Deep Learning

Data Analysis: geometry and topology in arbitrary dimensions

Natural Language and speech Processing: from knowledge modeling to machine learning

Advanced 3D Graphics: Exploring the links between Computer Graphics and Al

PERIOD 2

Reinforcement Learning

Robot motion planning, verification and control of hybrid systems

Socio-emotional embodied conversational agents

Soft robots: simulation, fabrication, and control

Advanced Computer Vision

Transverse Project

Virtual/Augmented Reality & 3D Interactions

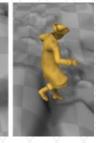
Seminar on ethical issues, law and novel applications of Al

Languages

Humanities and French Culture

Sports

INTERNSHIPS


Students complete a **four- to six-month internship** at the end of each year of the Program, either in France or abroad

Example of internship projects include:

- COVID-19 risk mitigation Inria
- Neutral architecture search and AutoML Argonne National Laboratory
- Deep learning in 3D images Bentley Systems
- Finding good gripping positions for soft robots Inria
- Managing a large number of NPC: visual, Al, transition Ubisoft
- Fast partial-to-partial point cloud registration with unsupervised mask estimation – Valeo
- Prototype of smart tool to help the creation of decor and 3D scenes Ubisoft
- LiDAR-based semantic information extraction with deep learning -Renault

WEEKLY SEMINARS

Students will be sensitized to **ethical issues and law**, and introduced to **novel applications** of artificial intelligence and visual computing through key-note talks from both institutional and industrial partners.

Examples of seminars include:

- Facial recognition: from early methods to deep learning | Stéphane Gentric, Research unit manager, IDEMIA
- Augmenting bodies using AI: from human know-how to Computer Aided Design | François Faure, CEO Anatoscope
- From Phd to Startup creation: Real-estate Market Transparency using Al | Adrien Bernhardt, CTO Homiwoo
- Google Al principles | Ludovic Peran, Public Policy and Government Affairs Manager-Al, Google
- Fighting blindness with bionic eyes | Vincent Bismuth, General Electric Healthcare
- Ethics in artificial intelligence | Issam Ibnouhsein, Quantmetry

INDUSTRY AND INSTITUTIONAL PARTNERS

CAREER PROSPECTS

The Master's combines both research and professional experience. After graduating, students can either pursue PhD study or work for companies and start-ups across a range of industries:

- **Digital applications** for smartphones, computers, or personal assistants: Google, Facebook, Shazam, Apple, Snap
- Control of autonomous vehicles, drones and robots:
 Valeo, Audi, Google, BMW, Peugeot-Citroen
- Virtual reality, image & video editing, 3D simulation, films, games & design: Ubisoft, Dassault systems, Microsoft, Adobe, Sony, Nintendo, Anatoscope
- E-commerce and online advertisement: Criteo, Google, Teads, Cdiscount, FNAC, eBay

And many start-ups not listed here!

programmes.polytechnique.edu

For all enquiries gdadmissions@polytechnique.fr

2nd round of applications from January 12th to March 12th (4pm CET)