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Introduction

IoT and AI for a better world ?

IoT: Large system of connected objects that share data over the Internet.
AI: the study of how to produce machines that have some of the qualities that the
human mind has.

Here we focus on the use of Reinforcement Learning for optimizing communications in
IOT networks.

The Joy of Tech by Nitrozac and Snaggy
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Introduction

IoT networks: why optimizing communications ?

IoT networks: main characteristics
Decentralized: devices initiate
transmission

Unlicensed radio bands

Massive number of devices

Low power devices

Low duty cycle

Low data rate

High density of devices transmitting packets =⇒ high congestion risk.

IoT networks use the repetition techniques to limit the loss of messages =⇒
higher energy consumption and higher congestion risk...

For limiting energy consumption we need to limit the loss of messages.
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Introduction

IoT networks: why some messages are lost ?

A collision occurs when two devices send an uplink packet at the same time on the
same channel: the gateway does not received the packets and hence does not send
acknowledges.
So how minimizing collisions ?
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Reinforcement Learning

A generic problem: the reinforcement learning

The agent:

Observes the environment,

Executes an action,

Receives a reward.

The environment:

Changes its internal state due to the
action,

Emits a reward.

Goal:

Maximize the long term rewards of the agent.
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Reinforcement Learning

A generic problem: the reinforcement learning

Main features of reinforcement learning:

There is no supervisor, only the reward of
played action is revealed to the agent.

The environment is initially unknown: the
agent has to interact with the environment
to gather information.

Due to the change in the state of the
environment, the actions of the agent affect
the future rewards it will receive.

The reward is delayed.
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Reinforcement Learning

The multi-armed bandit problem

Main features of the multi-armed bandit problem:

There is no supervisor, only the reward of played
action.

The environment is initially unknown: the agent has
to interact with the environment to gather
information.

The played action does not affect the state of the
environment.

The rewards are not delayed.

Raphaël Féraud (Orange labs) July 2020 9 / 39



Reinforcement Learning

Exploration / Exploitation dilemma

Exploration: the agent plays a loosely estimated action in order to build a better
estimate.

Exploitation: the agent plays the best estimated action in order to maximize its
cumulative reward.
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Reinforcement Learning

Stochastic Bandits

Inputs: a set of arms [K ], unknown probability distributions of rewards υ1, ...,υK , and
unknown mean rewards µ1, ...,µk

1: for t = 1,2, ..., do
2: Player chooses kt ∈ [K ]
3: Environment reveals rkt ∼ υkt

4: end for

The goal of the player is to minimize the pseudo-regret with respect to the optimal
policy:

R(T ) = max
k∈[K ]

µk .T −Eυ

T

∑
t=1

rkt = µk∗ .T −Eυ

T

∑
t=1

rkt .

Any algorithm has a pseudo-regret at least to (Lai and Robbins 1985):

liminf
T→∞

R(T )≥
K

∑
k=1

∆k
KL(υk ,υk∗)

logT = Ω

(
K
∆

logT
)
,

where KL denotes the Kullback-Leiber divergence, ∆k = µk∗ −µk ,
∆ = µk∗ −maxk 6=k∗ µk .
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Reinforcement Learning

The optimism in face of uncertainly: Upper Confidence Bound

1: ∀k , Bk := ∞

2: for t = 1,2, ..., do

3: Player chooses: kt := argmaxk∈[K ] µ̂k︸︷︷︸
estimated mean reward

+

√
2 log t

tk︸ ︷︷ ︸
confidence interval Bk

4: Environment reveals rkt ∼ υkt
5: tkt := tkt + 1, player updates µ̂kt
6: end for

Regret Upper Bound (Auer et al 2002):

R(T )≤O
(

K
∆

logT
)
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Reinforcement Learning

Adversarial Bandits

Main feature of adversarial bandits:

An adversary, which knows the algorithm of the
player, has generated a deterministic sequence of
rewards for each action:

the player has to randomize the choice of arms,
the player has to continuously explore overtime.

The time horizon is known.

The player competes against the best arm of the
run: maxk∈[K ] ∑

T
t=1 rk (t)

Lower Bound (Auer et al 2001):

Ω
(√

KT
)
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Reinforcement Learning

Exp3: Exponential-weight algorithm for Exploration and Exploitation

Input: γ ∈ (0,1]

1: ∀k , wk (1) := 1, t := 1
2: for t = 1,2, ..., do
3: ∀k : pk := (1− γ) wk (t)

∑k wk (t) + γ

K (constant exploration rate)

4: Player chooses: kt ∼ (p1, ...,pK )

5: Adversary reveals rkt

6: r̂kt (t) :=
rkt

(t)
pkt

(t) (unbiaised estimation of rkt (t))

7: wkt (t + 1) := wkt (t)exp
(
γ r̂kt (t)/K

)
8: t := t + 1
9: end for

Regret Upper Bound (Auer et al 2001):

Choosing γ := min

(
1,

√
K logK

(e−1)T

)
, we have: R(T )≤O

(√
KT logK

)
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Reinforcement Learning

Best Arm Identification problem

Inputs: a set of arms [K ], unknown probability
distributions of rewards υ1, ...,υK , and unknown mean
rewards µ1, ...,µk , ε ≥ 0, δ ∈ (0,1), t := 1
Output: one arm

1: repeat
2: Player chooses kt ∈ [K ]
3: Environment reveals rkt ∼ υkt

4: k ′ = arg maxk∈[K ] µ̂k
5: t := t + 1
6: until P{µk∗ −µk ′ > ε} ≤ δ

Lower Bound (Mannor and Tsitsiklis 2004):

The sample complexity, i.e. the stopping time, of any
algorithm is at least:

Ω

(
K

∆2 log
1
δ

)
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Reinforcement Learning

Successive Elimination

Inputs: a set of arms [K ], δ ∈ (0,1), an ε ≥ 0
Output: the best arm

1: repeat
2: a remaining arm is uniformly sampled
3: Environment reveals rk ∼ υk
4: k ′ = argmaxk∈[K ] µ̂k

5: ∀k ∈ [K ], if µk ′ −µk + ε ≥ 2

√
1

2tk
log

4Kt2
k

δ

then remove k from [K ]
6: until |[K ]|= 1

Sample Complexity Upper Bound (Even-Dar et al 2006):

O
(

K
∆2 log

K
δ

)
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Reinforcement Learning

Best Arm Identification versus Multi-Armed Bandits

clickthrough rate

timeA/B testing phase
(test A & B equally)

deployment phase
(play best option)

A/B testing gain curve

Bandit gain curve

The expected gain of Multi-Armed Bandits algorithms is higher than the one of Best
Arm Identification algorithms.

Best Arm Identification algorithms are used when there is a maintenance cost
associated with each action: continuous development, clinical trials, phone marketing
campaigns, blacklisting channels...
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Reinforcement Learning

Some references

Reinforcement Learning, Second Edition An Introduction, Richard S. Sutton and
Andrew G. Barto, 2018
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Advances in Applied Mathematics, 1985.
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and Fischer, P., Machine Learning 47, 2002.

The Nonstochastic Multiarmed Bandit Problem, Peter Auer, Nicolò Cesa-Bianchi,
Yoav Freund, and Robert E. Schapire, SIAM J. Comput., 32(1), 2001.

The Sample Complexity of Exploration in the Multi-Armed Bandit Problem, Mannor
S., and Tsitsiklis J. N., Journal of Machine Learning Research, 2004.

Action Elimination and Stopping Conditions for the Multi-Armed Bandit and
Reinforcement Learning Problems, Even-Dar, E., Mannor, S., Mansour Y., JMLR,
2006.
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Multi-Player Multi-Armed Bandits for Opportunistic Spectrum Access

Opportunistic Spectrum Access

OSA networks: Principle
Primary Users are on licensed channels.
Secondary Users have the opportunities to send data on free slots:

Secondary Users first do sensing on one channel, and try to send a packet if there is no
Primary Users,
if two or more Secondary Users send data on the same channel a collision occurs.
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Multi-Player Multi-Armed Bandits for Opportunistic Spectrum Access

Multi-Player Multi-Armed Bandits

K arms (channels) with different and unknown vacancy rates θk ∈ [0,1]

N ≤ K players (Secondary Users)

synchronized players: at each time slot each player sends a packet.

At each time slot t ∈ 1, ...,T

player n selects arm kn

player does sensing on arm kn: observe Y kn (t)∼ B(θkn )

if Y kn (t) = 1 (channel kn is free) player n sends packet and observes Ckn (t) = 1 if
another player chooses the same arm, and Ckn (t) = 0 else.

Goal

maximize the sum of rewards of all players: ∑
N
n=1 ∑

T
t=1 Y kn (t).(1−Ckn (t))

trade-off exploration / exploitation / collisions.
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Multi-Player Multi-Armed Bandits for Opportunistic Spectrum Access

Regret for Multi-Player Bandits

Lower bound (Besson and Kaufmann 2018)

Assume that µ1 ≤ µ2 ≤ ...≤ µK , then we have for any algorithm:

liminf
t→∞

R(T )≥ N
K

∑
k=N+1

µk −µN
KL(µk ,µN )

logT = Ω

(
N(K −N + 1)

µN −µN+1
logT

)

Regret Decomposition (Besson and Kaufmann 2018:)

Let T k (t) be the number of plays of arm k at time t . It exists A,B ∈ (R+)2, such that:

R(T )≤ A
K

∑
k=N+1

E[T k (T )]︸ ︷︷ ︸
number of plays of sub-optimal arms

+B
K

∑
k=1

E[Ck (T )]︸ ︷︷ ︸
number of collisions

First idea:

Find the N-best arms,

Use an orthogonalization procedure to avoid collisions.
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Multi-Player Multi-Armed Bandits for Opportunistic Spectrum Access

Musical Chairs (Rosenski et al 2018)

Inputs: a set of arms [K ], approximation factor ε ∈ (0,1], probability of failure δ ∈ (0,1)

1: T0 := d 16K
ε2 log 4K 2

δ
e

2: for t = 1,2, ...,T0 do (Estimate the values of arms and the number of collisions)
3: player n plays kn ∼ U(1, ...,K )

4: Environment reveals Y kn (t)∼ B(θkn ) and Ckn (t)
5: Evaluate µ̂kn (t), and the number of collisions Cn(t)
6: end for

7: sn := 0, N̂n := b
log

T0−Cn(T0)
T0

log(1−1/K ) + 1c (Estimate the number of players)
8: Sort arms in decreasing order of µ̂k
9: for T0,T0 + 1, ... do (Musical Chairs)

10: if sn = 0 then
11: Play kn ∼ U(1, ..., N̂n) (Play a N̂n-best arms)
12: if Y kn (t) = 1 Ckn (t) = 0 then sn := 1
13: else Play kn (Stays on arm kn)
14: end if
15: end for

Analysis:

R(T )≤O
(

NK
ε2 logT

)
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Multi-Player Multi-Armed Bandits for Opportunistic Spectrum Access

MC-TOP-N algorithm (Besson and Kaufmann 2018)

Idea: at time t stay on the same arm (sn = 1) if it is good (kn ∈Nn(t)) and free
(Ckn (t) = 0).

Inputs: a set of arms [K ], N players, ∀n, kn ∼U (1, ...,K ), sn := 0
1: for t = 1,2, ... do
2: player n chooses kn = argmaxk∈[K ] UCBk

n (t)
3: Environment reveals Y kn (t)∼ B(θ kn )

4: Compute UCBk
n (t)

5: Nn(t) := {arms with the N largest UCBk
n (t)}

6: if kn /∈Nn(t) then player n chooses kn uniformly in Nn(t) and sn := 0
7: elseif Ckn (t) = 1 and sn = 0 then player n chooses kn uniformly in Nn(t) and sn := 0
8: else sn := 1 (player n is fixed on arm kn)
9: end for

Analysis:

R(T )≤O
(

N(K −N + 1)

µN −µN+1
logT

)
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Multi-Player Multi-Armed Bandits for Opportunistic Spectrum Access

Some references

Distributed learning in Multi-Armed Bandit with multiple players, K. Liu and Q.
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Distributed algorithms for learning and cognitive medium access with logarithmic
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Multi-player bandits: a musical chairs approach, Jonathan Rosenski, Ohad
Shamir, and Liran Szlak, ICML 2016.

Multi-Player Bandits Revisited, Lilian Besson, Emilie Kaufmann, ALT 2018.

Distributed Multi-Player Bandits - a Game of Thrones Approach, Ilai Bistritz, Amir
Leshem, NeurIPS 2018.

Selfish Robustness and Equilibria in Multi-Player Bandits, E. Boursier, V. Perchet,
COLT 2020.
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Multi-Player Multi-Armed Bandits for IoTs

Problem Formulation

N Asynchronous Players: at each time slot
each player n has a probability pn to be active
(i.e. to send data to the gateway)

K Arms are available to all players, N >> K
A transmission is successful when it does not
collide:

External collision: Ek ∼ B(θ k ) (equals 0 if
collision, 1 otherwise)

Internal collision: Ik (equals 0 if collision, 1
otherwise) between controlled players

Only the binary outcome is observed when
playing arm k : Y k = Ek Ik

Main differences in comparison to OSA:

large number of asynchronous players (N >> K ),

No sensing: collisions are not observed
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Multi-Player Multi-Armed Bandits for IoTs

Why it is a very challenging problem ?

Policy: How the players play the arms

π = (π1, ...,πN )

πn = (π1
n , ...,π

K
n ): policy of player n

πk
n : probability that player n chooses arm k when active

Expected Reward per time slot

µ(π) =
K

∑
k=1

θ
k︸︷︷︸

mean reward of arm k

N

∑
n=1

pn.π
k
n︸ ︷︷ ︸

player n chooses arm k

N

∏
n′=1,n′ 6=n

(1−pn′ .π
k
n′)︸ ︷︷ ︸

no collision occurs

The optimization problem is not convex =⇒ efficient optimization methods
cannot be applied to it.

Open problem: Is it NP-Hard ?
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Multi-Player Multi-Armed Bandits for IoTs

The selfish heuristic

Each device selfishly optimizes its choice of arms:

an ∼ B(pn)

if an = 1 (device is active) then
player n chooses arm kn ∈ [K ] using a MAB algorithm
player n observes the outcome of arm kn: Y kn = Ekn Ikn

player n updates the MAB algorithm

This is an heuristic:

The above algorithm run on each player does not reach the optimum of the
optimization problem, and there is no guaranty to reach an equilibrium.

From the player point of view, this is not a stochastic MAB problem:

due to the collisions with other learning players the rewards of arms change during
time.

But it works well !
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Multi-Player Multi-Armed Bandits for IoTs

Optimization of LoRa transmissions

The device chooses the parameters for the next LoRa transmission, then the
environment, which is the gateways, the other devices, the weather..., generates a
reward that is used by the device to optimize the choice of parameters.
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Multi-Player Multi-Armed Bandits for IoTs

Experimental setting

Simulator:

A realistic simulator, which implements propagation models, shadowing, fast fading,
collision rules and retransmissions (N. Varsier and J. Schwoerer 2017), is used for the
experiments.

One versus all:

A single indoor gateway with 100 nodes is considered:

99 nodes, that are randomly positioned within a radius of 2 km, use the algorithm
defined in the LoRa protocol: Adaptive Data Rate (ADR).

1 node uses bandit algorithms for choosing transmission parameters.

Scenario:

1 1000 packets are sent by the optimized node. Due to the use of ADR on 99 nodes,
the mean reward of each arm evolves during time.

2 After sending 500 packets, the node moves from 592 meters to 1975 meters from
the gateway. The mean reward of arms abruptly changes.
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Multi-Player Multi-Armed Bandits for IoTs

Results

Comparison with ADR:

ADR algorithm is clearly dominated by any MAB algorithm.

Multi-Armed Bandits:

Switching Thompson Sampling with Bayesian Aggregation is the best-performing
algorithm. Surprisingly Thompson Sampling performs as well as STS and SWUCB,
which are designed for switching environments.
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Multi-Player Multi-Armed Bandits for IoTs
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Multi-Armed Bandits for Sensor Networks

IEEE 802.15.4 TSCH (Time Slotted Channel Hoppings) network

Communications are coordinated by a scheduler (time slot x set of channels):
avoids internal collisions.

Interference issues on the license free bandwidths: external collisions occur.

To prevent a node n from being systematically assigned to a bad channel k ∈ [K ],
TSCH implements a channel hopping function by assigning each node to a
different offset:

kn(t) = (t + Offsetn) mod K
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Multi-Armed Bandits for Sensor Networks

Multi-armed Bandit Algorithms for TSCH-compliant channel selection
The setting

When a node sends a packet, it receives an ack: the reward is the success of the
transmission.

each node is assigned to a subset of offsets.

a MAB algorithm is used to select the best offset in its subset.

1 7 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5

7
13

1
(30 + offset) % 16

13

5 11 3 15

Offsets

TSCH with
MAB

15

Channel to transmit
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Multi-Armed Bandits for Sensor Networks

Performance gain

Varying the size of the subset of offset
from 1 to 16.

Packet Data Rate of channels
switches every 200 packets.

Comparing the performances between
Thompson Sampling (TS), Switching
Thompson Sampling with Bayesian
Aggregation (STSBA), and standard
TSCH.

Best algorithm: Switching Thompson Sampling with Bayesian Aggregation.
The performance of TSCH without MAB does not depend on the size of subset since
the choice of the offset is random.

Reference: Reinforcement Learning techniques for optimized channel hopping in IEEE 802.15.4
TSCH networks, H. Dakdouk, E. Tarazona, R. Alami, R. Féraud, G. Z. Papadopoulos, and P.
Maillé, ACM MSWIM, 2018.
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Conclusion

Conclusion

Multi-Armed Bandit handles a central problem in reinforcement learning: the
exploration / exploitation dilemma.

Multi-Armed Bandit algorithms are efficient (low consumption of resources) and
are equipped with theoretical guarantees.

Opportunistic Spectrum Access can be formulated as a multi-player multi-armed
bandits: optimal solutions exist.
Channel allocation in IoT networks is a more challenging problem (asynchronous
players, large number of players, collisions not observed):

the selfish UCB heuristic works well in practice,
providing algorithms equipped with theoretical guarantee is still an open problem.

many other problems in telecommunication networks can be handled using
Multi-Armed Bandits: auto-configuration in SON network, sensor networks...
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