
LAAS
CNRS

© Félix Ingrand, LAAS/CNRS, 2018

Validation and Verification of
Autonomous Systems

Félix Ingrand
LAAS-RIS

Journée Perspectives et Défis de l’IA,
Véhicule Autonome et IA

Paris
October 11, 2018

© Félix Ingrand, LAAS/CNRS, 2018

LAAS
CNRS

Autonomous Vehicle Software

2

© Félix Ingrand, LAAS/CNRS, 2018

LAAS
CNRS

Autonomous Vehicle Software

Software represents a large part of the development of Autonomous Vehicle, yet,
most of it is not V&V…

2

© Félix Ingrand, LAAS/CNRS, 2018

LAAS
CNRS

Autonomous Vehicle Software

Software represents a large part of the development of Autonomous Vehicle, yet,
most of it is not V&V…
 … with dramatic consequences…

2

© Félix Ingrand, LAAS/CNRS, 2018

LAAS
CNRS

Autonomous Vehicle Software

Software represents a large part of the development of Autonomous Vehicle, yet,
most of it is not V&V…
 … with dramatic consequences…
…while V&V is used for some of these complex (but not quite autonomous) systems

2

LAAS
CNRS

© Félix Ingrand, LAAS/CNRS, 2018

Software Validation and Verification
Require formal models and mathematically/logically sound
“checking” techniques

formal models (e.g., FSM, IO automata, Petri nets, timed
automata, situation calculus, synchronous systems, etc)
checking by reachable state exploration (e.g. model
checking), logical induction (e.g. theorem proving, sat solving,
etc) or runtime verification
complete methods, over approximation, statistical methods,
etc…

3

© Félix Ingrand, LAAS/CNRS, 2018

LAAS
CNRS

V&V on Robotic Software
Check that the autonomous shuttle drives safely e.g.:

Plan is safe and executable
Stop in time when an obstacle has been detected
The door does no open while moving
Path following remains in bound
Check that the vehicle has a consistant perception/
action loop
Speed command is produced “timely”
Laser scan – freq and range
Speed control – freq and value
Time for an emergency stop

4

Functional Level

GenoM3 Components

x2 front and back

Bridge

Navigation

state

Mission

Localisation

odometry

low_level
Task: ap
vehicle_state
Services:
perm
connect_can

Task: 20ms
command
Services:
perm
openDoors
closeDoors

laser_
scan

lms_1xx
Task: 40ms
scan
Services:
acquire

follower

command

Task: 20ms
follow
Services:
follow_path
stop

speed_
limit

CC-
straight
Task: 40ms
check
Services:
perm

speed_
limit

CC-
on_path
Task: 40ms
check
Services:
perm

speed_
limit

anticollision
_fusion
Task: 10ms
fusion
Services:
perm,
add_limiter

statepath odometry

real_path

rqst: follow_path(path)

feedback

Decisional Level

Observing

Monitoring

MODELS

FAPE

Acting

Planning

© Félix Ingrand, LAAS/CNRS, 2018

LAAS
CNRS

5

Functional Level

GenoM3 Components

x2 front and back

Bridge

Navigation

state

Mission

Localisation

odometry

low_level
Task: ap
vehicle_state
Services:
perm
connect_can

Task: 20ms
command
Services:
perm
openDoors
closeDoors

laser_
scan

lms_1xx
Task: 40ms
scan
Services:
acquire

follower

command

Task: 20ms
follow
Services:
follow_path
stop

speed_
limit

CC-
straight
Task: 40ms
check
Services:
perm

speed_
limit

CC-
on_path
Task: 40ms
check
Services:
perm

speed_
limit

anticollision
_fusion
Task: 10ms
fusion
Services:
perm,
add_limiter

statepath odometry

real_path

rqst: follow_path(path)

feedback

Decisional Level

Observing

Monitoring

MODELS

FAPE

Acting

Planning

Functional Level

3IncludedFrenchDCTechnologies
Inadditiontotheopen-sourcematerial,somemethodsandtechnologieswillbeillustratedonthe
showcase.Fornow,thefollowingtechnologiesfromtheFranceDesignCenterareconsideredtobe
included:

•HAZOP-UML:themethodologywillbeillustratedononeortwooperationspecification;

•SMOF:monitorswillbesynthetizedfortwosafetyrules;

•MAUVE:animplementationofthesoftwarearchitectureusingtheMAUVEmiddlewarewill
beprovided,alongwithreal-timeanalysisresults;

•Genom:thedesignofthesoftwarearchitectureusingGenomwillbeprovided,alongwith
someanalysisresults;

•AltaRica:thedescriptionofthesafetyassessmentonapartofthefunctionnalarchitecture
willbedescribed.

4RoboticplatformfromONERA
TheplatformusedfortestingthesoftwarearchitectureisaRobotnikSummit-XLownedand
equippedbyONERA(figure1).TherobotisequipedwithaIMU(InertialMeasurementUnit),
aGPSsensor,Hokuyolasersensorsandavideocamera.

Figure1:Summit-XLequipedbyONERA

Theplaformdimensionsareshowninfigure2.

5MaterialHosting
AprojectonGitLabwillbecreatedundertheurlhttps://gitlab.com/osmosisinordertohost
documentationoftheshowcaseaswellasspecificgitprojectsforsources.

2

RobotDriverGPSDriver

Task:
update 100ms
Services:
SetParams*
ConnectDevice
Measure
Stop

Task:
odometry
25ms
Services:
TrackOdoS
tart
TrackOdoS
top

Task:
command
40ms
Services:
TrackSpee
dStart
TrackSpee
dStop

IMUDriver

Task:
Update 100ms
Services:
SetParams*
ConnectDevice
Measure
Stop

LaserDriver
Task:
scan 100ms
Services:
SetParams*
ConnectDevice
Scan
StopScan

Teleop

Teleop
Cmd

Task:
check 100ms
Services:
Teleop
Stop

joystick

Cmd

PotentialField

Scanodometry

Navigation

target

Localization/POM SafetyPilot

IMU

pose PFCmd

Nav
graph

Task:
plan 100ms
Services:
SetParams
StartTrackTargetPort
StopTrackTargetPort

Task:
pilot 40ms
Services:
SetParams*
Stop
SpeedMergeAnd
AvoidObstacles

Task:
navigate 200 ms
Services:
GotoPosition
GotoNode
Stop

Task: io 10ms
Services:
perm, add_me

Task: filter
10ms
Services:
perm

Attribute Service
Function Service
Activity Service

GPS

RWLSensor
Task:
sense 200 ms
Services:
CheckLight
ResetLightsSeq
UnstowSensor
StowSensor

LightLvl

Lights

Decisional Level

Observing

Monitoring

MODELS

FAPE

Acting

Planning

Functional Level

NHFC

camera

Maneuver

GPS

POM

mikrokopter

actual
velocity

IMU

cmd
velocity

dist

desired
state

GPS
pose

state

Task:
main
Services:
Init
Servo
Stop

Task:
main
Services:
Monitor
Stop

Task:
plan
Services:
Init
Goto
WayPoint
TakeOff

Task:
main
Services:
Init

Task:
main
Services:
perm
calibrate_imu
start
servo
stop

Task:
comm
Services:
perm
connect
monitor

Task: io
Services:
perm, add_me

Task: filter
Services:
perm

Task:
exec
Service:
perm

Decisional Level

Observing

Monitoring

MODELS

Acting

Planning

LAAS
CNRS

© Félix Ingrand, LAAS/CNRS, 2018

Functional Level

NHFC

camera

Maneuver

GPS

POM

mikrokopter

actual
velocity

IMU

cmd
velocity

dist

desired
state

GPS
pose

state

Task:
main
Services:
Init
Servo
Stop

Task:
main
Services:
Monitor
Stop

Task:
plan
Services:
Init
Goto
WayPoint
TakeOff

Task:
main
Services:
Init

Task:
main
Services:
perm
calibrate_imu
start
servo
stop

Task:
comm
Services:
perm
connect
monitor

Task: io
Services:
perm, add_me

Task: filter
Services:
perm

Task:
exec
Service:
perm

Decisional Level

Observing

Monitoring

MODELS

Acting

Planning

Formal models: decisional : planning  
(e.g. UPPAAL, model checking), monitoring,  
FDIR, observing

Learned models: Reinforcement learning models,
perception models, etc.

Specification models: Software engineering models: e.g.
GenoM3, Oroccos, MAUVE, RobotML, etc.

Programming directly the Model: Orccad, Scade, etc.

No Model…

6

V&V models: Different situations over a
complete autonomous system

LAAS
CNRS

© Félix Ingrand, LAAS/CNRS, 2018

Functional Level

NHFC

camera

Maneuver

GPS

POM

mikrokopter

actual
velocity

IMU

cmd
velocity

dist

desired
state

GPS
pose

state

Task:
main
Services:
Init
Servo
Stop

Task:
main
Services:
Monitor
Stop

Task:
plan
Services:
Init
Goto
WayPoint
TakeOff

Task:
main
Services:
Init

Task:
main
Services:
perm
calibrate_imu
start
servo
stop

Task:
comm
Services:
perm
connect
monitor

Task: io
Services:
perm, add_me

Task: filter
Services:
perm

Task:
exec
Service:
perm

Decisional Level

Observing

Monitoring

MODELS

Acting

Planning

Formal models: decisional : planning  
(e.g. UPPAAL, model checking), monitoring,  
FDIR, observing

Learned models: Reinforcement learning models,
perception models, etc.

Specification models: Software engineering models: e.g.
GenoM3, Oroccos, MAUVE, RobotML, etc.

Programming directly the Model: Orccad, Scade, etc.

No Model…

6

V&V models: Different situations over a
complete autonomous system

Formal
Models

LAAS
CNRS

© Félix Ingrand, LAAS/CNRS, 2018

Functional Level

NHFC

camera

Maneuver

GPS

POM

mikrokopter

actual
velocity

IMU

cmd
velocity

dist

desired
state

GPS
pose

state

Task:
main
Services:
Init
Servo
Stop

Task:
main
Services:
Monitor
Stop

Task:
plan
Services:
Init
Goto
WayPoint
TakeOff

Task:
main
Services:
Init

Task:
main
Services:
perm
calibrate_imu
start
servo
stop

Task:
comm
Services:
perm
connect
monitor

Task: io
Services:
perm, add_me

Task: filter
Services:
perm

Task:
exec
Service:
perm

Decisional Level

Observing

Monitoring

MODELS

Acting

Planning

Formal models: decisional : planning  
(e.g. UPPAAL, model checking), monitoring,  
FDIR, observing

Learned models: Reinforcement learning models,
perception models, etc.

Specification models: Software engineering models: e.g.
GenoM3, Oroccos, MAUVE, RobotML, etc.

Programming directly the Model: Orccad, Scade, etc.

No Model…

6

V&V models: Different situations over a
complete autonomous system

Learned
Models

Learned
Models

Learned
Models

Formal
Models

LAAS
CNRS

© Félix Ingrand, LAAS/CNRS, 2018

Functional Level

NHFC

camera

Maneuver

GPS

POM

mikrokopter

actual
velocity

IMU

cmd
velocity

dist

desired
state

GPS
pose

state

Task:
main
Services:
Init
Servo
Stop

Task:
main
Services:
Monitor
Stop

Task:
plan
Services:
Init
Goto
WayPoint
TakeOff

Task:
main
Services:
Init

Task:
main
Services:
perm
calibrate_imu
start
servo
stop

Task:
comm
Services:
perm
connect
monitor

Task: io
Services:
perm, add_me

Task: filter
Services:
perm

Task:
exec
Service:
perm

Decisional Level

Observing

Monitoring

MODELS

Acting

Planning

Formal models: decisional : planning  
(e.g. UPPAAL, model checking), monitoring,  
FDIR, observing

Learned models: Reinforcement learning models,
perception models, etc.

Specification models: Software engineering models: e.g.
GenoM3, Oroccos, MAUVE, RobotML, etc.

Programming directly the Model: Orccad, Scade, etc.

No Model…

6

V&V models: Different situations over a
complete autonomous system

Some spécification
models

Learned
Models

Learned
Models

Learned
Models

Formal
Models

LAAS
CNRS

© Félix Ingrand, LAAS/CNRS, 2018

Functional Level

NHFC

camera

Maneuver

GPS

POM

mikrokopter

actual
velocity

IMU

cmd
velocity

dist

desired
state

GPS
pose

state

Task:
main
Services:
Init
Servo
Stop

Task:
main
Services:
Monitor
Stop

Task:
plan
Services:
Init
Goto
WayPoint
TakeOff

Task:
main
Services:
Init

Task:
main
Services:
perm
calibrate_imu
start
servo
stop

Task:
comm
Services:
perm
connect
monitor

Task: io
Services:
perm, add_me

Task: filter
Services:
perm

Task:
exec
Service:
perm

Decisional Level

Observing

Monitoring

MODELS

Acting

Planning

Formal models: decisional : planning  
(e.g. UPPAAL, model checking), monitoring,  
FDIR, observing

Learned models: Reinforcement learning models,
perception models, etc.

Specification models: Software engineering models: e.g.
GenoM3, Oroccos, MAUVE, RobotML, etc.

Programming directly the Model: Orccad, Scade, etc.

No Model…

6

V&V models: Different situations over a
complete autonomous system

Formal models

Learned
Models

Learned
Models

Learned
Models

Formal
Models

© Félix Ingrand, LAAS/CNRS, 2018

LAAS
CNRS

Functional Level

NHFC

camera

Maneuver

GPS

POM

mikrokopter

actual
velocity

IMU

cmd
velocity

dist

desired
state

GPS
pose

state

Task:
main
Services:
Init
Servo
Stop

Task:
main
Services:
Monitor
Stop

Task:
plan
Services:
Init
Goto
WayPoint
TakeOff

Task:
main
Services:
Init

Task:
main
Services:
perm
calibrate_imu
start
servo
stop

Task:
comm
Services:
perm
connect
monitor

Task: io
Services:
perm, add_me

Task: filter
Services:
perm

Task:
exec
Service:
perm

Decisional Level

Observing

Monitoring

MODELS

Acting

Planning

Decisional models

[1] Y. Abdeddaim, E. Asarin, M. Gallien, F. Ingrand, C. Lesire, and M. Sighireanu, “Planning Robust Temporal Plans , A Comparison Between CBTP and TGA Approaches,”
International Conference on Automated Planning and Scheduling, 2007, no. Providence, RI.
[2] F. Py, K. Rajan, and C. McGann, “A Systematic Agent Framework for Situated Autonomous Systems,” International Conference on Autonomous Agents and Multiagent
Systems, 2010.
[3] P. Doherty and J. Kvarnstram, “TALplanner: A temporal logic-based planner,” AI Magazine, vol. 22, no. 3, p. 95, 2001.
[4] R. Simmons and C. Pecheur, “Automating Model Checking for Autonomous Systems,” presented at the AAAI Spring Symposium on Real-Time Autonomous Systems, 2000.
[5] W. Burgard, A. B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz, W. Steiner, and S. Thrun, “The interactive museum tour-guide robot,” National Conference on
Artificial Intelligence, 1998, pp. 11–18.

Decisional Level

Acting Observing
Functional level

Battery

SpeedP3D

PosPOM

HueblobIm.
St.Stereo

VIAM Im. Pos RFLEX
PTU

(Pan-Tilt
Unit)

DTM Env

Aspect Obs

Laser
RF Scan

NDD Speed

Antenna Heating

Planning Monitoring

MODELS

Flat terrain
navigation

Rough terrain
navigation

Planning
Temporal Planning

TALPlanner [3], IxTeT, IDEA/T-ReX [2]
(CSP and STN)

Model checking
State reachability from the initial
situation
UPPAAL-TiGA

LAAS from IxTeT action model,
(planning and execution) [1]
CNR together with APSI (plan
checking and execution)

Acting
TDL / Livingstone and SMV [4] (Model
Checking)
Situation Calculus Planning/Acting formalism
[5]

7

constrain the execution of the second task to be sequential,
but allow it to be expanded concurrently, so that it is ready
for execution when the first task completes. Similarly, one
might want to expand one task before another, but execute
them in the opposite order. For instance, in making plans
for air travel, one typically determines what flight to take
before deciding how to get to the airport, but clearly the
execution is in the opposite order. One might even need to
place constraints between nodes on different levels of the
tree [13]. All these types of control decisions are easily
expressible using the task tree synchronization constraints.

A monitor is a type of task tree node whose action can be
invoked repeatedly. After a monitor is enabled, events can
activate it, which cause a separate invocation of its action.
After a (user-specified) number of activations, the
monitor’s handling becomes completed. Events that can
activate a monitor include the passage of time, a state
transition of some other node, or an external event. A
monitor’s action can issue a trigger event (which roughly
corresponds to some condition being observed), which can
be used to determine when to complete the monitor. For
instance, suppose we want the robot to travel down a
hallway until it sees a specified landmark. We could have
monitor that is activated every 200 milliseconds running
concurrently with a “navigate down corridor” task that is
constrained to terminate upon completion of the monitor.
When the monitor sees the landmark it issues a trigger
event, which causes it to complete and the “navigate” task
to terminate.

Exceptions are treated as described in [15]. Exception
handlers are associated with a given node in the task tree
and a specific reason (some user-defined string). When an
action fails (e.g., because a motor overheats, or a planner
cannot find a valid path), it specifies the reason for the
failure. TCM then conducts a search up the tree for the first
exception handler that matches the given reason. The
exception handler is then invoked, and it can try to recover
from the problem by adding new nodes or terminating
existing nodes. Alternately, it can issue a bypass, which
indicates that it is unable to handle the exception. In this
case, the search for a matching exception handler continues
up the tree. This hierarchical structuring of exceptions is
similar to “catch and throw” mechanisms used in languages
such as C++, Lisp and Ada. A key difference is that here the
control stack is not popped when an exception handler is
invoked. The task tree remains intact, and it is up to the
exception handler to decide what parts of the task tree to
modify in order to recover from the exception.

TDL
TDL is an extension of C++ that facilitates the creation,
synchronization, and manipulation of task trees. Tasks are
defined in a manner similar to C++ functions: The name of

a task is preceded by a class identifier (Goal, Command,
Monitor, Exception) and followed by its arguments,
optional top-level constraints, and the task body (Figure 4).
Unlike C++ functions, tasks do not have a return value.

The task body can contain arbitrary C++ code, with certain
restrictions. First, tasks must be globally scoped (they
cannot be defined inside C++ classes). Similarly, functions
and class methods cannot be defined inside a task body,
although the same TDL file may contain both task and
function definitions. Finally, non-local, non-continuous
transfer of control is not permitted, prohibiting the use of
“goto” and similar functionality such as “longjmp”.

The “spawn” statement (Figure 4) is used to add a child
node to the task tree. “spawn” is non-blocking, in that the
child subtask may not actually be handled by the time
control returns to the parent task. Spawned tasks can be
synchronized using the “with” clause. Figure 5 presents
the syntax for the currently defined set of constraints. Most
correspond directly to the synchronization constraints
described in the previous section, and their meanings
should be fairly obvious. The “wait” constraint makes
“spawn” blocking, so that control is not returned until the
spawned task, and all of its descendants, have been handled.

Figure 4: Sample Task Definitions (Simplified)

Goal deliverMail (int room)
{

double x, y;
getRoomCoordinates(room, &x, &y);
spawn navigateToLocn(x, y);
spawn centerOnDoor(x, y)

with sequential execution previous,
terminate in 0:0:30.0;

spawn speak(“Xavier here with your mail”)
with sequential execution centerOnDoor,

terminate at monitorPickup completed;
spawn monitorPickup()

with sequential execution centerOnDoor;
}

Goal centerOnDoor (double x, double y)
delay expansion

{
int whichSide;
spawn lookForDoor(&whichSide) with wait;
if (whichSide != 0) {

if (whichSide < 0)
spawn move(-10); // move left

else
spawn move(10); // move right

spawn centerOnDoor(x, y)
with disable execution until

 previous execution completed;
}

}

© Félix Ingrand, LAAS/CNRS, 2018

LAAS
CNRS

Functional Level

NHFC

camera

Maneuver

GPS

POM

mikrokopter

actual
velocity

IMU

cmd
velocity

dist

desired
state

GPS
pose

state

Task:
main
Services:
Init
Servo
Stop

Task:
main
Services:
Monitor
Stop

Task:
plan
Services:
Init
Goto
WayPoint
TakeOff

Task:
main
Services:
Init

Task:
main
Services:
perm
calibrate_imu
start
servo
stop

Task:
comm
Services:
perm
connect
monitor

Task: io
Services:
perm, add_me

Task: filter
Services:
perm

Task:
exec
Service:
perm

Decisional Level

Observing

Monitoring

MODELS

Acting

Planning

Decisional models
In this article, we propose using the term knowledge processing

middleware for a principled and systematic software framework
for bridging the gap between sensing and reasoning in a physical
agent. We claim that knowledge processing middleware should
provide both a conceptual framework and an implementation
infrastructure for integrating a wide variety of functionalities and
managing the information that needs to flow between them. It
should allow a system to incrementally process low-level sensor
data and generate a coherent view of the environment at increas-
ing levels of abstraction, eventually providing information and
knowledge at a level which is natural to use in symbolic delibera-
tive functionalities.

In addition to defining the concept of knowledge processing
middleware, we describe one particular instance called DyKnow.
DyKnow is a fully implemented stream-based knowledge process-
ing middleware framework providing both conceptual and practi-
cal support for structuring a knowledge processing system as a set
of streams and computations on streams. Streams represent as-
pects of the past, current, and future state of a system and its envi-
ronment. Input can be provided by a wide range of distributed
information sources on many levels of abstraction, while output
consists of streams representing objects, attributes, relations, and
events.

In the next section, a motivating example scenario is presented.
Then, desirable properties of knowledge processing middleware
are investigated and stream-based middleware is proposed as suit-
able for a wide range of systems. As a concrete example, the formal
conceptual framework of our knowledge processing middleware
DyKnow is described. The article is concluded with some related
work and a summary.

2. A traffic monitoring scenario

Traffic monitoring is an important application domain for
autonomous unmanned aerial vehicles (UAVs), providing a pleth-
ora of cases demonstrating the need for knowledge processing
middleware. It includes surveillance tasks such as detecting acci-
dents and traffic violations, finding accessible routes for emergency
vehicles, and collecting traffic pattern statistics.

One possible approach to detecting traffic violations relies on
describing each type of violation in a declarative formalism such
as the chronicle formalism [1]. A chronicle defines a class of com-
plex events as a simple temporal network [5] where nodes corre-
spond to occurrences of events and edges correspond to metric
temporal constraints between event occurrences. For example,
events representing changes in high-level qualitative spatial rela-
tions such as besideðcar1; car2Þ, closeðcar1; car2Þ, and onðcar; roadÞ
might be used to detect a reckless overtake. Creating these high-le-
vel representations from low-level sensor data, such as video
streams from color and thermal cameras, involves a great deal of
processing at different levels of abstraction, which would benefit
from being separated into distinct and systematically organized
tasks.

Fig. 1 provides an overview of how the incremental processing
required for the traffic surveillance task could be organized. At the
lowest level, a helicopter state estimation component uses data from
an inertial measurement unit (IMU) and a global positioning system
(GPS) to determine the current position and attitude of the helicop-
ter. The resulting information is fed into a camera state estimation
component, together with the current state of the pan-tilt unit on
which the cameras are mounted, to generate information about
the current camera state. The image processing component uses
the camera state to determine where the camera is currently point-
ing. Video streams from the color and thermal cameras can then be
analyzed in order to extract vision objects representing hypotheses

regarding moving and stationary physical entities, including their
approximate positions and velocities.

To use symbolic chronicle recognition, it is necessary to deter-
mine which vision objects are likely to represent cars. Such objects
must be associated with car symbols in such a way that the symbol
and the vision object consistently refer to the same physical object,
a process known as anchoring [6]. This process can take advantage of
knowledge about normative characteristics and behaviors of cars,
such as size, speed, and the fact that cars normally travel on roads.
Such characteristics can be described using formulas in a metric
temporal logic, which are progressed (incrementally evaluated) in
states that include current estimated car positions, velocities, and
higher level predicates such as on# roadðcarÞ and in# crossingðcarÞ
obtained from road network information provided by a geographic
information system. An entity satisfying the conditions can be
hypothesized to be a car, a hypothesis which is subject to being
withdrawn if the entity ceases to display the normative character-
istics, thereby causing formula progression to signal a violation.

The next stage of processing involves deriving qualitative spatial
relations between cars, such as besideðcar1; car2Þ and closeðcar1; car2Þ.
These predicates, and the concrete events that correspond to
changes in the predicates, finally provide sufficient information
for the chronicle recognition system to determine when higher-level
events such as reckless overtakes occur.

In this scenario, which is implemented and tested on board an
autonomous UAV system developed at the Unmanned Aircraft Sys-
tems Technologies (UASTech) Lab at Linköping University [7], a
considerable number of distinct processes are involved in bridging
the sense-reasoning gap. However, in order to fully appreciate the
complexity of the system, we have to widen our perspective. To-
wards the smaller end of the scale, what is represented as a single
process in Fig. 1 is sometimes merely an abstraction of what is in
fact a set of distinct processes. Anchoring is a prime example,
encapsulating a variety of tasks that could also be viewed as sepa-
rate processes. At the other end of the scale, a complete UAV sys-
tem also involves numerous other sensors and information
sources as well as services with distinct knowledge requirements,
including task planning, path planning, execution monitoring, and
reactive goal achieving procedures. Consequently, what is seen in
Fig. 1 is merely an abstraction of the full complexity of a small part
of the system.

It is clear that a systematic means for integrating all forms of
knowledge processing, and handling the necessary communication

Fig. 1. Incremental processing for the traffic surveillance task.

F. Heintz et al. / Advanced Engineering Informatics 24 (2010) 14–26 15

Auton Agent Multi-Agent Syst (2009) 19:332–377 335

and chronicle recognition and situational awareness techniques [43,44]. In this article, the
main focus will be on the use of logics in such higher level deliberative services.

More recently, our research has moved from single platform scenarios to multi-platform
scenarios where a combination of UAV platforms with different capabilities are used together
with human operators in a mixed-initiative context with adjustable platform autonomy [25].
The application domain we have chosen primarily focuses on emergency services assistance.
Such scenarios require a great deal of cooperation among the UAV platforms and between
the UAV platforms and human operators.

3 UAV platforms and hardware architecture

The UASTech UAV platform [15] is a slightly modified Yamaha RMAX helicopter (Fig. 1).
It has a total length of 3.6 m (including main rotor) and is powered by a 21 hp two-stroke
engine with a maximum takeoff weight of 95 kg. Our hardware platform is integrated with
the Yamaha platform as shown in Fig. 2. It contains three PC104 embedded computers.

Fig. 1 The UASTech Yamaha RMAX helicopter

DRC
1.4 GHz P-M
1 GB RAM
512 MB flash

PFC
700 MHz PIII
256 MB RAM
512 MB flash

IPC
700 MHz PIII
256 MB RAM
512 MB flash

Ethernet
Switch

Yamaha RMAX
(YAS, YACS)

sensor
suite

sensor
suite

RS232C
Ethernet
Other media

Fig. 2 On-board hardware schematic

123

Observing: DyKnow [1]
Comprehensive and coherent approach  
for observing
They build on a stream based formalism  
on process:
primitive, refinement, configuration,  
mediation processes
policies over processes (temporal  
constraints)
Data flow architecture (somewhat
orthogonal to control flow architecture like
GenoM)
Still an interesting formalism which
potentially opens a large field for V&V

example essential for the ability to validate an execution trace rel-
ative to a formal system description.

Definition 4.1 (Stream). A stream is a set of stream elements, where
each stream element is a tuple hta; . . .i whose first value, ta, is a
time-point representing the time when the element is available in
the stream. This time-point is called the available time of a stream
element and has to be unique within a stream. A total order < on
time-points is assumed to exist.

Given a stream structure, the information that has arrived at its
receiving process at a particular time-point t consists of those ele-
ments having an available time ta 6 t. This will be used in DyKnow
in Section 5.

4.2. Policies

Each stream is associated with a policy, a set of requirements on
its contents. Such requirements may include the fact that elements
must arrive ordered by valid time, that each value must constitute
a significant change relative to the previous value, that updates
should be sent with a specific sample frequency, or that there is
a maximum permitted delay. Policies can also give advice on
how these requirements should be satisfied, for example by indi-
cating how to handle missing or excessively delayed values. For
introspection purposes, policies should be declaratively specified.
See Section 5 for concrete examples.

To satisfy the policies of the streams currently being generated,
a stream generator may filter the raw output of the knowledge pro-
cess and (if permitted by each policy) generate new approximated
samples where necessary. Some processes may also be able to ad-
just their raw output (in terms of sample rate or other properties)
at the request of a generator. For example, given two policies
requesting samples every 200 and 300 ms, the generator might re-
quest output every 100 ms from its process. The parts of the policy
that are affected by transmission through a distributed system,
such as delay constraints, can also be applied by a stream proxy
at the receiving process. This separates the generation of stream
content from its adaptation.

Sometimes, it may be impossible for a stream generator to sat-
isfy a given policy. For example, if a policy specifies a maximum
transmission delay which is exceeded by the underlying communi-
cation channel, the generator can only satisfy the policy by approx-
imating the missing value. If a subscriber sets a maximum delay
and forbids approximation, it must be completely certain that
the delay is never exceeded or be prepared to handle policy
violations.

Definition 4.2 (Policy). A policy is a declarative specification of the
desired properties of a stream, which may include advice on how
to generate the stream.

4.3. Knowledge processes

A knowledge process operates on streams. Some processes take
streams as input, some produce streams as output, and some do

both. A process that generates stream output does so through
one or more stream generators to which an arbitrary number of
processes may subscribe using different policies. An abstract view
of a knowledge process is shown in Fig. 2.

Definition 4.3 (Knowledge process). A knowledge process is an
active and sustained process whose inputs and outputs are in the
form of streams.

Four distinct knowledge process types are identified for the pur-
pose of modeling: Primitive processes, refinement processes, con-
figuration processes, and mediation processes.

Primitive processes serve as interfaces to the outside world, con-
necting to sensors, databases, or other information sources and
generating output in the form of streams. Such processes have no
stream inputs but provide at least one stream generator. Some-
times the first level of data refinement may also be integrated into
a primitive process. For example, image processing may be realized
as a primitive process generating image streams together with a
refinement process for the actual analysis, or may be integrated
into a single primitive process to avoid the need for a high-band-
width stream of live high-resolution video.

Definition 4.4 (Primitive process). A primitive process is a knowl-
edge process that does not take any streams as input but provides
output through one or more stream generators.

Refinement processes provide the main functionality of stream-
based knowledge processing: The processing of streams to create
more refined data, information, and knowledge. Each refinement
process takes a set of streams as input and provides one or more
stream generators providing stream outputs. For example, a refine-
ment process could fuse sensor data using Kalman filters estimat-
ing positions from GPS and IMU data, or reason about qualitative
spatial relations between objects.

Definition 4.5 (Refinement process). A refinement process is a
knowledge process that takes one or more streams as input and
provides output through one or more stream generators.

When a refinement process is created it subscribes to its input
streams. For example, a position estimation process computing
the position of a robot at 10 Hz could either subscribe to its inputs
with the same frequency or use a higher frequency in order to filter
out noise. If a middleware implementation allows a process to
change the policies of its inputs during run-time, the process can
dynamically tailor its subscriptions depending on the streams it
is supposed to create.

In certain cases, a process must first collect information over
time before it is able to compute an output. For example, a filter
might require a number of measurements before it is properly ini-
tialized. This introduces a processing delay that can be remedied if
the process is able to request 30 seconds of historic data, which is
supported by the DyKnow implementation.

A configuration process provides a fine-grained form of dynamic
reconfiguration by instantiating and removing knowledge pro-
cesses and streams as indicated by its input.

Traffic monitoring requires position and velocity estimates for
all currently monitored cars, a set that changes dynamically over
time as new cars enter an area and as cars that have not been ob-
served for some time are discarded. This is an instance of a recur-
ring pattern where the same type of information must be produced
for a dynamically changing set of objects.

This could be achieved with a static process network, where a
single refinement process estimates positions for all currently vis-
ible cars. However, processes and stream policies would have to be
quite complex to support more frequent updates for a specific car
which is the current focus of attention.Fig. 2. A prototypical knowledge process.

F. Heintz et al. / Advanced Engineering Informatics 24 (2010) 14–26 17

[1] F. Heintz, J. Kvarnström, and P. Doherty, “Bridging the sense-reasoning gap: DyKnow-Stream-based middleware for knowledge
processing,” Advanced Engineering Informatics, vol. 24, no. 1, pp. 14–26, 2010.

Decisional Level

Acting Observing
Functional level

Battery

SpeedP3D

PosPOM

HueblobIm.
St.Stereo

VIAM Im. Pos RFLEX
PTU

(Pan-Tilt
Unit)

DTM Env

Aspect Obs

Laser
RF Scan

NDD Speed

Antenna Heating

Planning Monitoring

MODELS

Flat terrain
navigation

Rough terrain
navigation

8

© Félix Ingrand, LAAS/CNRS, 2018

LAAS
CNRS

Directly using Formal Framework

Synchronous approach
Orccad (Esterel) [1,2]

Control flow
SCADE/Lustre

Data flow
Signal [3]

Clocks

[1] B. Espiau and K. Kapellos, “Formal verification in robotics: Why and how?,” ROBOTICS RESEARCH- …, 1996.
[2] T. J. Koo, B. Sinopoli, A. Sangiovanni-Vincentelli, and S. Sastry, “A formal approach to reactive system design: unmanned aerial vehicle
flight management system design example,” Computer Aided Control System Design, 1999. Proceedings of the 1999 IEEE International
Symposium on, pp. 522–527, 1999.
[3] E. Marchand, E. Rutten, H. Marchand, and F. Chaumette, “Specifying and verifying active vision-based robotic systems with the
SIGNAL environment,” International Journal of Robotics Research, vol. 17, no. 4, pp. 418–432, 1998.

do [
DrillMoveTo ();
CloseImagerMoveTo ();
[

CloseImagerMonitor() ||
DrillExtractSample()

]
] watching Alarm do

9

Functional Level

NHFC

camera

Maneuver

GPS

POM

mikrokopter

actual
velocity

IMU

cmd
velocity

dist

desired
state

GPS
pose

state

Task:
main
Services:
Init
Servo
Stop

Task:
main
Services:
Monitor
Stop

Task:
plan
Services:
Init
Goto
WayPoint
TakeOff

Task:
main
Services:
Init

Task:
main
Services:
perm
calibrate_imu
start
servo
stop

Task:
comm
Services:
perm
connect
monitor

Task: io
Services:
perm, add_me

Task: filter
Services:
perm

Task:
exec
Service:
perm

Decisional Level

Observing

Monitoring

MODELS

Acting

Planning

Functional Level

NHFC

camera

Maneuver

GPS

POM

mikrokopter

actual
velocity

IMU

cmd
velocity

dist

desired
state

GPS
pose

state

Task:
main
Services:
Init
Servo
Stop

Task:
main
Services:
Monitor
Stop

Task:
plan
Services:
Init
Goto
WayPoint
TakeOff

Task:
main
Services:
Init

Task:
main
Services:
perm
calibrate_imu
start
servo
stop

Task:
comm
Services:
perm
connect
monitor

Task: io
Services:
perm, add_me

Task: filter
Services:
perm

Task:
exec
Service:
perm

Decisional Level

Observing

Monitoring

MODELS

Acting

Planning

© Félix Ingrand, LAAS/CNRS, 2018

LAAS
CNRS

No model… Still can extract or
rebuild it

Robot navigation
Code is written with  
correctness conditions in  
the code as pre- and  
post-conditions
Very tedious (you have to  
annotate all the functions you want to  
prove)
In [1] the authors show that this
approach was accepted by the german
certification authority IEC 61508 (SIL 3)

[1] H. Täubig, U. Frese, C. Hertzberg, C. Lüth, S. Mohr, E. Vorobev, and D. Walter, “Guaranteeing functional safety: design for provability
and computer-aided verification,” Auton Robot, vol. 32, no. 3, pp. 303–331, Dec. 2011.

304 Auton Robot (2012) 32:303–331

function of sensors, motors, and in particular the software
controlling the robot. When taking robots out of the lab into
the domestic or industrial realm, safety issues arise at all lev-
els of the development process which have to be handled. In
particular, we have to design systems and algorithms with
safety in mind.

1.1 Mind the gap

In most countries development of potentially hazardous ma-
chines is regulated by law, directives and relevant indus-
trial standards, resulting in a very rigid software develop-
ment process which emphasizes documentation and exter-
nal review. The safety of such a system must be demon-
strated to and certified by an external accredited authority.
In contrast, robotics software development in academia em-
phasizes novel capabilities, using rapid prototyping, heuris-
tics or probabilistic methods. Thus, there is a huge gap in the
prevailing development methodologies in safety-critical sys-
tems on the one hand, and robotics on the other hand, which
will hamper commercial applications of service robotics.

The work presented here is an attempt to bridge this gap,
by applying formal verification techniques to a robotics al-
gorithm. We need to build bridges from both ends: on the
one hand, the usual techniques for developing safety-critical
systems do not carry over unchanged, as robotics is a rich
and complex domain, and on the other hand, for robotics
applications we may need to restrict functionality to an ex-
tent which we can verify, both in principle and in practice.
An example of this are obstacles: whereas commonly in in-
dustrial applications obstacles are considered to be static,
academic research is mostly concerned with moving obsta-
cles (Rabe et al. 2007). We have focused our work on static
obstacles, as moving obstacles are a current research area
and much more complex and non-deterministic. In particu-
lar, realizing people detection and tracking in a way that can
be verified and certified appears to be very challenging.

1.2 SAMS

In the project SAMS (Safety Component for Autonomous
Mobile Systems)1 we have developed and implemented an
algorithm for collision avoidance of a mobile robot, i.e. an
automated guided vehicle (AGV), in accordance with the
standard most relevant for robotics software, IEC 61508.
Figure 1 illustrates the safety function with a small AGV
as demonstrator. The algorithm computes a safety zone de-
pending on the current translational and rotational velocity;
if an obstacle is detected inside that zone the AGV stops
before colliding with it. We have specified the algorithm’s

1http://www.sams-project.org/.

Fig. 1 The SAMS demonstrator driving a right hand bent and the colli-
sion-free safety zone of that movement. If there was any obstacle inside
the safety zone the AGV would stop

safety function in higher-order logic and proven with an in-
teractive theorem prover that the implementation satisfies
this specification (details Sect. 5.6). We have obtained a cer-
tificate allowing to use the implementation in safety-critical
systems up to safety integrity level (SIL) 3, the highest level
for safety at work and one above the level typically needed
for AGVs. The certification was based on the following: first
and foremost, the above mentioned computer aided proof of
the implementation; second, design documents deriving the
implemented formula for the AGV’s braking behavior from
physical assumptions; and third, additional tests to cover
integer-overflow and floating point precision issues. The cer-
tification did not cover any aspects of system integration
(such as building an actual robot like the demonstrator of
Fig. 1).

1.3 Formal software verification

Safety is established by safety requirements, and the confor-
mance of the system (and in particular the software) with
these must be verified by means such as tests, code reviews,
or tool-supported static analysis. This task is called verifica-
tion. By formal verification, we mean the mathematically
rigorous, machine-checked proof of correctness of a pro-
gram with respect to the safety requirements. While well-
known in other areas, it is quite novel in robotics. From a
formal verification perspective, robotics algorithms are chal-
lenging, because robotics requires a mathematically sophis-
ticated domain modeling. Collision is the major hazard cre-
ated by a robot and hence safety-critical robotics algorithms
usually involve a lot of geometry and some physics mod-
eling the behavior of the robot. Mathematically, geometry
argues about properties of subsets of R2 or R3. To capture
these concepts formally, expressive logics such as set theory
or higher-order logic are required, which allow us to for-
malize textbook mathematics involving real numbers, sets,
and functions. We therefore use a general-purpose theorem

main.tex 5816 2011-11-02 15:24:25Z taeubig

21

1 /⇤@
2 @requ i res d i r e c t i o n s_ l e n � 1 <= resu l t_len_max && 0 <= r b u f f e r &&
3 ${ l e t V = ^Vec to r2DL i s t { d i r e c t i o n s_da t a , d i r e c t i o n s_ l e n }
4 i n (0 ⇤ conv ^Vector2DSet {polygon_data , po lygon_len }) ⌃
5 (sorted-by (⇥v1 v2. angle v1 v2 ⇤ {� . 0 < � ⌃� < ⇤}) V) ⌃ (⌅v ⇤ set V. |v|= 1) }
6 && \ unre la ted (polygon_data , po lygon_len , r e su l t_da ta , resu l t_len_max)
7 && \ unre la ted (d i r e c t i o n s_da t a , d i r e c t i o n s_ l e n , r e su l t_da ta , resu l t_len_max)
8 @modif ies r e s u l t_da t a [: d i r e c t i o n s_ l e n �1]
9 @ensures \ r e s u l t == sams_safe ��>

10 ${ l e t E = ^RZLis t { r e su l t_da ta , d i r e c t i o n s_ l e n � 1} ;
11 P = ^Vec to r2DL i s t { polygon_data , po lygon_len } ;
12 R = ^Vec to r2DL i s t { d i r e c t i o n s_da t a , d i r e c t i o n s_ l e n } ;
13 SAFETY ZONE = extend-by-radius ‘ r a d i u s (convex-area P)
14 i n SAFETY ZONE ⇧ (angle-sector ^Vector2DR{&d i r e c t i o n s_da t a [0] }
15 ^Vector2DR{&d i r e c t i o n s_da t a [d i r e c t i o n s_ l e n �1]})
16 ⇥ scan-field R E }
17 @⇤/
18 SAMSStatus samp l i ng (const Vector2D ⇤ polygon_data , I n t 32 polygon_len ,
19 F loa t32 r ad i u s ,
20 const Vector2D ⇤ d i r e c t i o n s_da t a , I n t 32 d i r e c t i o n s_ l e n ,
21 I n t 32 ⇤ r e su l t_da ta , I n t 32 resu l t_len_max) ;

Fig. 16 Actual specification source (with Isabelle pretty printing) of the function computing the laser scan representation. Fig. 16 shows the formal
specification of the function that transforms a buffered polygon into a minimal laser scan. directions-data contains the directions-length sector
boundaries whereas the result is of size nL = directions-length�1 (line 8). As a precondition the sector boundaries must be given as unit length
vectors in counterclockwise order (line 5). Further, the origin of the used coordinate system (CS) has to be contained in the area of the polygon
(line 4). If the function returns without error, it assures that the area corresponding to the minimal laser scan (line 16) is a superset of the area of
the buffered polygon (line 13) limited to the field of vision of the laser rangefinder (lines 14–15).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1 2 3 4 5
 0

 20

 40

 60

 80

 100

 120

 140

 160

s
in

 m

fa
ct

o
r

o
f

o
ve

re
st

im
a

tio
n

 in
 %

v in m/s

simulated s
braking model s

factor

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1 2 3 4 5
 0

 20

 40

 60

 80

 100

 120

 140

 160

s
in

 m

fa
ct

o
r

o
f

o
ve

re
st

im
a

tio
n

 in
 %

v in m/s

simulated s
braking model s

factor

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1 2 3 4 5
 0

 20

 40

 60

 80

 100

 120

 140

 160

s
in

 m

fa
ct

o
r

o
f

o
ve

re
st

im
a

tio
n

 in
 %

v in m/s

simulated s
braking model s

factor

Fig. 17 Overestimation of the braking distance in straight motion. The plots show the true (simulated) braking distance s as a function of v and
the linear interpolated result of our model (4) when configured with one (left), two (middle), and nine (right) straight braking measurements. The
overestimation factor ASAMS

ASim
shows how much larger the area of the computed safety zone is compared to the true braking area.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

s
in

 m

w in rad/s

simulated
braking model

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
A

 in
 m

^2

w in rad/s

simulated
braking model

 100

 105

 110

 115

 120

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

fa
ct

o
r

o
f

o
ve

re
st

im
a

tio
n

 in
 %

w in rad/s

braking distance s
area A

Fig. 18 Overestimation of curved braking using perfect straight forward estimation. All (v,⌅)T have vS = 2.5 being one of the two braking
measurements used for configuration. The plots shows how braking distance (24), area, and the overestimation factor of both depends on ⌅ .

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2
 1.4

 1.6

 0

 20

 40

 60

 80

 100

 120

 140

 160

fa
c
to

r
o

f
o

v
e

re
s
ti
m

a
ti
o

n
 i
n

 %

v in m/s

w in rad/s

fa
c
to

r
o

f
o

v
e

re
s
ti
m

a
ti
o

n
 i
n

 %

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2
 1.4

 1.6

 0

 20

 40

 60

 80

 100

 120

 140

 160

fa
c
to

r
o

f
o

v
e

re
s
ti
m

a
ti
o

n
 i
n

 %

v in m/s

w in rad/s

fa
c
to

r
o

f
o

v
e

re
s
ti
m

a
ti
o

n
 i
n

 %

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2
 1.4

 1.6

 0

 20

 40

 60

 80

 100

 120

 140

 160

fa
c
to

r
o

f
o

v
e

re
s
ti
m

a
ti
o

n
 i
n

 %

v in m/s

w in rad/s

fa
c
to

r
o

f
o

v
e

re
s
ti
m

a
ti
o

n
 i
n

 %
Fig. 19 Overestimation factor of the safety zone area as a function of (v,⌅)T . The plot shows ASAMS

ASim
for braking models configured with one, two,

and nine straight braking measurements.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

FP7-ICT-2012-9 Integrated project proposal
12/04/17/v1.0 VACoRS

Proposal Part B: page 17 of 144

Figure 3: Data flow and system architecture of the verification framework developed in the SAMS project. The Isabelle

theorem prover guarantees the integrity and formal correctness of the verification process, making it suitable for certification
at high safety integrity levels.

The core of the certification process was the formal mathematical modelling and correctness proof in the
theorem prover Isabelle, supplemented by additional tests where required. The techniques developed to this
end are not restricted to the particular application at hand, but can be reused in other applications. The
verification environment is based on a modelling of the denotational semantics of MISRA-C in Isabelle.
Correctness conditions are annotated in the code as pre- or post-conditions, and proven in Isabelle using a
variation of Hoare logic, supported by automated tactics. These discharge the trivial and routine proof
obligations automatically, leaving the programmer to deal with substantive cases. An advantage of this
method is that the question of correctness of the verification reduces to correctness of the logical kernel of
the Isabelle theorem prover, and the correctness of the model of the denotational semantics in Isabelle, as the
rules of the program logic, and subsequently the correctness proofs of the program, are theorems derived
from the semantics.
The formal correctness proofs were supplemented by additional tests, which covered rounding errors and
numerical stability. For the semantics, we identified floating point and real numbers; the tests validated that
this was indeed a valid assumption in our case. Additionally, the tests established error margins on the input
parameters of the functions. The tests were implemented by compiling the relevant source code both in
single and double precision, and comparing the results, thus ensuring that the result of the single precision
floating point (which is used in the certified implementation) is within the specified error margins.

Figure 4: The SAMS demonstration vehicle. The certified algorithm dynamically calculates a safety zone (green) depending

on the current velocity and steering angle (yellow arrow) which is as large as necessary, but as small as sufficient.

In a different direction, a component-based approach was used for rigorous design of correct-by-construction
robotic software. This framework, that introduces verification of components at the design level, combines a
state-of-the-art tool for developing functional modules of robotic systems GenoM [24] with a component-
based framework for implementing embedded real-time systems BIP [25]. The approach supports
component-based design; in particular, it allows producing a very fine grained formal computational model

10

LAAS
CNRS

© Félix Ingrand, LAAS/CNRS, 2018

Functional Level

NHFC

camera

Maneuver

GPS

POM

mikrokopter

actual
velocity

IMU

cmd
velocity

dist

desired
state

GPS
pose

state

Task:
main
Services:
Init
Servo
Stop

Task:
main
Services:
Monitor
Stop

Task:
plan
Services:
Init
Goto
WayPoint
TakeOff

Task:
main
Services:
Init

Task:
main
Services:
perm
calibrate_imu
start
servo
stop

Task:
comm
Services:
perm
connect
monitor

Task: io
Services:
perm, add_me

Task: filter
Services:
perm

Task:
exec
Service:
perm

Decisional Level

Observing

Monitoring

MODELS

Acting

Planning

Functional level : GenoM
Modules

Services (control flow)
Ports (data flow)

From specification models to formal models

11

Specification: Model-
Driven Software

Engineering} POM

state

Task: io
Services:
perm, add_me

Task: filter
Services:
perm

Maneuver

desired
state

Task:
plan
Services:
Init
Goto
WayPoint
TakeOff

Task:
exec
Service:
perm

NHFC

cmd
velocity

Task:
main
Services:
Init
Servo
Stop

GPS

GPS
pose

Task:
main
Services:
Init

mikrokopter

actual
velocity

IMU Task:
main
Services:
perm
calibrate_imu
start
servo
stop

Task:
comm
Services:
perm
connect
monitor

camera

dist

Task:
main
Services:
Monitor
Stop

LAAS
CNRS

© Félix Ingrand, LAAS/CNRS, 2018

Functional Level

NHFC

camera

Maneuver

GPS

POM

mikrokopter

actual
velocity

IMU

cmd
velocity

dist

desired
state

GPS
pose

state

Task:
main
Services:
Init
Servo
Stop

Task:
main
Services:
Monitor
Stop

Task:
plan
Services:
Init
Goto
WayPoint
TakeOff

Task:
main
Services:
Init

Task:
main
Services:
perm
calibrate_imu
start
servo
stop

Task:
comm
Services:
perm
connect
monitor

Task: io
Services:
perm, add_me

Task: filter
Services:
perm

Task:
exec
Service:
perm

Decisional Level

Observing

Monitoring

MODELS

Acting

Planning

Functional level : GenoM
Modules

Services (control flow)
Ports (data flow)

From specification models to formal models

11

Specification: Model-
Driven Software

Engineering} POM

state

Task: io
Services:
perm, add_me

Task: filter
Services:
perm

Maneuver

desired
state

Task:
plan
Services:
Init
Goto
WayPoint
TakeOff

Task:
exec
Service:
perm

NHFC

cmd
velocity

Task:
main
Services:
Init
Servo
Stop

GPS

GPS
pose

Task:
main
Services:
Init

mikrokopter

actual
velocity

IMU Task:
main
Services:
perm
calibrate_imu
start
servo
stop

Task:
comm
Services:
perm
connect
monitor

camera

dist

Task:
main
Services:
Monitor
Stop

LAAS
CNRS

© Félix Ingrand, LAAS/CNRS, 2018

Functional Level

NHFC

camera

Maneuver

GPS

POM

mikrokopter

actual
velocity

IMU

cmd
velocity

dist

desired
state

GPS
pose

state

Task:
main
Services:
Init
Servo
Stop

Task:
main
Services:
Monitor
Stop

Task:
plan
Services:
Init
Goto
WayPoint
TakeOff

Task:
main
Services:
Init

Task:
main
Services:
perm
calibrate_imu
start
servo
stop

Task:
comm
Services:
perm
connect
monitor

Task: io
Services:
perm, add_me

Task: filter
Services:
perm

Task:
exec
Service:
perm

Decisional Level

Observing

Monitoring

MODELS

Acting

Planning

Functional level : GenoM
Modules

Services (control flow)
Ports (data flow)

From specification models to formal models

11

Specification: Model-
Driven Software

Engineering}
BIP (Verimag)

Fiacre/TINA (LAAS/VerTICS) Formal Methods/ 
Frameworks}UPPAAL (UPPsala & AALborg

University)

POM

state

Task: io
Services:
perm, add_me

Task: filter
Services:
perm

Maneuver

desired
state

Task:
plan
Services:
Init
Goto
WayPoint
TakeOff

Task:
exec
Service:
perm

NHFC

cmd
velocity

Task:
main
Services:
Init
Servo
Stop

GPS

GPS
pose

Task:
main
Services:
Init

mikrokopter

actual
velocity

IMU Task:
main
Services:
perm
calibrate_imu
start
servo
stop

Task:
comm
Services:
perm
connect
monitor

camera

dist

Task:
main
Services:
Monitor
Stop

LAAS
CNRS

© Félix Ingrand, LAAS/CNRS, 2018

Functional Level

NHFC

camera

Maneuver

GPS

POM

mikrokopter

actual
velocity

IMU

cmd
velocity

dist

desired
state

GPS
pose

state

Task:
main
Services:
Init
Servo
Stop

Task:
main
Services:
Monitor
Stop

Task:
plan
Services:
Init
Goto
WayPoint
TakeOff

Task:
main
Services:
Init

Task:
main
Services:
perm
calibrate_imu
start
servo
stop

Task:
comm
Services:
perm
connect
monitor

Task: io
Services:
perm, add_me

Task: filter
Services:
perm

Task:
exec
Service:
perm

Decisional Level

Observing

Monitoring

MODELS

Acting

Planning

Functional level : GenoM
Modules

Services (control flow)
Ports (data flow)

From specification models to formal models

11

Specification: Model-
Driven Software

Engineering}
BIP (Verimag)

Fiacre/TINA (LAAS/VerTICS) Formal Methods/ 
Frameworks}UPPAAL (UPPsala & AALborg

University)

POM

state

Task: io
Services:
perm, add_me

Task: filter
Services:
perm

Maneuver

desired
state

Task:
plan
Services:
Init
Goto
WayPoint
TakeOff

Task:
exec
Service:
perm

NHFC

cmd
velocity

Task:
main
Services:
Init
Servo
Stop

GPS

GPS
pose

Task:
main
Services:
Init

mikrokopter

actual
velocity

IMU Task:
main
Services:
perm
calibrate_imu
start
servo
stop

Task:
comm
Services:
perm
connect
monitor

camera

dist

Task:
main
Services:
Monitor
Stop

BIP  
Fiacre

UPPAAL

© Félix Ingrand, LAAS/CNRS, 2018

LAAS
CNRS

POM

state

Task: io
Services:
perm, add_me

Task: filter
Services:
perm

Maneuver

desired
state

Task:
plan
Services:
Init
Goto
WayPoint
TakeOff

Task:
exec
Service:
permNHFC

cmd
velocity

Task:
main
Services:
Init
Servo
Stop

GPS

GPS
pose

Task:
main
Services:
Init

mikrokopter

actual
velocity

IMU Task:
main
Services:
perm
calibrate_imu
start
servo
stop

Task:
comm
Services:
perm
connect
monitor

camera

dist

Task:
main
Services:
Monitor
Stop

3IncludedFrenchDCTechnologies
Inadditiontotheopen-sourcematerial,somemethodsandtechnologieswillbeillustratedonthe
showcase.Fornow,thefollowingtechnologiesfromtheFranceDesignCenterareconsideredtobe
included:

•HAZOP-UML:themethodologywillbeillustratedononeortwooperationspecification;

•SMOF:monitorswillbesynthetizedfortwosafetyrules;

•MAUVE:animplementationofthesoftwarearchitectureusingtheMAUVEmiddlewarewill
beprovided,alongwithreal-timeanalysisresults;

•Genom:thedesignofthesoftwarearchitectureusingGenomwillbeprovided,alongwith
someanalysisresults;

•AltaRica:thedescriptionofthesafetyassessmentonapartofthefunctionnalarchitecture
willbedescribed.

4RoboticplatformfromONERA
TheplatformusedfortestingthesoftwarearchitectureisaRobotnikSummit-XLownedand
equippedbyONERA(figure1).TherobotisequipedwithaIMU(InertialMeasurementUnit),
aGPSsensor,Hokuyolasersensorsandavideocamera.

Figure1:Summit-XLequipedbyONERA

Theplaformdimensionsareshowninfigure2.

5MaterialHosting
AprojectonGitLabwillbecreatedundertheurlhttps://gitlab.com/osmosisinordertohost
documentationoftheshowcaseaswellasspecificgitprojectsforsources.

2

12

GenoM pocolibs module

lib_c_client

lib_oprs_client

OpenPRS OPs OpenPRS supervisor

ROS Comm module

ROS .msg  
.srv .action

Codels
.c & .cc

lib_codels

pocolibs/server

pocolibs/client/c

openprs/client

skeleton

Templates

ros/client/c

ros/client/ros

ros/server

Specs:
.idl & .gen
- Services
 (automata)
- codels & WCET
- Port
- Task (period)

Stop
mv_plan_exec

_stop

Ether

plan
mv_goto_

plan

Start
mv_curr
ent_sate
_start

pause

interrupt

exec
mv_plan_

exec

wait
mv_plan_
exec_wait

pause

© Félix Ingrand, LAAS/CNRS, 2018

LAAS
CNRS

POM

state

Task: io
Services:
perm, add_me

Task: filter
Services:
perm

Maneuver

desired
state

Task:
plan
Services:
Init
Goto
WayPoint
TakeOff

Task:
exec
Service:
permNHFC

cmd
velocity

Task:
main
Services:
Init
Servo
Stop

GPS

GPS
pose

Task:
main
Services:
Init

mikrokopter

actual
velocity

IMU Task:
main
Services:
perm
calibrate_imu
start
servo
stop

Task:
comm
Services:
perm
connect
monitor

camera

dist

Task:
main
Services:
Monitor
Stop

3IncludedFrenchDCTechnologies
Inadditiontotheopen-sourcematerial,somemethodsandtechnologieswillbeillustratedonthe
showcase.Fornow,thefollowingtechnologiesfromtheFranceDesignCenterareconsideredtobe
included:

•HAZOP-UML:themethodologywillbeillustratedononeortwooperationspecification;

•SMOF:monitorswillbesynthetizedfortwosafetyrules;

•MAUVE:animplementationofthesoftwarearchitectureusingtheMAUVEmiddlewarewill
beprovided,alongwithreal-timeanalysisresults;

•Genom:thedesignofthesoftwarearchitectureusingGenomwillbeprovided,alongwith
someanalysisresults;

•AltaRica:thedescriptionofthesafetyassessmentonapartofthefunctionnalarchitecture
willbedescribed.

4RoboticplatformfromONERA
TheplatformusedfortestingthesoftwarearchitectureisaRobotnikSummit-XLownedand
equippedbyONERA(figure1).TherobotisequipedwithaIMU(InertialMeasurementUnit),
aGPSsensor,Hokuyolasersensorsandavideocamera.

Figure1:Summit-XLequipedbyONERA

Theplaformdimensionsareshowninfigure2.

5MaterialHosting
AprojectonGitLabwillbecreatedundertheurlhttps://gitlab.com/osmosisinordertohost
documentationoftheshowcaseaswellasspecificgitprojectsforsources.

2

12

GenoM pocolibs module

lib_c_client

lib_oprs_client

OpenPRS OPs OpenPRS supervisor

ROS Comm module

ROS .msg  
.srv .action

Codels
.c & .cc

lib_codels

pocolibs/server

pocolibs/client/c

openprs/client

skeleton

Templates

ros/client/c

ros/client/ros

ros/server

BIP module

BIP model

lib_BIP_Engine

D-Finder

bip/model

fiacre/model Fiacre model TINA model
selt

frac

uppaal/model

UPPAAL model

Specs:
.idl & .gen
- Services
 (automata)
- codels & WCET
- Port
- Task (period)

Stop
mv_plan_exec

_stop

Ether

plan
mv_goto_

plan

Start
mv_curr
ent_sate
_start

pause

interrupt

exec
mv_plan_

exec

wait
mv_plan_
exec_wait

pause

© Félix Ingrand, LAAS/CNRS, 2018

LAAS
CNRS

13

CHAPTER 3. THE BIP FRAMEWORK

Sender

Send1 Send2 Send3

Max1

Max2

Sing1 Sing2

p2(x) p2(x)

p3(z)

p2(x)

p3(z)

p0
2(z)

p1 p1 p1

p0
1

(a) Composite component representation.

compound type Sender

component Basic Send1
component Basic Send2
component Basic Send3

connector Max Max1(Sender1.p2,Send2.p2)
connector Max Max2(Max1.p3,Send3.p2)
connector Singleton Sing1 (Send1.p1)
connector Singleton Sing2 (Send2.p1)

export port Intport p�2 is Max2.p3
export port Intport p�1 is Send3.p1

end

(b) BIP code of the compound component.

Figure 3.7: An example of compound component in BIP.

4 The BIP Tool-Chain

This section presents the implementation of the BIP framework, formally described in the
previous sections, in the form of a tool-chain called the BIP tool-chain. The BIP Tool-chain
provides a complete implementation, with a rich set of tools for the modeling, the execution
and the verification (both static and on-the-fly) of BIP models.

4.1 General Overview

The overview of the BIP tool-chain is shown in figure 3.8. It includes the following tools:

• The BIP language. It is used to build models using components, connectors and
priorities and describes components architecture. It is used for the BIP description
source.

• Source-to-source transformation tools. They are used to transform various program-
ming models, using di�erent laguages, into BIP models. The translation of a pro-
gramming model into a BIP model allows its representation,in a rigorous semantic
framework. There exist several translations, including LUSTRE, MATLAB/Simulink,
AADL, GeNoM applications, NesC/TinyOS applications, C software and DOL sys-
tems.

30

CHAPTER 3. THE BIP FRAMEWORK

Sender

Send1 Send2 Send3

Max1

Max2

Sing1 Sing2

p2(x) p2(x)

p3(z)

p2(x)

p3(z)

p0
2(z)

p1 p1 p1

p0
1

(a) Composite component representation.

compound type Sender

component Basic Send1
component Basic Send2
component Basic Send3

connector Max Max1(Sender1.p2,Send2.p2)
connector Max Max2(Max1.p3,Send3.p2)
connector Singleton Sing1 (Send1.p1)
connector Singleton Sing2 (Send2.p1)

export port Intport p�2 is Max2.p3
export port Intport p�1 is Send3.p1

end

(b) BIP code of the compound component.

Figure 3.7: An example of compound component in BIP.

4 The BIP Tool-Chain

This section presents the implementation of the BIP framework, formally described in the
previous sections, in the form of a tool-chain called the BIP tool-chain. The BIP Tool-chain
provides a complete implementation, with a rich set of tools for the modeling, the execution
and the verification (both static and on-the-fly) of BIP models.

4.1 General Overview

The overview of the BIP tool-chain is shown in figure 3.8. It includes the following tools:

• The BIP language. It is used to build models using components, connectors and
priorities and describes components architecture. It is used for the BIP description
source.

• Source-to-source transformation tools. They are used to transform various program-
ming models, using di�erent laguages, into BIP models. The translation of a pro-
gramming model into a BIP model allows its representation,in a rigorous semantic
framework. There exist several translations, including LUSTRE, MATLAB/Simulink,
AADL, GeNoM applications, NesC/TinyOS applications, C software and DOL sys-
tems.

30

CHAPTER 5. CORRECT IMPLEMENTATION OF REAL-TIME SYSTEMS

Encoder

get
[0 � x � +⇥]e

⇤
next
[100 � x � 120]d

{x}

q0

[0 � x � 50]d[50 � x � 60]d

q1

q2

encb

⇤⇤

enca

get next

atomic type Encoder
export port intPort get
export port intPort intPort next
port intPort enca compute
port intPort encb

clock x unit millisecond

place q0
place q1
place q2

initial to q0

on get from q0 to q1
when x in [0,-] eager
on enca from q1 to q2
when x in [50,60] delayable
on encb from q1 to q2
when x in [0,50] delayable
on next from q2 to q0
when x in [100,120] delayable
reset x

end

Figure 5.9: The encoder component declaration in BIP.

Priorities

Priorities are used for inhibiting an interaction, called the low interaction, whenever another
interaction, called the high interaction, is enabled. Priorities can be guarded by boolean
conditions, which depend on the value of variables. We can extend priorities with the notion
of time, by adding delays for the application of priority rules. A priority with a delay of d
means that its lower interaction is inhibited by its high interaction whenever the latter is
possible in d units of time.

Definition 25 (Priority Rule) A priority is a tuple (C,�d), where C is a state pred-
icate (boolean condition) characterizing the states where the priority applies and �d is a
partial order that gives the priority order on a set of interactions A =

�
A� and d is the

delay of application of the priority.

For a1 ⇤ A and a2 ⇤ A, a priority rule is textually expressed as C ⇥ a1 �d a2. When
the state predicate C is true and both interactions a1 and a2 specified in the priority rule
are enabled, the higher priority interaction, i.e., a2 is selected for execution with a delay of
d time units.

74

CHAPTER 5. CORRECT IMPLEMENTATION OF REAL-TIME SYSTEMS

Encoder

get
[0 � x � +⇥]e

⇤
next
[100 � x � 120]d

{x}

q0

[0 � x � 50]d[50 � x � 60]d

q1

q2

encb

⇤⇤

enca

get next

atomic type Encoder
export port intPort get
export port intPort intPort next
port intPort enca compute
port intPort encb

clock x unit millisecond

place q0
place q1
place q2

initial to q0

on get from q0 to q1
when x in [0,-] eager
on enca from q1 to q2
when x in [50,60] delayable
on encb from q1 to q2
when x in [0,50] delayable
on next from q2 to q0
when x in [100,120] delayable
reset x

end

Figure 5.9: The encoder component declaration in BIP.

Priorities

Priorities are used for inhibiting an interaction, called the low interaction, whenever another
interaction, called the high interaction, is enabled. Priorities can be guarded by boolean
conditions, which depend on the value of variables. We can extend priorities with the notion
of time, by adding delays for the application of priority rules. A priority with a delay of d
means that its lower interaction is inhibited by its high interaction whenever the latter is
possible in d units of time.

Definition 25 (Priority Rule) A priority is a tuple (C,�d), where C is a state pred-
icate (boolean condition) characterizing the states where the priority applies and �d is a
partial order that gives the priority order on a set of interactions A =

�
A� and d is the

delay of application of the priority.

For a1 ⇤ A and a2 ⇤ A, a priority rule is textually expressed as C ⇥ a1 �d a2. When
the state predicate C is true and both interactions a1 and a2 specified in the priority rule
are enabled, the higher priority interaction, i.e., a2 is selected for execution with a delay of
d time units.

74

Time

CHAPTER 3. THE BIP FRAMEWORK

code two types of ports. A pure event port ePort that does not have any associated vari-
ables, and provides the mechanism for event synchronization only. The port out is of type
InPort, which associates an integer variable with a port. A port in an atomic component
is not visible to its environment unless it is exported explicitily. In the above example, both
port p1 and p2 are exported. It is necessary to export a port if it has to be used in some
connector for synchronization purpose.

Basic

x = assign−value ()

p1 p2(x)

empty full

p2

p1

[x > 0]

(a) An atomic component.

port type IntPort (int x)
port type ePort ()

atomic type Basic
data int x = 0
export port ePort p1() is p1
export port intPort p2(x) is p2

place empty
place full

initial to empty

on p1 from empty to full
do { x = assign-value();}

on p2 provided [x > 0]
from full to empty

end

(b) BIP code of the atomic component.

Figure 3.2: An example of an open atomic component in BIP.

3.2 Connectors

Composition of components allows to build a system as a set of components that interact
by respecting constraints of an interaction model. Connectors are used to specify possible
interaction patterns between the ports of components.

Definition 8 (Connector) A connector � define sets of ports of atomic components Bi

wich can be involved in an interaction. It is formalized by � = (P� , A� , p[x]) where:

• P� is the support set of �, that is the set of ports that � may synchronize.
• A� ⇥ 2P� is a set of interactions a each labeled by the triple (Pa, Ga, Fa) where:

– Pa is the set of ports pii�I , I ⇥ [1, n] that take part of an interaction a,
– Ga is the guard of a, a predicate defined on variables

�
pi�a Vpi ,

– Fa is the data transfer function of a, defined defined on variables
�

pi�a Vpi .

• p is the exported port of the connector �.

25

CHAPTER 3. THE BIP FRAMEWORK

code two types of ports. A pure event port ePort that does not have any associated vari-
ables, and provides the mechanism for event synchronization only. The port out is of type
InPort, which associates an integer variable with a port. A port in an atomic component
is not visible to its environment unless it is exported explicitily. In the above example, both
port p1 and p2 are exported. It is necessary to export a port if it has to be used in some
connector for synchronization purpose.

Basic

x = assign−value ()

p1 p2(x)

empty full

p2

p1

[x > 0]

(a) An atomic component.

port type IntPort (int x)
port type ePort ()

atomic type Basic
data int x = 0
export port ePort p1() is p1
export port intPort p2(x) is p2

place empty
place full

initial to empty

on p1 from empty to full
do { x = assign-value();}

on p2 provided [x > 0]
from full to empty

end

(b) BIP code of the atomic component.

Figure 3.2: An example of an open atomic component in BIP.

3.2 Connectors

Composition of components allows to build a system as a set of components that interact
by respecting constraints of an interaction model. Connectors are used to specify possible
interaction patterns between the ports of components.

Definition 8 (Connector) A connector � define sets of ports of atomic components Bi

wich can be involved in an interaction. It is formalized by � = (P� , A� , p[x]) where:

• P� is the support set of �, that is the set of ports that � may synchronize.
• A� ⇥ 2P� is a set of interactions a each labeled by the triple (Pa, Ga, Fa) where:

– Pa is the set of ports pii�I , I ⇥ [1, n] that take part of an interaction a,
– Ga is the guard of a, a predicate defined on variables

�
pi�a Vpi ,

– Fa is the data transfer function of a, defined defined on variables
�

pi�a Vpi .

• p is the exported port of the connector �.

25

Behavior
CHAPTER 3. THE BIP FRAMEWORK

Sender1 Sender2

p3(z)

p1(x) p2(y)

G : (p1.x > 0)&&(p2.y > 0)

Fup : z = Max(p1.x, p2.y)

Fdown : p1.x = p2.y = z

(a) Connector.

connector type Max (intPort p1, intPort p2)
data int z
define [p1p2]

on p1p2 provided (p1.x > 0) && (p2.y > 0)
up { z = Max (p1.x , p2.y);}
down { p1.x = p2.y = z ;}

export port intPort p3(z)

end

(b) Connector type definition code in BIP.

Figure 3.4: An example of a connector between two components in BIP

true. In the up function, the Max of the variables associated with the ports is calculated and
stored in the connector variable z. As a result of the data transfer, the variables associated
with the ports are set to the maximum of thier values, through the action down.

Hierarchical connectors

We have seen that a connector has an option to define a port and export it. This allows
a connector to be used as a port in other connectors, and create structured connectors. The
representation of structured connectors require connectors to be treated as expressions with
typing and other operations on groups of connectors. This led to a formalization of the
algebra of connectors defined in [25, 26]. The Algebra of Connectors is a compact notation
for algebric representation and manipulation of connectors and formalizes the concept of
connectors supported by the BIP component model.

Figure 3.5 shows two hierarchical connectors :

• The AtomicBroadcast (a) involves four ports s, r1, r2, r3. It represents a communica-
tion schema between a sender s and multiple reveivers ri, where either a message is
received by all the ri, or by none. Ports ri are strongly synchronized and the synchro-
nization with the trigger port s is done via an exported port. This means that either
s or interaction s.r1.r2.r3 is possible.

• The CausalChain (b) involves the same ports with a di◆erent structure. It represents
a communication schema in which if a message is received by ri, it has also to be
received by rj , for j < i.

27

CHAPTER 3. THE BIP FRAMEWORK

Sender1 Sender2

p3(z)

p1(x) p2(y)

G : (p1.x > 0)&&(p2.y > 0)

Fup : z = Max(p1.x, p2.y)

Fdown : p1.x = p2.y = z

(a) Connector.

connector type Max (intPort p1, intPort p2)
data int z
define [p1p2]

on p1p2 provided (p1.x > 0) && (p2.y > 0)
up { z = Max (p1.x , p2.y);}
down { p1.x = p2.y = z ;}

export port intPort p3(z)

end

(b) Connector type definition code in BIP.

Figure 3.4: An example of a connector between two components in BIP

true. In the up function, the Max of the variables associated with the ports is calculated and
stored in the connector variable z. As a result of the data transfer, the variables associated
with the ports are set to the maximum of thier values, through the action down.

Hierarchical connectors

We have seen that a connector has an option to define a port and export it. This allows
a connector to be used as a port in other connectors, and create structured connectors. The
representation of structured connectors require connectors to be treated as expressions with
typing and other operations on groups of connectors. This led to a formalization of the
algebra of connectors defined in [25, 26]. The Algebra of Connectors is a compact notation
for algebric representation and manipulation of connectors and formalizes the concept of
connectors supported by the BIP component model.

Figure 3.5 shows two hierarchical connectors :

• The AtomicBroadcast (a) involves four ports s, r1, r2, r3. It represents a communica-
tion schema between a sender s and multiple reveivers ri, where either a message is
received by all the ri, or by none. Ports ri are strongly synchronized and the synchro-
nization with the trigger port s is done via an exported port. This means that either
s or interaction s.r1.r2.r3 is possible.

• The CausalChain (b) involves the same ports with a di◆erent structure. It represents
a communication schema in which if a message is received by ri, it has also to be
received by rj , for j < i.

27

Interaction

CHAPTER 3. THE BIP FRAMEWORK

Max1 Max2

Max2 : < Max1 :

r s2s1

⇥ = {s1.r, s2.r}

s2.r s1.r

(a) An Example of a priority
relation.

connector Max1 (s1, r)
connector Max2 (s2, r)

priority maximal if (s1.x > s2.x)
Max2 < Max1

(b) BIP code of the priority relation.

Figure 3.6: An example of priorities in BIP.

• Q is a set of states, which is the cartesian product of the sets of control sates of the
composed components S =

�n
i=1 Si.

• �⌅⇥ is a set of transitions of the form (q,�, g, f, q�), where :
– q = (q1, ..., qn), qi being a control state of the ith component.
– � is a feasible interaction in ⇥ associated with a guarded command (G�, F�),

such that there exists a subset J ⇤ {1, ..., n} of components with transitions
{(qj , pj , gj , fj , q�j)}j⇥J and � = {pj}j⇥J .

– g =
⇥

j⇥J gj ⇧G�.
– f = F�; [fj]j⇥J . That is, the computation starts with the execution of F� followed

by by the execution of all the functions fj in some arbitrary order. The result is
independent of this order as components have disjoint sets of variables.

• P is a set of exported ports. Indeed, a connector can be associated with exported ports.
This allows a connector to be used as a port in other connectors, and create structured
conectors. Those ports allow also to build compound components.

Example 7 Figure 3.7(a) shows a compound component Sender consisting of three com-
ponents, Send1, Send2 and Send3 of type Basic (described in Figure 3.2). They interact
by using connectors of type Max described in Figure 3.4 to compute the maximal value pro-
duced by the components. It exports two ports p�2 and p�1. Port p�2 results from the components
synchronizations through their p2 ports. Port p�1 is the exported port p1 of the Send3 com-
ponent. Ports p1 of Send1, Send2 are wrapped into singleton connectors since they are
neither exported by the compound component nor involved in any interaction. Figure 3.7(b)
presents the corresponding BIP code.

29

CHAPTER 3. THE BIP FRAMEWORK

Max1 Max2

Max2 : < Max1 :

r s2s1

⇥ = {s1.r, s2.r}

s2.r s1.r

(a) An Example of a priority
relation.

connector Max1 (s1, r)
connector Max2 (s2, r)

priority maximal if (s1.x > s2.x)
Max2 < Max1

(b) BIP code of the priority relation.

Figure 3.6: An example of priorities in BIP.

• Q is a set of states, which is the cartesian product of the sets of control sates of the
composed components S =

�n
i=1 Si.

• �⌅⇥ is a set of transitions of the form (q,�, g, f, q�), where :
– q = (q1, ..., qn), qi being a control state of the ith component.
– � is a feasible interaction in ⇥ associated with a guarded command (G�, F�),

such that there exists a subset J ⇤ {1, ..., n} of components with transitions
{(qj , pj , gj , fj , q�j)}j⇥J and � = {pj}j⇥J .

– g =
⇥

j⇥J gj ⇧G�.
– f = F�; [fj]j⇥J . That is, the computation starts with the execution of F� followed

by by the execution of all the functions fj in some arbitrary order. The result is
independent of this order as components have disjoint sets of variables.

• P is a set of exported ports. Indeed, a connector can be associated with exported ports.
This allows a connector to be used as a port in other connectors, and create structured
conectors. Those ports allow also to build compound components.

Example 7 Figure 3.7(a) shows a compound component Sender consisting of three com-
ponents, Send1, Send2 and Send3 of type Basic (described in Figure 3.2). They interact
by using connectors of type Max described in Figure 3.4 to compute the maximal value pro-
duced by the components. It exports two ports p�2 and p�1. Port p�2 results from the components
synchronizations through their p2 ports. Port p�1 is the exported port p1 of the Send3 com-
ponent. Ports p1 of Send1, Send2 are wrapped into singleton connectors since they are
neither exported by the compound component nor involved in any interaction. Figure 3.7(b)
presents the corresponding BIP code.

29

Priority

BIP Model example

© Félix Ingrand, LAAS/CNRS, 2018

LAAS
CNRS

Functional Level

3IncludedFrenchDCTechnologies
Inadditiontotheopen-sourcematerial,somemethodsandtechnologieswillbeillustratedonthe
showcase.Fornow,thefollowingtechnologiesfromtheFranceDesignCenterareconsideredtobe
included:

•HAZOP-UML:themethodologywillbeillustratedononeortwooperationspecification;

•SMOF:monitorswillbesynthetizedfortwosafetyrules;

•MAUVE:animplementationofthesoftwarearchitectureusingtheMAUVEmiddlewarewill
beprovided,alongwithreal-timeanalysisresults;

•Genom:thedesignofthesoftwarearchitectureusingGenomwillbeprovided,alongwith
someanalysisresults;

•AltaRica:thedescriptionofthesafetyassessmentonapartofthefunctionnalarchitecture
willbedescribed.

4RoboticplatformfromONERA
TheplatformusedfortestingthesoftwarearchitectureisaRobotnikSummit-XLownedand
equippedbyONERA(figure1).TherobotisequipedwithaIMU(InertialMeasurementUnit),
aGPSsensor,Hokuyolasersensorsandavideocamera.

Figure1:Summit-XLequipedbyONERA

Theplaformdimensionsareshowninfigure2.

5MaterialHosting
AprojectonGitLabwillbecreatedundertheurlhttps://gitlab.com/osmosisinordertohost
documentationoftheshowcaseaswellasspecificgitprojectsforsources.

2

RobotDriverGPSDriver

Task:
update 100ms
Services:
SetParams*
ConnectDevice
Measure
Stop

Task:
odometry
25ms
Services:
TrackOdoS
tart
TrackOdoS
top

Task:
command
40ms
Services:
TrackSpee
dStart
TrackSpee
dStop

IMUDriver

Task:
Update 100ms
Services:
SetParams*
ConnectDevice
Measure
Stop

LaserDriver
Task:
scan 100ms
Services:
SetParams*
ConnectDevice
Scan
StopScan

Teleop

Teleop
Cmd

Task:
check 100ms
Services:
Teleop
Stop

joystick

Cmd

PotentialField

Scanodometry

Navigation

target

Localization/POM SafetyPilot

IMU

pose PFCmd

Nav
graph

Task:
plan 100ms
Services:
SetParams
StartTrackTargetPort
StopTrackTargetPort

Task:
pilot 40ms
Services:
SetParams*
Stop
SpeedMergeAnd
AvoidObstacles

Task:
navigate 200 ms
Services:
GotoPosition
GotoTarget
Stop

Task: io 10ms
Services:
perm, add_me

Task: filter
10ms
Services:
perm

Attribute Service
Function Service
Activity Service

GPS

RWLSensor
Task:
sense 200 ms
Services:
CheckLight
ResetLightsSeq
UnstowSensor
StowSensor

LightLvl

Lights

GenoM to BIP
A template that produces the BIP
model of any GenoM component
specification

example:

14

From GenoM3 to BIP

From GenoM3 to BIP: Task Manager + Timer (top)

idle

ready

reqgp

managemd

managegp

reqmd
reqmon

reqmd

reqgp

reqmon

free

norequest

norequest

managemd2

managegp2

intermd

intergp

actmd

actgp

release

clear

launch

finished

clock c

reqgp

reqmd

reqmon

norequest

intergp

actmd

actgp

clear

finished

launch

immediate

immediate

reqsetsp

reqsetspsetspwait

setspeed

resfree

freeres

reqsetsp

resfreefreeres

control

idle

reqgp

reqmd

reqmon

reqsetsp

norequest

waiting

finished

norequest

finished

reqsetsp

reqgp

reqmon

reqmd

client

ether

activate

start
running

stop

idle

voidvoid

act

hold

launch
run

inter

interrupt

clear

interruptfinished

nointer

voidfinished

void

md1

interrupt

hold

inter

clear

void

launch

act run

ether

activate

start
running

stop

idle

voidvoid

act

hold

launch
run

inter

interrupt

clear

interruptfinished

nointer

voidfinished

void

md2

ether

activate

start
running

stop

idle

voidvoid

act

hold

launch
run

inter

interrupt

clear

interruptfinished

nointer

voidfinished

void

gp1

ether

activate

start
running

stop

idle

voidvoid

act

hold

launch
run

inter

interrupt

clear

interruptfinished

nointer

voidfinished

void

gp2

ether

activate

start
running

stop

idle

voidvoid

act

hold

launch
run

inter

interrupt

clear

interruptfinished

nointer

voidfinished

void

mon1
void

clear

interrupt

ether

activate

start
running

stop

idle

voidvoid

act

hold

launch
run

inter

interrupt

clear

interruptfinished

nointer

voidfinished

void

mon2

clear

interrupt

nointer

nointer

endmd1

startmd1

idle

tick

beginmd1

cyclemd1

skipmd1

ended

tick

reset c

clock cmanager

beginmd1

cyclemd1

endmd2

startmd2

beginmd2

endgp1

startgp1

begingp1

endgp2

startgp2

begingp2

endmon1

startmon1

beginmon1

endmon2

startmon2

beginmon2

reset c

cyclemd2

reset c

cyclegp1

reset c

cyclegp2
reset c

cyclemd1
reset c

cyclemd1

reset c

finish

skipmd1

skipmd2

skipgp1

skipgp2

skipmon1

skipmon2

ended

starttest

tick

tick

timer
when c>=Pi

clock c

finished

inter

run

finished

inter

run

finished

inter

run

finished

inter

run

finished

inter

run

finished

void

beginmd2

cyclemd2

skipmd2

beginmon1

cyclemon1

skipmon1

begingp2

cyclegp2

skipgp2

beginmon2

cyclemon2

skipmon2

hold

sig

signal
start

intermediate

notify sig

sig

sig

endsig

hold

endsig

exec3

exec2

exec1

start

wait

end,
stop

toexec

finished

begin

mdinst1

pause resfree

interrupted

finished

begin

freeres

clock c
idle begin

reset c

resfree
reset c

pause

toend
interrupted

reset c
freeres
reset c

interrupted

reset c

exec3

exec2

exec1

start

wait

end,
stop

toexec

finished

begin

mdinst2

pause resfree

interrupted

finished

begin

freeres

clock c
idle begin

reset c

resfree
reset c

pause

when c==0

toend
when c==0

interrupted
reset c

freeres
reset c

interrupted

reset c

exec

start

wait

end,
stop

toexec

finished

begin

gpinst1

pause

interrupted

finished

begin
clock c

idle begin
reset c

pause

toend

interrupted

reset c

interrupted

reset c

start

wait

stop

finished

moninst1

pause

interrupted

finished

begin
clock c

idle begin
reset c

interrupted

reset c

reset c

reset c

reset c

exec

start

wait

end,
stop

toexec

finished

begin

gpinst2

pause

interrupted

finished

begin
clock c

idle begin
reset c

pause

toend

interrupted

reset c

interrupted

reset c

reset c

reset c

reset c

interrupted

reset c

pause
begin
reset c

start

wait

stop

finished

moninst2

pause

interrupted

finished

begin
clock c

idle begin
reset c

interrupted

reset c

interrupted

reset c

pause
resume

reset c

tostop
reset c

tostop
reset c

intermd

interrupt

hold

clear

void

launch

act

interrupt

hold

clear

void

launch

act

interrupt

hold

clear

void

launch

act

// same as intermd

// same idea for md2

// same idea for gp2

// same idea for md2

begingp1

cyclegp1

skipgp1

// same idea for gp1

// same idea for gp2

// same idea for mon1

// same idea for mon2

(control.finished,client.finished) < launch connectors

Priorities

take

locksetsp
free

taken

give

give

check
take

check

take

lockmd
free

taken

give

give

check

take

check

// same for md2

c == 0

inv = 0

c == 0

reset c
end

end

inv = 0

inv = 0

inv = 0

inv = 0

inv = 0

inv = 0

inv = 0

test

nosig

nosig

check

c == 0

c == 0

c == 0

c == 0

c == 0

c == 0

c == 0

c == 0

reset c

reset c

inv <= wcet

check

c <= wcet

c <= wcet

c <= wcet

c <= wcet

c <= wcet

c <= wcet

c <= wcet

c <= wcet

c <= wcet

c <= wcet

c <= wcet

c <= wcet

c <= wcet

c <= wcet

c <= wcet

c <= wcet

reset c
reset c reset c

reset c

Jacques Combaz (Verimag) GenoM3/BIP September 20, 2016 23 / 29

/* plan timer */

atom type TIMER_navigate_gotoposition()
clock c unit millisecond
export port Port tick()
place loop
initial to loop

on tick
from loop to loop
provided (c>=200.0)
do { c = 0; }

end

Invariants extraction and sat solver RT D-Finder
Runtime Checking with the RT BIP Engine

© Félix Ingrand, LAAS/CNRS, 2018

LAAS
CNRS

Functional Level

RobotDriverGPSDriver

Task:
update 100ms
Services:
SetParams*
ConnectDevice
Measure
Stop

Task:
odometry
25ms
Services:
TrackOdoS
tart
TrackOdoS
top

Task:
command
40ms
Services:
TrackSpee
dStart
TrackSpee
dStop

IMUDriver

Task:
Update 100ms
Services:
SetParams*
ConnectDevice
Measure
Stop

LaserDriver
Task:
scan 100ms
Services:
SetParams*
ConnectDevice
Scan
StopScan

Teleop

Teleop
Cmd

Task:
check 100ms
Services:
Teleop
Stop

joystick

Cmd

PotentialField

Scanodometry

Navigation

target

Localization/POM SafetyPilot

IMU

pose PFCmd

Nav
graph

Task:
plan 100ms
Services:
SetParams
StartTrackTargetPort
StopTrackTargetPort

Task:
pilot 40ms
Services:
SetParams*
Stop
SpeedMergeAnd
AvoidObstacles

Task:
navigate 200 ms
Services:
GotoPosition
GotoTarget
Stop

Task: io 10ms
Services:
perm, add_me

Task: filter
10ms
Services:
perm

Attribute Service
Function Service
Activity Service

GPS

RWLSensor
Task:
sense 200 ms
Services:
CheckLight
ResetLightsSeq
UnstowSensor
StowSensor

LightLvl

Lights

Run Time Verification with RT BIP Engine

15

WCET violation in PotentialField:
PF command: l 0.900901 m/s, a -22.167183 deg/s.
 [GenoM3] PotentialField Exiting
PotentialField_codel_service_StartTrackTargetPort_compute_speed codel
with ::PotentialField::write_cmd.
[BIP ENGINE]: WARNING: state #465945 and global time 58s764ms506us207ns:
violation of the following timing constraint
ROOT.Compound_PotentialField_.PotentialField_.StartTrackTargetPort_Potential
Field_inst_1:
[BIP ENGINE]:
ROOT.Compound_PotentialField_.PotentialField_.StartTrackTargetPort_Potential
Field_inst_1 resume [-INFTY, 58s763ms841us48ns]
 [GenoM3] PotentialField Calling
PotentialField_codel_service_StartTrackTargetPort_write_cmd codel.

Cycle period violation in POM:
[BIP ENGINE]: WARNING: state #1905764 and global time
2min57s370ms722us604ns: violation of the following timing constraint
ROOT.pom.timer_filter:
[BIP ENGINE]: ROOT.Compound_pom.timer_filter invariant [-INFTY,
2min57s363ms458us605ns]

Stop the robot when LaserDriver scan is delayed:
[BIP ENGINE]: state #165351: 1 interaction:  
[BIP ENGINE]: [0] ROOT.Scan_Failed: SafetyPilot_Req_Stop() Monitor.report()
] 26s591ms324us108ns, +INFTY]  
[BIP ENGINE]: →choose [0] ROOT.Scan_Failed: SafetyPilot_Req_Stop()
Monitor.report() at global time 26s591ms324us109ns
...
[GenoM3] SafetyPilot Calling SafetyPilot_activity_MergeAndAvoid_stop codel.
[GenoM3] SafetyPilot Exiting SafetyPilot_activity_MergeAndAvoid_stop codel
with ::SafetyPilot::ether.

Functional Level

3IncludedFrenchDCTechnologies
Inadditiontotheopen-sourcematerial,somemethodsandtechnologieswillbeillustratedonthe
showcase.Fornow,thefollowingtechnologiesfromtheFranceDesignCenterareconsideredtobe
included:

•HAZOP-UML:themethodologywillbeillustratedononeortwooperationspecification;

•SMOF:monitorswillbesynthetizedfortwosafetyrules;

•MAUVE:animplementationofthesoftwarearchitectureusingtheMAUVEmiddlewarewill
beprovided,alongwithreal-timeanalysisresults;

•Genom:thedesignofthesoftwarearchitectureusingGenomwillbeprovided,alongwith
someanalysisresults;

•AltaRica:thedescriptionofthesafetyassessmentonapartofthefunctionnalarchitecture
willbedescribed.

4RoboticplatformfromONERA
TheplatformusedfortestingthesoftwarearchitectureisaRobotnikSummit-XLownedand
equippedbyONERA(figure1).TherobotisequipedwithaIMU(InertialMeasurementUnit),
aGPSsensor,Hokuyolasersensorsandavideocamera.

Figure1:Summit-XLequipedbyONERA

Theplaformdimensionsareshowninfigure2.

5MaterialHosting
AprojectonGitLabwillbecreatedundertheurlhttps://gitlab.com/osmosisinordertohost
documentationoftheshowcaseaswellasspecificgitprojectsforsources.

2

RobotDriverGPSDriver

Task:
update 100ms
Services:
SetParams*
ConnectDevice
Measure
Stop

Task:
odometry
25ms
Services:
TrackOdoS
tart
TrackOdoS
top

Task:
command
40ms
Services:
TrackSpee
dStart
TrackSpee
dStop

IMUDriver

Task:
Update 100ms
Services:
SetParams*
ConnectDevice
Measure
Stop

LaserDriver
Task:
scan 100ms
Services:
SetParams*
ConnectDevice
Scan
StopScan

Teleop

Teleop
Cmd

Task:
check 100ms
Services:
Teleop
Stop

joystick

Cmd

PotentialField

Scanodometry

Navigation

target

Localization/POM SafetyPilot

IMU

pose PFCmd

Nav
graph

Task:
plan 100ms
Services:
SetParams
StartTrackTargetPort
StopTrackTargetPort

Task:
pilot 40ms
Services:
SetParams*
Stop
SpeedMergeAnd
AvoidObstacles

Task:
navigate 200 ms
Services:
GotoPosition
GotoTarget
Stop

Task: io 10ms
Services:
perm, add_me

Task: filter
10ms
Services:
perm

Attribute Service
Function Service
Activity Service

GPS

RWLSensor
Task:
sense 200 ms
Services:
CheckLight
ResetLightsSeq
UnstowSensor
StowSensor

LightLvl

Lights

Functional Level

3IncludedFrenchDCTechnologies
Inadditiontotheopen-sourcematerial,somemethodsandtechnologieswillbeillustratedonthe
showcase.Fornow,thefollowingtechnologiesfromtheFranceDesignCenterareconsideredtobe
included:

•HAZOP-UML:themethodologywillbeillustratedononeortwooperationspecification;

•SMOF:monitorswillbesynthetizedfortwosafetyrules;

•MAUVE:animplementationofthesoftwarearchitectureusingtheMAUVEmiddlewarewill
beprovided,alongwithreal-timeanalysisresults;

•Genom:thedesignofthesoftwarearchitectureusingGenomwillbeprovided,alongwith
someanalysisresults;

•AltaRica:thedescriptionofthesafetyassessmentonapartofthefunctionnalarchitecture
willbedescribed.

4RoboticplatformfromONERA
TheplatformusedfortestingthesoftwarearchitectureisaRobotnikSummit-XLownedand
equippedbyONERA(figure1).TherobotisequipedwithaIMU(InertialMeasurementUnit),
aGPSsensor,Hokuyolasersensorsandavideocamera.

Figure1:Summit-XLequipedbyONERA

Theplaformdimensionsareshowninfigure2.

5MaterialHosting
AprojectonGitLabwillbecreatedundertheurlhttps://gitlab.com/osmosisinordertohost
documentationoftheshowcaseaswellasspecificgitprojectsforsources.

2

RobotDriverGPSDriver

Task:
update 100ms
Services:
SetParams*
ConnectDevice
Measure
Stop

Task:
odometry
25ms
Services:
TrackOdoS
tart
TrackOdoS
top

Task:
command
40ms
Services:
TrackSpee
dStart
TrackSpee
dStop

IMUDriver

Task:
Update 100ms
Services:
SetParams*
ConnectDevice
Measure
Stop

LaserDriver
Task:
scan 100ms
Services:
SetParams*
ConnectDevice
Scan
StopScan

Teleop

Teleop
Cmd

Task:
check 100ms
Services:
Teleop
Stop

joystick

Cmd

PotentialField

Scanodometry

Navigation

target

Localization/POM SafetyPilot

IMU

pose PFCmd

Nav
graph

Task:
plan 100ms
Services:
SetParams
StartTrackTargetPort
StopTrackTargetPort

Task:
pilot 40ms
Services:
SetParams*
Stop
SpeedMergeAnd
AvoidObstacles

Task:
navigate 200 ms
Services:
GotoPosition
GotoTarget
Stop

Task: io 10ms
Services:
perm, add_me

Task: filter
10ms
Services:
perm

Attribute Service
Function Service
Activity Service

GPS

RWLSensor
Task:
sense 200 ms
Services:
CheckLight
ResetLightsSeq
UnstowSensor
StowSensor

LightLvl

Lights

© Félix Ingrand, LAAS/CNRS, 2018

LAAS
CNRS

A template that produces the UPPAAL
model of any GenoM specification
for the component implementation

example:

GenoM to UPPAAL

16
Model Checking

Functional Level

3IncludedFrenchDCTechnologies
Inadditiontotheopen-sourcematerial,somemethodsandtechnologieswillbeillustratedonthe
showcase.Fornow,thefollowingtechnologiesfromtheFranceDesignCenterareconsideredtobe
included:

•HAZOP-UML:themethodologywillbeillustratedononeortwooperationspecification;

•SMOF:monitorswillbesynthetizedfortwosafetyrules;

•MAUVE:animplementationofthesoftwarearchitectureusingtheMAUVEmiddlewarewill
beprovided,alongwithreal-timeanalysisresults;

•Genom:thedesignofthesoftwarearchitectureusingGenomwillbeprovided,alongwith
someanalysisresults;

•AltaRica:thedescriptionofthesafetyassessmentonapartofthefunctionnalarchitecture
willbedescribed.

4RoboticplatformfromONERA
TheplatformusedfortestingthesoftwarearchitectureisaRobotnikSummit-XLownedand
equippedbyONERA(figure1).TherobotisequipedwithaIMU(InertialMeasurementUnit),
aGPSsensor,Hokuyolasersensorsandavideocamera.

Figure1:Summit-XLequipedbyONERA

Theplaformdimensionsareshowninfigure2.

5MaterialHosting
AprojectonGitLabwillbecreatedundertheurlhttps://gitlab.com/osmosisinordertohost
documentationoftheshowcaseaswellasspecificgitprojectsforsources.

2

RobotDriverGPSDriver

Task:
update 100ms
Services:
SetParams*
ConnectDevice
Measure
Stop

Task:
odometry
25ms
Services:
TrackOdoS
tart
TrackOdoS
top

Task:
command
40ms
Services:
TrackSpee
dStart
TrackSpee
dStop

IMUDriver

Task:
Update 100ms
Services:
SetParams*
ConnectDevice
Measure
Stop

LaserDriver
Task:
scan 100ms
Services:
SetParams*
ConnectDevice
Scan
StopScan

Teleop

Teleop
Cmd

Task:
check 100ms
Services:
Teleop
Stop

joystick

Cmd

PotentialField

Scanodometry

Navigation

target

Localization/POM SafetyPilot

IMU

pose PFCmd

Nav
graph

Task:
plan 100ms
Services:
SetParams
StartTrackTargetPort
StopTrackTargetPort

Task:
pilot 40ms
Services:
SetParams*
Stop
SpeedMergeAnd
AvoidObstacles

Task:
navigate 200 ms
Services:
GotoPosition
GotoTarget
Stop

Task: io 10ms
Services:
perm, add_me

Task: filter
10ms
Services:
perm

Attribute Service
Function Service
Activity Service

GPS

RWLSensor
Task:
sense 200 ms
Services:
CheckLight
ResetLightsSeq
UnstowSensor
StowSensor

LightLvl

Lights

© Félix Ingrand, LAAS/CNRS, 2018

LAAS
CNRS

Functional Level

RobotDriverGPSDriver

Task:
update 100ms
Services:
SetParams*
ConnectDevice
Measure
Stop

Task:
odometry
25ms
Services:
TrackOdoS
tart
TrackOdoS
top

Task:
command
40ms
Services:
TrackSpee
dStart
TrackSpee
dStop

IMUDriver

Task:
Update 100ms
Services:
SetParams*
ConnectDevice
Measure
Stop

LaserDriver
Task:
scan 100ms
Services:
SetParams*
ConnectDevice
Scan
StopScan

Teleop

Teleop
Cmd

Task:
check 100ms
Services:
Teleop
Stop

joystick

Cmd

PotentialField

Scanodometry

Navigation

target

Localization/POM SafetyPilot

IMU

pose PFCmd

Nav
graph

Task:
plan 100ms
Services:
SetParams
StartTrackTargetPort
StopTrackTargetPort

Task:
pilot 40ms
Services:
SetParams*
Stop
SpeedMergeAnd
AvoidObstacles

Task:
navigate 200 ms
Services:
GotoPosition
GotoTarget
Stop

Task: io 10ms
Services:
perm, add_me

Task: filter
10ms
Services:
perm

Attribute Service
Function Service
Activity Service

GPS

RWLSensor
Task:
sense 200 ms
Services:
CheckLight
ResetLightsSeq
UnstowSensor
StowSensor

LightLvl

Lights

Functional Level

3IncludedFrenchDCTechnologies
Inadditiontotheopen-sourcematerial,somemethodsandtechnologieswillbeillustratedonthe
showcase.Fornow,thefollowingtechnologiesfromtheFranceDesignCenterareconsideredtobe
included:

•HAZOP-UML:themethodologywillbeillustratedononeortwooperationspecification;

•SMOF:monitorswillbesynthetizedfortwosafetyrules;

•MAUVE:animplementationofthesoftwarearchitectureusingtheMAUVEmiddlewarewill
beprovided,alongwithreal-timeanalysisresults;

•Genom:thedesignofthesoftwarearchitectureusingGenomwillbeprovided,alongwith
someanalysisresults;

•AltaRica:thedescriptionofthesafetyassessmentonapartofthefunctionnalarchitecture
willbedescribed.

4RoboticplatformfromONERA
TheplatformusedfortestingthesoftwarearchitectureisaRobotnikSummit-XLownedand
equippedbyONERA(figure1).TherobotisequipedwithaIMU(InertialMeasurementUnit),
aGPSsensor,Hokuyolasersensorsandavideocamera.

Figure1:Summit-XLequipedbyONERA

Theplaformdimensionsareshowninfigure2.

5MaterialHosting
AprojectonGitLabwillbecreatedundertheurlhttps://gitlab.com/osmosisinordertohost
documentationoftheshowcaseaswellasspecificgitprojectsforsources.

2

RobotDriverGPSDriver

Task:
update 100ms
Services:
SetParams*
ConnectDevice
Measure
Stop

Task:
odometry
25ms
Services:
TrackOdoS
tart
TrackOdoS
top

Task:
command
40ms
Services:
TrackSpee
dStart
TrackSpee
dStop

IMUDriver

Task:
Update 100ms
Services:
SetParams*
ConnectDevice
Measure
Stop

LaserDriver
Task:
scan 100ms
Services:
SetParams*
ConnectDevice
Scan
StopScan

Teleop

Teleop
Cmd

Task:
check 100ms
Services:
Teleop
Stop

joystick

Cmd

PotentialField

Scanodometry

Navigation

target

Localization/POM SafetyPilot

IMU

pose PFCmd

Nav
graph

Task:
plan 100ms
Services:
SetParams
StartTrackTargetPort
StopTrackTargetPort

Task:
pilot 40ms
Services:
SetParams*
Stop
SpeedMergeAnd
AvoidObstacles

Task:
navigate 200 ms
Services:
GotoPosition
GotoTarget
Stop

Task: io 10ms
Services:
perm, add_me

Task: filter
10ms
Services:
perm

Attribute Service
Function Service
Activity Service

GPS

RWLSensor
Task:
sense 200 ms
Services:
CheckLight
ResetLightsSeq
UnstowSensor
StowSensor

LightLvl

LightsVerification with UPPAAL

17

/* All ports are properly written before being read */
A[] (ports_read[p] imply ports_write[p])

/* Navigation: bound between stop request and writing a
new target (to current pose) */
/* take advantage of the CT_Navigation clock reset only
once (when sending the stop request)
to verify a bounded-response property without additional
processes*/
/* bound = 202.5 ms, verification time 442.256s, memory
consumption ~1gb */
CT_Navigation.Stop_ --> (GotoPosition_1_Navigation.ether_
and CT_Navigation.x<=2025)

/* absence of (service) deadlock */
/* verification time 40 to 60s each, memory consumption
~250mb */
Man_navigate_Navigation.manage -->
Man_navigate_Navigation.start
Man_io_pom.manage --> Man_io_pom.start
Man_filter_pom.manage --> Man_filter_pom.start
Man_push_Localization.manage -->
Man_push_Localization.start
Man_plan_PotentialField.manage -->
Man_plan_PotentialField.start
Man_pilot_SafetyPilot.manage -->
Man_pilot_SafetyPilot.start

© Félix Ingrand, LAAS/CNRS, 2018

LAAS
CNRS

Verification with UPPAAL-SMC
✓ Statistical Model Checking extension to take into

account the probability transition in the service
automata

18

Functional Level

actual
velocityIMU

nhfc

Task: main 1ms
Services:
Init
Servo
Stop

cmd
velocity

desired
state

maneuverpom

state

mikrokopter

Task:
plan ap
Services:
Goto
WayPoint
TakeOff

Task:
exec 5ms
Services:
perm

Task: io 1ms
Services:
perm, add_me

Task: filter 1ms
Services:
perm

Task:
main 1ms
Services:
perm
calibrate_imu
start
servo
stop

Task:
comm ap
Services:
perm
connect
monitor

mocap
pose

optitrack
Task:
publish ap
Services:
Init
(pos updated
100Hz)

 codel<start> nhfc_main_start(…) yield init;
 codel<init> nhfc_main_init(…)yield pause::init, control;
 codel<control> nhfc_main_control(…)yield pause::control;
 codel<stop> mk_main_stop(…)yield ether;

nhfc: 1 transitions for main, from nhfc_start to nhfc_init.
nhfc: 134679 transitions for main, from nhfc_init to nhfc_pause_init.
nhfc: 1 transitions for main, from nhfc_init to nhfc_control.
nhfc: 379484 transitions for main, from nhfc_control to nhfc_pause_control.
nhfc: 1 transitions for main, from nhfc_stop to nhfc_ether.

nhfc: nhfc_main_start called: 1 times, wcet: 0.000293.
nhfc: nhfc_main_init called: 134680 times, wcet: 0.000018.
nhfc: nhfc_main_control called: 379484 times, wcet: 0.000035.
nhfc: mk_main_stop called: 1 times, wcet: 0.000019.

stop
mk_main_stop
0,019ms

Ether

start
nhfc_main

_start
0,293ms

pause

initial state

interrupt

end of execution cycle
interruption signal

init
nhfc_main

_init
0,018ms

control
nhfc_main
_control

0,035ms

pause

1

134679

1

379484
1

© Félix Ingrand, LAAS/CNRS, 2018

LAAS
CNRS

Fiacre Model
example:
Alternate Bit
Protocol

Buffer

idle

ooii

buf

pk

ii? pk
on not (full buf)
buf:=enq(buf,pk);

on not (empty buf)
oo! first buf
buf:=deq(buf);

wait [0,1]
on not (empty buf)

buf:=deq(buf);

Receiver

abufmbuf

rcve

ack

mbuf? m
if n=rsn then
rsn:= not rsn

abuf? m

rsn

m

Buffer

iioo

idle

buf

pk

ii? pk
on not (full buf)
buf:=enq(buf,pk);

on not (empty buf)
oo! first buf
buf:=deq(buf);

wait [0,1]
on not (empty buf)

buf:=deq(buf);

Sender

mbufabuf

ssn

n
idle

send

waita

idle

send

waita

wait]4,5]

mbuf! ssn

abuf? n
if n=ssn then
ssn:= not ssn

minp [0,0]

aout [0,1]

mout [0,1]

ainp [0,2]

19

© Félix Ingrand, LAAS/CNRS, 2018

LAAS
CNRS

ABP FIACRE example automatically translated
to Time Petri Net (TINA)

20

© Félix Ingrand, LAAS/CNRS, 2018

LAAS
CNRS

Functional Level

3IncludedFrenchDCTechnologies
Inadditiontotheopen-sourcematerial,somemethodsandtechnologieswillbeillustratedonthe
showcase.Fornow,thefollowingtechnologiesfromtheFranceDesignCenterareconsideredtobe
included:

•HAZOP-UML:themethodologywillbeillustratedononeortwooperationspecification;

•SMOF:monitorswillbesynthetizedfortwosafetyrules;

•MAUVE:animplementationofthesoftwarearchitectureusingtheMAUVEmiddlewarewill
beprovided,alongwithreal-timeanalysisresults;

•Genom:thedesignofthesoftwarearchitectureusingGenomwillbeprovided,alongwith
someanalysisresults;

•AltaRica:thedescriptionofthesafetyassessmentonapartofthefunctionnalarchitecture
willbedescribed.

4RoboticplatformfromONERA
TheplatformusedfortestingthesoftwarearchitectureisaRobotnikSummit-XLownedand
equippedbyONERA(figure1).TherobotisequipedwithaIMU(InertialMeasurementUnit),
aGPSsensor,Hokuyolasersensorsandavideocamera.

Figure1:Summit-XLequipedbyONERA

Theplaformdimensionsareshowninfigure2.

5MaterialHosting
AprojectonGitLabwillbecreatedundertheurlhttps://gitlab.com/osmosisinordertohost
documentationoftheshowcaseaswellasspecificgitprojectsforsources.

2

RobotDriverGPSDriver

Task:
update 100ms
Services:
SetParams*
ConnectDevice
Measure
Stop

Task:
odometry
25ms
Services:
TrackOdoS
tart
TrackOdoS
top

Task:
command
40ms
Services:
TrackSpee
dStart
TrackSpee
dStop

IMUDriver

Task:
Update 100ms
Services:
SetParams*
ConnectDevice
Measure
Stop

LaserDriver
Task:
scan 100ms
Services:
SetParams*
ConnectDevice
Scan
StopScan

Teleop

Teleop
Cmd

Task:
check 100ms
Services:
Teleop
Stop

joystick

Cmd

PotentialField

Scanodometry

Navigation

target

Localization/POM SafetyPilot

IMU

pose PFCmd

Nav
graph

Task:
plan 100ms
Services:
SetParams
StartTrackTargetPort
StopTrackTargetPort

Task:
pilot 40ms
Services:
SetParams*
Stop
SpeedMergeAnd
AvoidObstacles

Task:
navigate 200 ms
Services:
GotoPosition
GotoTarget
Stop

Task: io 10ms
Services:
perm, add_me

Task: filter
10ms
Services:
perm

Attribute Service
Function Service
Activity Service

GPS

RWLSensor
Task:
sense 200 ms
Services:
CheckLight
ResetLightsSeq
UnstowSensor
StowSensor

LightLvl

Lights

GenoM to Fiacre
A template that produces the Fiacre
model of any GenoM specification
example:

process timer (&tick: bool) is
states start
from start
wait [0.2,0.2];
tick := true;
to start

process Manager (&tick: bool, ...) is
states start, manage
from start
wait [0,0];
on tick;
tick := false;
if (...) /* no active activity */
then to start
else to manage end
from manage
wait [0,0];
... /* execute one active activity */
if (...) /* no more activities */
then to start
else to manage end

21

Model Checking with TINA
(on the TPN equivalent model)

© Félix Ingrand, LAAS/CNRS, 2018

LAAS
CNRS

Current GenoM V&V templates

The BIP model is complete, but has been a disappointment with respect to RT D-Finder

The BIP-PocoLibs/ROS model for the BIP Engine is complete and functional

The Fiacre template is complete and tested on numerous modules (model over multiple modules and ports
communication), UPPAAL has a slight performance advantage.

Between Fiacre and UPPAAL there are pros and cons (see M. Foughali’s PhD)

22

Offline Online 
PocoLibs

Online 
ROS

BIP -
RT D-Finder ++ ++

FIACRE ++ Under Dev Under Dev

UPPAAL +++

UPPAAL SMC ++

Middleware

Fo
rm

al

Fr
am

ew
or

ks

© Félix Ingrand, LAAS/CNRS, 2018

LAAS
CNRS

V&V of learned models…

23

[1] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D. Mané, “Concrete Problems in AI Safety,” arXiv.org, 1606.06565v2,
vol. cs.AI. 21-Jun-2016. http://arxiv.org/abs/1606.06565v2
[2] S. A. Seshia, D. Sadigh, and S. S. Sastry, “Towards Verified Artificial Intelligence,” arXiv.org, 1606.08514v3 vol. cs.AI. 28-Jun-2016. http://
arxiv.org/abs/1606.08514v3

Functional Level

NHFC

camera

Maneuver

GPS

POM

mikrokopter

actual
velocity

IMU

cmd
velocity

dist

desired
state

GPS
pose

state

Task:
main
Services:
Init
Servo
Stop

Task:
main
Services:
Monitor
Stop

Task:
plan
Services:
Init
Goto
WayPoint
TakeOff

Task:
main
Services:
Init

Task:
main
Services:
perm
calibrate_imu
start
servo
stop

Task:
comm
Services:
perm
connect
monitor

Task: io
Services:
perm, add_me

Task: filter
Services:
perm

Task:
exec
Service:
perm

Decisional Level

Observing

Monitoring

MODELS

Acting

Planning

Learned
Models

Learned
Models

Learned
Models

Machine learning is the new AI…

Hard to extract a formal model…  
but we should try

Proper environment modeling

Properly characterize the bound of the learned model

Use multiple sources to improve the confidence (sensor results fusion)

Consistency checking over different information channels

Safety bag around these components (run time verification)

http://arxiv.org/abs/1606.06565v2
http://arxiv.org/abs/1606.08514v3

© Félix Ingrand, LAAS/CNRS, 2018

LAAS
CNRS

Conclusion
When there are models… there is hope!

Adapt the model and the V&V techniques

Try to keep the overall consistency

AI components are mostly OK (wrt formal V&V)

V&V and certification of “learned model” based components
remain a challenge

24

LAAS
CNRS

© Félix Ingrand, LAAS/CNRS, 2018

Research agenda
FYI: NHTSA just allowed testing with cars without steering wheels… (level 4)

Deeper model (codel arguments, SDI, algo, check the codel, etc) & Run Time
Verification

Better linked models between functional level and decisional level (Planning/
Acting/Monitoring)

Address V&V of learned models

Human in the loop (uncontrollable model)

25

© Félix Ingrand, LAAS/CNRS, 2018

LAAS
CNRS

26

Thanks to

Verimag: Jacques Combaz, Saddek Bensalem  

LAAS: Anthony Mallet, Mohammed Foughali, Bernard Berthomieu,
Silvano Dal Zilio, Pierre Emanuel Hladik

Part of this work was funded by the H2020 European project CPSE Labs

