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EXPLAINABILITY CHALLENGE == .

« Kickoff : 2019 October 31%
» Team: 7 persons + 1 Phd + 2 researchers
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 State of the art document
» Audiences (Who ?)
« Explainability type of output (What ?)
* Problematics (Why ?)
» Design process (When ?)
* Industrial Uses-cases
» Toolboxes
« Mapping between the technics and the audience, problematics and industrial usecases
« State of the art description

e Current Results:

« Explainability toolbox
* Local
* Global
Metrics

* Notebooks to evaluate technics
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Why do we need Explanations

Build trust in the model prediction Bl

Elucidate important aspects of learned models [4

Help satisfy regulatory requirements and Certification process!!

NAYAYA

Reveal bias or other unintended effects learned by a model [2]

[1] Bryce Goodman & al. European union regulations on algorithmic decision-making and a"right to explanation".
[2] Finale Doshi-Velez & al. Accountability of ai under the law: The role of explanation

08/04/2021 [3] Gabriel Cadamuro & al. Debugging machine learning models
[4] Alfredo Vellido & al. Making machine learning models interpretable
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“What is a good explanation?”

Cascading randomization
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Confirmation bias.
Just because It makes sense to

humans doesn't mean it reflects the
evidence for prediction.

08/04/2021
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STATE OF THE ART OVERVIEW (1/2)

» Global explanations
* Transparency models
Features relevance explanations
Explanation by simplification
Internal analysis
Explanation by examples
Natively explainable models
* Models providing an explanation as output
» Building interpretable features
 Attention models
« Unsupervised learning for representation disentanglement

08/04/2021
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STATE OF THE ART OVERVIEW (2/2)

 Global explanations:
« Causality
* Formal methods

 Local explanation

* Validation:
* Metrics
» Explainability Robustness
 Link between Robustness and Explicability

08/04/2021

DEpendable & Explainable Learning



DE=L

DEpendable & Explainable Learning

RKING AXES

_RT ACRIAQ ANITI

L SAINT EXUPERY |
L4

ARTIFICIAL & NATURAL INTELLIGENCE

TOULOUSE INSTITUTE




© DEEL- All rights reserved to IVADO, IRT Saint Exupéry, CRIAQ and ANITI.

Confidential and proprietary document

2 MAIN AXES DEZ-L

« Research thematics:

« Goal: Develop research axes which are important for Deel project and which are not much
investigated in the research community

« Deel Explainability “Library”: Evaluation of existing technologies on our industrial usecases
» Goal: Create software suite and Jupyter notebook tutorials
« Tutorials are given to explain how Explainability techniques shall be used to analyse different industrial uses cases
* The techniques could be implemented in a DEEL library or relying on existing external toolboxes

08/04/2021




RESEARCH THEMATICS

 Qutcomes : Articles & source code

« Metrics / Explainability Robustness:
« 2 core team members

1 researcher
1 PhD student

* Formal methods

« 2 core team members
» Link to ANITI project

« Backlog:
» Causality
» Link between Robutness and Explainability
« Building interpretable features & Attention models

DE=L

DEpendable & Explainable Learning

Library for Global Explaination:
WWW.gems-ai.com
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http://www.gems-ai.com/

DEEL EXPLAINABILITY “LIBRARY" DE=L

Internal model analysis
* QOutcome: : — e

» Deel Explainability Library (source code) . :\ el A' g; o o
« Tutorials (Jupyter notebook) Rdreonstie I ‘ 5«1 o N Ao
* Feed back on industrial usecases =5 L,,, L. g Py e =
1 Internal Analysis ‘ First evaluation done
Building features/ attentions /
2 Unsupervised learning for ‘ 3 core team members
representation disentanglement
3 Formal methods ‘ 2 core team members
4 Inputs local Importance
> Causality VAE Evaluation on Deel Dataset
5 Link between explicability / Amount of pins
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REPRESENTATIVITY AND CONSISTENCY
MEASURES FOR DEEP NEURAL NETWORK

EXPLANATIONS




Properties of explainability D E E L

Fidelity

Representativity

Comprehensibility

Stability

<)

08/04/2021
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o no metrics associated

Does my explanation reflect the behavior of my model?

How many phenomena my explanation cover?

Is my explanation unambiguous and simple?

The degree to which similar explanations are generated from different models
trained on the same task.

Does my explanation remain the same under semantically invariant

transformation?

Does my explanation reflect the fact that explained instance is from a new region,
not contained or well represented in the training set?

Explanation in Artificial Intelligence: Insights from the social sciences (2019)

Explanation Methods in Deep Learning: Users, Values, Concerns and Challenges (2018) 21
Evaluating Explanation Without Ground Truth in Interpretable Machine Learning (2019)

Perturbation-Based Explanations of Prediction Models (2018)



METRICS MOTIVATIONS D E

DEpendable & Explainable Learn

Consistency
An explanation leading to predict y and 7y Is
Inconsistent.

Representativity
A model should not base an explanation on a single

sample.

08/04/2021 22
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TRAINING PROCEDURE

Split the dataset

08/04/2021
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V(.ﬁc,y) e D, VD, :x € D,, VDj:x¢Dj
T ={d(¢Y",¢29) | fp,(x) =y A fp,(x) =y}
Z ={d(¢2",¢27) | fp,(x) =y ® fp,(x) =y}

23
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RELATIVE CONSISTENCY
ReCo =max, TPR(v)+TNR(vy) —1
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MEAN GENERALIZABILITY

MeGe = 1+Ié[7']

08/04/2021
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EVALUATE METRIC IN FRONT OF MODELS DEGRADATIONS D E — L

DEpendable & Explainable Learning

ReCo scores for normally trained ResNet-18

Model - Dataset IG SG SA Gl GC

Cifarl0 0.107 0.154 0.151 0.088 0.637
Cifar100 0.018 0.132 0.131 0.004 0.800
EuroSAT 0.309 0.182 0.177 0.241 0.591

FashionMNIST 0.369 0.125 0.1 0.369 0.517

Me(e - randomized Me(Ge - switched
(.70 0.70

0.65

0.60 @ Integrated gradients
W= SmoothGrad

- Saliency

Gradient x Input
0.50 GradCAM

0.40

0.60

0.50

(.45

M

0.40

normal 5% 1[];" 30% normal 10%
randomized (% swnched %)
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OBSERVATIONS Fashion MNIST D E L

DEpendable & Explainable Learning

T
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OBSERVATIONS
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Table 2. ReC'o score obtained on Cifar10. Higher is better. Ohiiilmass

LIPSCHITZ

=
. -— T 3
9
0
= 5
L .
0

0.

NE=L

Original image Lipschitz SmoothGrad ResNet SmoothGrad E
- Learning

IG SG SA GI  GC  Shap

Lipschitz 0.598 0.898 0.81 0.5 0.668 0.38
ResNet-18  0.107 0.154 0.151 0.088 0.637 0.387

ResNet-18 Integrated gradients Lipschitz Integrated gradients

=
— T
Original image
| “2 | | | | -
0.2 0.4 0.6 0.8 L0

ReSNet'1 8 Sallency Llpschltz Sallency Original image Lipschitz SmoothGrad ResNt SmoothGrad

— = 5
AT .
:
)
)
. - 0

2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Lipschitz SmoothGrad
0.0 0.2 0.4 0.6 0.8

ResNet-18 SmoothGrad . Lipschitz SmoothGrad

0.4 0 0.8
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Preprint

https://arxiv.org/abs/2009.04521
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Generalization & Consistency Metrics from Deep Neural Network
Explanations

Metric team

Abstract

The adoption of machine learning in critical con-
texts requires a reliable explanation of why the
algorithm makes certain predictions. To address
this issue, many methods have been proposed to
explain the choices of these black box models.
Despite the choice of these many methods, little
effort has been made to ensure that the explana-
tions produced are objectively relevant. While it is
possible to establish a number of desirable proper-
ties. it is more difficult to associate an evaluation
with these properties, i.c. an objective metric to
quantify them. As a result, no metries are actually
associated with the properties of consistency and
generalization of explanations. We are introduc-
ing 4 new procedure fo compuie two new mefrics,
Relative Consistency ReCo and Mean General-
ization MeGe, respectively for consistency and
generalization. Our results on several image clas-
sification datasets, and on several progressively
degraded models allow us to validate cmpirically
the reliability of these metrics, and reflect quali
tive obscrvations reported in previous works. We
then put these metrics into practice by applying
them to different families of models, revealing an
interesting link between gradient-based explana-
tions methods and Lipschitz networks.

L. Introduction

Machine learning techniques such as deep neural networks
have become indispensable in multiple domains such as
image classification, language processing and specch recog-
nition. These techniques have achieved excellent predictive

However, their advantages come with major drawbacks, es-
pecially concerning the difficulty of interpreting their deci-
sions, and they are considered as black box models (Lipton,
2016). This problem is a very serious obstacle to the adop-
tion of these systems in a so-called eritical context such as
aeronautics or medicine, and it is widely recognized that
this adoption will not occur without proper explanations of
how these models take decisions.

Recently, many strategics have been proposed to help users
understand the underlying logics that led these models to a
particular decision. Some work (Adebayo et al., 2018; Ghor-
bani et al., 2017) has shown the potential pitfalls associated
with current interpretation methods. While some methods
offer explanations that are satisfactory to users, they do not,
however, reflect the real functioning of the model. The inter-
pretability that was intended to provide confidence, is itself
questionable.

These observations have given rise to a need for an objective
assessment of the explanations produced by these methods,
thus enabling benchmarks and points of reference o be
established. To do this, one approach advocated by various
works is to ensurc that the explanations satisfy a certain
number of properties (or axioms), such as fidelity, stability,
generalization or consistency. Since some works propose an
exhaustive list of these properties, a good explanation could
then be defined as quantitatively satisfactory according to
a coherent set of measurements specific to cach of these
properties.

The machine learning community has responded to this
need by proposing several metrics according to some of
these properties. Most of these metrics consist of removing
critical features from the input and measuring the prediction
gap of the classifier, and some variants such where the mod-
els need to be re-trained to ensure this gap does not come

capability, allowing them to match human perf in
many cases

'F||||.'|| contribution 'IRT Saint Exupery, DEEL, Toulouse,
France “IRIT, Université de Toulouse, CNRS. Correspondence
1o: Thomas Fel <thomasfel @irt-saintexupery.com:

Proceedings of the 35" International Conference on Machine
Learning. Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

from a ger & Hansen, 2020; Hooker
etal,, 2018). Another strategy is 1o evaluate the sensitivity
of the explanation to the vicinity of a point of interest, or
by making sure that the explanation remains the same under
semantically invariant transformations (Ancona et al., 2017),
Although these two strategies are promising approaches for
quantifying the fidelit of an explanation, there
are still number of desirable properties that currently lack
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