A Pinch of XAI from a KR Perspective

Pierre Marquis and the EXPEKCTATION team (Gilles Audemard, Steve Bellart, Louenas Bounia, Frédéric Koriche, Jean-Marie Lagniez)

> CRIL, Université d'Artois & CNRS Institut Universitaire de France

Perspectives et défis de l'IA : journée "explicabilité", organisée par l'AFIA, April 8th 2021

 Progress in ML techniques has revolutionized vision, speech, language understanding, and other fields for the past decade

- Progress in ML techniques has revolutionized vision, speech, language understanding, and other fields for the past decade
- Classification (defining C : X → Y from T ⊆ X × Y) is a major task

- Progress in ML techniques has revolutionized vision, speech, language understanding, and other fields for the past decade
- ▶ Classification (defining $C : X \to Y$ from $T \subseteq X \times Y$) is a major task
- Many families of predictors (alias ML models) have been investigated so far
 - Decision trees
 - Decision lists
 - Random forests
 - Bayes nets
 - Neural networks (of many different types)

- Progress in ML techniques has revolutionized vision, speech, language understanding, and other fields for the past decade
- ▶ Classification (defining $C : X \to Y$ from $T \subseteq X \times Y$) is a major task
- Many families of predictors (alias ML models) have been investigated so far
 - Decision trees
 - Decision lists
 - Random forests
 - Bayes nets
 - Neural networks (of many different types)

However, efficient predictors are often black boxes

- However, efficient predictors are often black boxes
- This is an issue for a number of applications (e.g., in medicine)
 - The classifier should explain the predictions made:

- However, efficient predictors are often black boxes
- This is an issue for a number of applications (e.g., in medicine)
 - The classifier should explain the predictions made:

The classifier should be amenable to inspection (e.g., ensuring that the predictions made are not biased is expected)

- However, efficient predictors are often black boxes
- This is an issue for a number of applications (e.g., in medicine)
 - The classifier should explain the predictions made:

- The classifier should be amenable to inspection (e.g., ensuring that the predictions made are not biased is expected)
- The ability of providing explanations is required in Europe since May 2018 (GDPR, Recital 71)

- However, efficient predictors are often black boxes
- This is an issue for a number of applications (e.g., in medicine)
 - The classifier should explain the predictions made:

- The classifier should be amenable to inspection (e.g., ensuring that the predictions made are not biased is expected)
- The ability of providing explanations is required in Europe since May 2018 (GDPR, Recital 71)
- ► The XAI field: explaining predictions, verifying predictors
- A major topic in AI for a couple of years

- Explanations take much of the time a symbolic form: they are based on concepts expressed in some language
- Explaining is basically a multi-faceted reasoning activity (abduction, diagnosis, postdiction, goal regression, etc.)
- Explaining is a social process, a model of the explainee (the concepts she knows, the beliefs she has, etc.) must be taken into account
- Human beings have limited knowledge and are not perfect reasoners (the structure, the size, the concepts used in explanations make them more or less intelligible)

Reasoning about knowledge in theory ... and in practice!

- Reasoning about knowledge in theory ... and in practice!
- Much progress in SAT solving for the past 20 years
- Used in AI and outside AI (formal verification, software engineering, etc.)
- Can be leveraged for solving computationally harder problems
- The era of deep solving (alias beyond NP) has got started

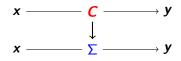
A major topic of the research project developed at CRIL for 2020-2024

- A major topic of the research project developed at CRIL for 2020-2024
- The ANR AI chair EXPEKCTATION (started from September 2020)
 - www.cril.fr/expekctation/
 - Leveraging KR techniques (especially knowledge compilation) for XAI
 - From the theory side to the practical side

- A major topic of the research project developed at CRIL for 2020-2024
- The ANR AI chair EXPEKCTATION (started from September 2020)
 - www.cril.fr/expekctation/
 - Leveraging KR techniques (especially knowledge compilation) for XAI
 - From the theory side to the practical side
- The TAILOR project ("Trustworthy AI Integrating Learning, Optimisation and Reasoning"), an H2020 ICT-48 European network of AI excellence centres

From Black Boxes to White (Transparent) Boxes

Key observation: XAI tasks about a predictor C can be delegated to a circuit Σ ∈ L exhibiting the same input-output behaviour as C



- In this approach C has been learnt first (both its hyper-parameters and its parameters are set)
- Boolean circuits or arithmetic circuits Σ can be targeted
- ► The translation from **C** to Σ is done once for all: the same Σ can be used for all the $x \in X$

- Defining encodings to go from C to Σ for several families of classifiers
- Defining XAI queries of interest
- Identifying the computational complexities of those queries depending on the language *L* used to represent Σ
- Showing how the XAI queries can be addressed by combining queries and transformations over Boolean circuits Σ
- Exhibiting sufficient conditions on *L* for ensuring tractability of XAI queries
- \blacktriangleright Pointing out KC languages $\mathcal L$ satisfying those conditions
- Designing techniques to derive intelligible explanations

Several encodings have been defined so far to associate classifiers from several families with Boolean or arithmetic circuits

- Decision trees
- Random forests
- Bayes nets
- Binary neural networks

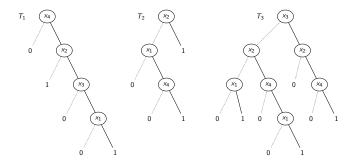
A Toy Example: The Flower Power

Recognizing *Cattleya* orchids using the following features:

- x₁: "has fragrant flowers"
- x₂: "has one or two leaves"
- ► x₃: "has large flowers"
- x₄: "is sympodial"
- ▶ *x*₅: "has white flowers"

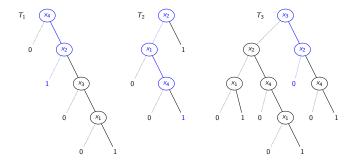
A Toy Example: The Flower Power

- $X = \{x_1, x_2, x_3, x_4, x_5\}$ (Boolean features)
- $Y = \{y\}$ (Boolean label: 1 for Cattleya orchids)
- $C = \{T_1, T_2, T_3\}$ (random forest)



 x_1 : "has fragrant flowers" x_2 : "has one or two leaves" x_3 : "has large flowers" x_4 : "is sympodial" x_5 : "has white flowers"

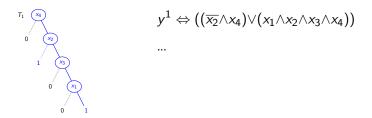
Is $\mathbf{x} = (1, 0, 1, 1, 1)$ a Cattleya orchid?



Yes, $\boldsymbol{C}(\boldsymbol{x}) = 1$ since 2 decision trees (T_1, T_2) of \boldsymbol{C} (out of 3) agrees with it

From the Black Box C to a White Box Σ

- Introducing auxiliary variables: One per class plus one per class and decision tree (here, 3 new variables)
- Encoding each decision tree of C



• Encoding majority voting: $y \Leftrightarrow (y^1 + y^2 + y^3 \ge 2)$

- Explanation queries: explaining why x has been classified by C as such, or not classified by C as expected
- Verification queries: determining the extent to which classes as identified by *C* comply with the expectations of the user

Explanation queries

- Computing sufficient reasons
- Computing counterfactual (contrastive) explanations
- ► ...

Verification queries

- Identifying irrelevant features for a given class
- Identifying mandatory / forbidden features for a given class
- Identifying monotone features for a given class
- Measuring the frequency of features in a given class
- Counting the instances associated with a given class
- Measuring how much classes are close to each other

Sufficient reasons

- A sufficient reason for x given C is a minimal subset t of the characteristics of x such that every instance x' that agrees with them is classified by C in the same way as x
- $x_1 \wedge x_4$ is a sufficient reason for $\boldsymbol{x} = (1, 0, 1, 1, 1)$ given \boldsymbol{C}

Counterfactual explanations

A counterfactual explanation for x given C is a minimal subset t of the characteristics of x such that the instance x' obtained by flipping t in x is classified by C in a different way than x
x = (0,1,1,0,0) is not recognized as a Cattleya orchid by C
x₄ is a counterfactual explanation for x = (0,1,1,0,0) given C since x' = (0,1,1,0) is recognized as a Cattleya orchid by C

Irrelevant features

- ► x_i ∈ X is irrelevant for C when flipping it in any instance x does not change the way x is classified by C
- ▶ x₅ is irrelevant for **C**

Mandatory features

- ► $x_i \in X$ is mandatory for the class of positive (resp. negative) instances associated with C when every instance x such that C(x) = 1 (resp. 0) contains the characteristics x_i
- x₄ is mandatory for the class of positive instances associated with C

18

Monotone features

- ▶ $x_i \in X$ is monotone for the class of positive (resp. negative) instances associated with C if for every instance x that does not contain the characteristics x_i and is such that C(x) = 1 (resp. 0), the instance x' that coincides with x but contains the characteristics x_i is such that C(x) = 1 (resp. 0)
- x₁, x₂, x₃, x₄ are monotone features for the class of positive instances associated with *C*

Frequent features

- ► The frequency of x_i ∈ X in the class of positive (resp. negative) instances associated with C is the number of positive (resp. negative) instances that contain the feature, divided by the number of positive (resp. negative) instances
- The frequency of x₃ in the class of positive instances associated with C is

$$\frac{6}{10} = \frac{3}{5}$$

XAI Queries from the Computational Side

- Using Σ to address the queries over \boldsymbol{C}
- Computational problems of various types (decision, counting, enumeration, etc.)
- Theorem XAI queries are NP-hard in the broad sense when Σ is any Boolean classification circuit
- Three questions arise then
 - Does the complexity of some queries fall down when Σ results from the encoding of a classifier from a given family?
 - How much inconvenient is this intractability result from the practical side?
 - How to circumvent this intractability?
- The complexity of XAI queries (and the interpretability of ML models) turns out to heavily depend on the model at hand

20

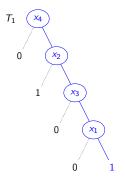
Because a direct reason can be associated with each prediction made, that explains it somehow



- The direct reason for $\mathbf{x} = (1, 1, 1, 1, 1)$ given T_1 is $x_1 \land x_2 \land x_3 \land x_4$
- It can be computed in linear time given x and T₁
- It does not always coincide with a sufficient reason
- $x_1 \wedge x_3 \wedge x_4$ is a sufficient reason for $\mathbf{x} = (1, 1, 1, 1, 1)$ given \mathcal{T}_1

Decision Trees are Interpretable Models ... for Many More Reasons!

Theorem XAI queries are in P when Σ corresponds to a decision tree



For decision trees, computing a sufficient reason from the direct reason in polynomial time using a greedy algorithm

One can efficiently derive $x_1 \wedge x_3 \wedge x_4$ from $x_1 \wedge x_2 \wedge x_3 \wedge x_4$

 x_1 : "has fragrant flowers" x_2 : "has one or two leaves" x_3 : "has large flowers" x_4 : "is sympodial" x_5 : "has white flowers"

What about Other Families of Classifiers?

- They appear as far less interpretable than decision trees
- Theorem XAI queries are NP-hard in the broad sense when Σ corresponds to
 - a decision list

▶ ...

- a random forest
- a binary neural network

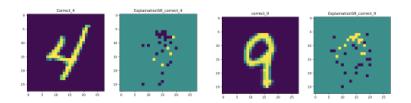
- Is the game over? Not really ...
- Intractability (NP-hardness) is likely to preclude the existence of a polynomial-time (deterministic) algorithm for solving the XAI query
- It concerns the worst case scenario, but le pire n'est pas toujours sûr ...
- Experiments are needed

Example: Deriving Sufficient Reasons given Random Forests

- Computing a sufficient reason for an input instance given a random forest is NP-hard
- Sufficient reasons can nevertheless be characterized using automated reasoning concepts
- This paves the way for deriving sufficient reasons using SAT solvers, which can prove very efficient in practice
- Experiments have been made
- Generating random forests using Scikit-learn for many standard datasets (coming from open ML, Kaggle or the UCI repository)
- Computing sufficient reasons for many instances
- Distribution of the computation times

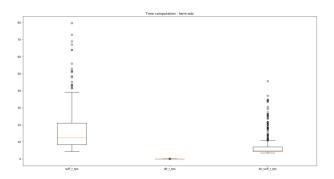
Though computing sufficient reasons is NP-hard, this looks as feasible in practice in a number of cases

- Separating "4" from "9" in MNIST dataset (28 × 29 = 784 pixels, viewed as binary features)
- Using a random forest consisting of 10 decision trees (accuracy: 88%)



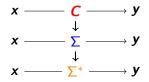
More on Computing Reasons

- A dataset based on more features: Farm-ads (54 877 binary features)
- Using a random forest consisting of 100 decision trees (accuracy: 92,7%)
- Statistics based on 400 instances



How to Make an XAI Query Tractable?

- \blacktriangleright Translating the circuit Σ into a more tractable form
- A matter of knowledge compilation!
- Principle:
 - Turn Σ into another data structure Σ* during an off-line phase (done once)
 - Solve the XAI queries using Σ* instead of Σ, the other inputs (instances, features, class) varying



Identify for each XAI query a set of KC queries and transformations that, when offered, are sufficient to make the XAI query tractable

► Queries

- CO: consistency
- ME: model enumeration
- IM: prime implicant
- EQ: equivalence
- SE: sentential entailment
- CT: model counting
- OPT: optimization

Transformations

- CD: conditioning
- FO: forgetting
- ► ∧BC: bounded conjunction
- OPT: optimization
- ADC: decomposable conjunction

XAI query	Tractability conditions on ${\cal L}$	Candidate languages ${\cal L}$
EMC DPI ECO CIN EIN CAM EAM MFR IMA IIR IMO MCJ MCH MCP	CD, OPT, ME CD, FO, IM CD, OPT, ME CD, CT CD, ME CD, CT CD, CT CD, CC CD, FO, EQ CD, FO, SE CD, CT CD, CD, CT CD, △BC, △DC, OPT, ME CD, OPT, ME	DNNF (*) Decision-DNNF DNNF d-DNNF DNNF d-DNNF d-DNNF (*) structured Decision-DNNF (*) structured Decision-DNNF d-DNNF structured DNNF bNNF

One Step Further: From Explanations to Intelligible Explanations

Intelligibility is a matter of

 \blacktriangleright structure: explanations must be structurally simple \checkmark

One Step Further: From Explanations to Intelligible Explanations

Intelligibility is a matter of

- structure: explanations must be structurally simple \checkmark
- size: explanations must be short
 - George Miller (1956): "The magical number seven, plus or minus two: Some limits on our capacity for processing information"
 - When human beings "chunk" items (i.e., group them together as a unit), due to human memory limitations, the size of chunks is limited to 7, plus or minus 2
 - Ever since then, many experiments in cognitive science have confirmed this limitation

One Step Further: From Explanations to Intelligible Explanations

Intelligibility is a matter of

- structure: explanations must be structurally simple \checkmark
- size: explanations must be short
 - George Miller (1956): "The magical number seven, plus or minus two: Some limits on our capacity for processing information"
 - When human beings "chunk" items (i.e., group them together as a unit), due to human memory limitations, the size of chunks is limited to 7, plus or minus 2
 - Ever since then, many experiments in cognitive science have confirmed this limitation

concepts involved: explanations must be understandable

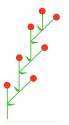
The Sizes of the Reasons for Decision Trees

Dataset	#1	#F	%A	#B	#DR	#SR
Dataset	#1	#F	'nА	#D	#DR	#3K
Ad-data	3279	1558	96.58	141.1	33.8±14.9	30.3±10.7
Adult	48842	14	81.41	2973.2	17.4±5.9	16.5 ± 5.1
AllBooks	590	8266	71.02	88.8	15.0 ± 13.5	14.1 ± 12.1
Arcene	200	10000	73.00	11.7	4.1±0.9	4.1±0.9
Christine	5418	1636	62.77	419.0	16.1 ± 9.1	15.8 ± 9.1
CNAE	1079	856	86.00	113.9	14.5 ± 13.7	13.7 ± 12.5
Dexter	600	20000	86.50	36.2	7.2±2.8	6.9 ± 2.8
Dorothea	1150	100000	90.70	32.1	16.7±3.9	16.6 ± 4.2
Farm-ads	4143	54877	86.75	264.6	25.9 ± 21.4	24.7 ± 20.6
Gina	3153	970	87.54	164.5	14.4 ± 6.4	14.3 ± 6.5
Gina-p	3168	970	86.77	186.7	13.4±4.7	13.3 ± 4.7
Gina-a	3468	784	85.29	186.0	13.9 ± 5.9	13.8 ± 6.0
Gisette	7000	5000	93.67	173.3	25.2±10.4	25.0±10.5
Madelon	2600	500	76.00	181.9	10.6 ± 3.5	10.4 ± 3.6
Malware	6248	1084	99.09	43.0	7.3±1.6	7.1±1.4
p53mutant	31420	5407	99.36	85.1	37.4±4.7	37.4±4.8
Pd-speech	756	755	81.10	44.3	11.2±5.2	10.9 ± 5.3
Reuters	2000	249	92.05	89.8	16.7±6.3	16.4±6.3
Shuttle	58000	9	99.98	32.3	7.2±1.7	7.2±1.7
Spambase	4601	58	92.05	261.1	15.9 ± 6.3	15.3 ± 6.1

Results for 20 datasets. For each dataset, we indicate the number of instances (#I), the number of features (#F), the mean accuracy over the 10 decision trees (%A) that have been generated, the average number of binary features they are based on (#B). The average size is provided for direct reasons (#DR) and sufficient reasons (#FR).

About the Concepts Involved in Explanations

- Explanations are expected to be based on concepts that are understandable
- ▶ $x_1 \land x_4$ is a sufficient reason for $\mathbf{x} = (1, 0, 1, 1, 1)$ given the random forest \mathbf{C} considered at start
- x₄ means "is sympodial"
- Is this helpful for you?
- "The stem has a zigzag form" must be better!



About the Concepts Involved in Explanations

- KR has developed concepts and tools to deal with reformulation
- Amounts to a definability issue
- A domain theory K defines a concept x in terms of a vocabulary U if and only if there exists a formula φ over U such that

 $K \models \varphi_U \Leftrightarrow x$

Next Steps: Much to Be Done!

...

- Defining new encodings dedicated to other families of classifiers (e.g., CNN)
- Implementing and evaluating programs for addressing other XAI queries for other families of classifiers
- Designing dedicated knowledge compilation techniques for XAI
- Developing open source libraries for XAI
- Taking advantage of them for specific applications (confiance.ai)
- Using KR techniques to better learn (e.g., the data frugality issue) and ML techniques to better reason

⇒ Developing approaches combining ML and KR techniques, to take the best of each, towards hybrid AI