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•Clinical trials: 
■ 30 patients 
■  30 minutes/day 
■ 3 weeks 

•Results: 
■Medical evaluation: Non inferiority of the robotic coach 

•Goal: 
■ increase the time patients spend exercising 
■ alleviate the lack of time a physiotherapist can spend 

monitoring a patient 
■ reduce difficulties of transport to the rehabilitation center  

•Proposition: 
■Embodied training companion to entice motivation through 

advice understandable by humans
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Multi-task learning

Model to learn : GSM : S         ➝   M
                                     Sound ⟼ Motor control of
                                                      mouth, vocal tract, lungs

Goal-oriented exploration : GIM : history ⟼ Sound sg

Moulin-Frier et al. Self-organization of early vocal development

• Producing a complex vocalization, sequencing two motor com-
mands interpolated in a dynamical system. It is encoded by a
18-dimensional motor configuration m ∈ M.

• Perceiving the 6-dimensional auditory consequence s =
f (m) + ϵ ∈ S, computed by an articularory synthesizer. f is
unknown to the agent.

• Iteratively learning a sensorimotor model from lots of (m, s)
pairs it collects by vocalizing through time. It is encoded in
a GMM GSM over the 24-dimensional sensorimotor space
M × S.

• Controling its vocal tract to achieve a particular goal sg . This
is done by computing GSM(M | sg), the distribution over the
motor space M knowing a goal to achieve sg .

• Actively choosing goals to reach in the sensory space S by learn-
ing an interest model GIM in the recent history of experiences.
By sampling in the interest distribution GIM(S), the agent
favors goals in regions of S which maximizes the competence
progress.

This agent is thus able to act at two different levels. At a high
level, it chooses auditory goals to reach according to its interest
model GIM maximizing the competence progress. At a lower level,
it attempts to reach those goals using Bayesian inference over its
sensorimotor model GSM , and incrementally refines this latter
with its new experiences. The combination of both levels results
in a self-exploration algorithm (Algorithm 1).

The agent starts in line 1 with no experience in vocalizing. Both
GMMs have to be initialized in order to be used. To do this, the
agent acquires a first set of (m, s) pairs, by sampling in M around
the neutral values of the articulators (see Figure 3). Regarding
the pressure and voicing motor parameters, we consider that the
neutral value is at −0.25, which leads to no phonation (recall
that both these parameters have to be positive for phonation to
occur, section 2.1). This models the fact that the agent does not
phonate in its neutral configuration, and has at least to raise the
pressure and voicing parameters to be able do do it. The agent
then executes this first set of motor configurations (mostly not
phonatory), observes the sensory consequences, and initializes
GSM with the corresponding (m, s) pairs using incremental EM.
GIM is initialized by setting the interest distribution GIM(S) to
the distributions of the sounds it just produced with this first
set of experiences. Thus, at the first iteration of the algorithm,
the agent tries to achieve auditory goals corresponding to the

Algorithm 1 | Self-exploration with active goal babbling (stochastic
SAGG-RIAC architecture).

1: initialise GSM and GIM

2: while true do
3: sg ∼ GIM(S)

4: m ∼ GSM(M | sg)

5: s = f (m) + ϵ

6: c = comp(sg , s)
7: update(GSM, (m, s))
8: update(GIM, (sg , c))
9: end while

sounds it produced during the initialization phase. Then, in the
subsequent iterations, the interest distribution GIM(S) reflects
the competence progress measure, and is computed as explained
above.

Line 3, the agent thus selects stochastically sg ∈ S with high
interest values. Then it uses GSM(M | sg) to sample a vocalization
m ∈ M to reach sg (line 4). The execution of m will actually pro-
duce an auditory outcome s (line 5), and a competence measure to
reach the goal, c = comp(sg, s), is computed (line 6). This allows it
to update the sensorimotor model GSM with the new (m, s) pairs
(line 7). Finally, it updates the interest model GIM (line 8) with
the competence c to reach sg

Algorithm 1 will be run and the results analyzed in section 3.1.

2.4. SOCIAL (OR IMITATION) SYSTEM
In language acquisition and vocalization, the social environment
plays naturally an important role. Thus we consider an active
speech learner that not only can self-explore its sensorimotor
space, but can also learn by imitation. In a second series of exper-
iments (section 3.2), we extend the previous model by integrating
the previous learning algorithm in the SGIM-ACTS architecture,
which has been proposed in Nguyen and Oudeyer (2012).

We consider here that the learning agent can use one of two
learning strategies, which it chooses adaptively:

• explore autonomously with intrinsically motivated goal
babbling, as described previously,

• or explore with imitation learning. We distinguish mimicry,
in which the learner copies the policies of others without
an appreciation of their purpose, from emulation, where
the observer witnesses someone producing an outcome, but
then employs its own policy repertoire to reproduce the out-
come, as formalized in Whiten (2000); Call and Carpenter
(2002); Nehaniv and Dautenhahn (2007); Lopes et al. (2010).
As the learner a priori can not observe the vocal tract
of the demonstrator, it can only emulate the demonstra-
tor by trying to reproduce the auditory outcome observed,
by using its own means, finding its own policy to repro-
duce the outcome. We consider that the demonstrator (the
social peer) has a finite set of auditory outcomes, and every
time the learner chooses to learn by social guidance, it
chooses at random an auditory outcome among the set to
emulate.

The learner can monitor the competence progress resulting
from using each of the strategies. This measure is used to
decide which strategy is the best progress niche at a given
moment: a strategy is chosen with a probability directly depend-
ing on its associated expected competence progress. Thus, com-
petence progress is used at two hierarchical levels of active
learning, forming what is called strategic learning (Lopes and
Oudeyer, 2012): at the higher-level, it is used to decide when
to explore autonomously, and when to imitate; at the lower-
level, if self-exploration is selected, it is used to decide which
goal to self-explore (as in the previous model). Since compe-
tence progress is a non-stationary measure and is continuously
re-evaluated, the individual learns to choose both the strategy

Frontiers in Psychology | Cognitive Science January 2014 | Volume 4 | Article 1006 | 10

Moulin-Frier et al., 2014

Which 
model ?

2. Computational Model of Motivation
Infant development of vocalisation

Nguyen Sao Mai - Journée AfIA ROBOTIQUE et INTELLIGENCE ARTIFICIELLE - 15/12/2020



Moulin-Frier, C. et al Self-organization of early vocal development

despite variations, most simulations begin with a mix of no phonation and unarticulated vocalizations, then mainly produce unarticulated
vocalizations, and often end up with articulated vocalizations.

This suggests that the agent explores its sensorimotor space by producing vocalizations of increasing complexity. The class no phonation is
indeed the easiest to learn to produce for two reasons: the rest positions of the pressure and voicing motor paramaters do not allow phonation
(both around �0.25 at the initialisation of the agent, line 1 of Algorithm 1) ; and there is no variations on the formant values, which makes
the control task trivial as soon as the agent has a bit of experience. There is more to learn with unarticulated vocalizations, where formant
values are varying in at least one part of the vocalization, and still more with articulated ones where they are varying in both parts (for the
first and second command).
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Figure 7. Vocalization class developmental sequence. At each time step t (x-axis), the percentage of each vocalization class between t and t + 30.000 is
plotted (y-axis), in a cumulative manner. Vocalization classes are defined section 2.1.3.

Types of Sounds Produced Stage I Stage II Stage III Stage IV
No phonation-Unarticulated 7 0 2 0
Unarticulated 0 7 0 3
Articulated 0 2 4 0
Other 2 0 1 0

Table 1. Count of vocalization stages in the 9 simulations of the supplementary data. The types of sounds produced correspond to the most prominent class
in a given stage, where stages are manually set as described in the supplementary data, and where “No phonation-Unarticulated” means a mix between No
phonation and Unarticulated classes in that stage. A number x in a cell means this type of vocalizations (row) appears x times at the nth stage of development
(column) in the set of 9 simulations. Two to four developmental stages were identified in each simulation, explaining why “Stage I” and “Stage II” columns
sum up to 9 (the total number of simulations), but not “Stage III” and “Stage IV” columns.

Figure 8 shows what happens in the particular simulation of Figure 7 in more details. The variables are in three groups (horizontal red
lines): the goals chosen by the agent in line 3 of Algorithm 1 (top group), the motor commands it inferred to reach the goals using its inverse
model in line 4 (middle group), and the actual perceptions resulting from the motor commands through the synthesizer in line 5 (bottom
group). There are two columns (1st and 2nd), because of the sequential nature of vocalizations: a goal is a sequence of two points in the
auditory space, a motor command is a sequence of two motor commands (called m1 and m2 in section 2.1) inferred from the sensorimotor
model, and a perception is a sequence of two reached points in the auditory space. Each subplot shows the density of the values taken by each
parameter (y-axis) over the life time of the agent (x-axis, in number of vocalizations since the birth). It is computed using an histogram on
the data (with 100 bins per axis), on which we apply a 3-bins wide Gaussian filter. The darker the color, the denser the data: e.g. the auditory
parameter I actually reached by the second command (I(2), last row in ‘Reached”, 2nd column), especially takes values around 0 (y-axis)
until approximately 150.000th vocalization (x-axis), then it takes rather values around 1.

This developmental sequence is divided into 3 stages, I, II and III, stages being separated by vertical dark lines on Figure 8, identical on
each subplot.

In stage I, until approximately 30.000 vocalizations, the agent produces mainly no phonation and unarticulated vocalizations. We observe
that the agent set goals for I(1) either around 0, either around 1, whereas the goals for I(2) stay around 0 (last row in “Goals”). By trying to
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str ∈ {autonomous_exploration, social_guidance} and the auditory
goals sg ∈ S to target, by choosing which combination enables
highest competence progress.

For the particular implementation of SGIM-ACTS of this
paper, we use the same formalism and implementation as in
Algorithm 1 and consider that the strategy is another choice
made by the agent. This leads to Algorithm 2, where the interest
model GIM now learns an interest distribution as in section 2.3.
The difference is that the space of interest is now the union
of the strategy space {autonomous_exploration, social_guidance}
and the auditory space S. We call StrS this new space StrS =
{autonomous_exploration, social_guidance}× S . Hence GIM is
a distribution over StrS (Algorithm 2, line 3). If the self-
exploration strategy is chosen (str = autonomous_exploration),
the agent acts as in Algorithm 2. If the social guidance strategy
is chosen (str = social_guidance, line 4), the learner then emu-
lates an auditory demonstration sg ∈ S chosen randomly among
the demonstration set of adult sounds (line 5), overwriting sg
of line 3. It then uses its sensorimotor model GSM to choose a
vocalization m ∈ M to reach sg , by drawing according to the dis-
tribution GSM(M | sg) (line 7), as in the self-exploration strategy.
The execution of m will produce an auditory outcome s (line
8), from which it updates its models GIM and GSM (lines 10
and 11).

Thus, this new exploration algorithm is augmented with yet
another level of learning, allowing to choose between different
exploration strategies. This strategy choice moreover uses the
same mechanism as the choice of auditory goals, by means of the
interest model GIM .

Algorithm 2 will be run and the results analyzed in
section 3.2.

3. RESULTS
The results of our experiments are presented in this section.
We first run experiments where our agent learns in a pure
self-exploration mode (Algorithm 1), without any social environ-
ment or sounds to imitate. In a second time, we introduce an
auditory environment to study the influence of ambient language
(Algorithm 2).

Algorithm 2 | Strategic active exploration (active goal babbling and
imitation with stochastic SGIM-ACTS architecture).

1: Initialize GSM and GIM

2: while true do
3: (str, sg) ∼ GIM(StrS)

4: if (str = social_guidance) then
5: sg ← random auditory demonstration from the ambient language
6: end if
7: m ∼ GSM(M |sg)

8: s = f (m) + ϵ

9: c = comp(sg , s)
10: update(GSM, (m, s))
11: update(GIM, (str, sg , c))
12: end while

3.1. EMERGENCE OF DEVELOPMENTAL SEQUENCES IN AUTONOMOUS
VOCAL EXPLORATION

We ran 9 independent simulations of Algorithm 1 with the same
parameters but different random seeds, of 240, 000 vocalizations
each 4. Most of these 9 simulations display the formation of a
developmental sequence, as we will see. Before describing the reg-
ularities and variations observed in this set of simulations, let us
first analyse a particular one where the developmental sequence
is clearly observable. Figure 7 exhibits such a simulation. We
observe three clear developmental stages, i.e., three relatively
homogeneous phases with rather sharp transitions. These stages
are not pre-programmed, but emerge from the interaction of the
vocal productions of the sensorimotor system, learning within the
sensorimotor model, and the active choice of goals by intrinsically
motivated active exploration. First (until ≃30, 000 vocaliza-
tions), the agent produces mainly motor commands which results
in no phonation or in unarticulated vocalizations (in the sense of
the classes defined section 2.1.3). Second (until≃150, 000 vocal-
izations), phonation almost always occurs, but the vocalizations
are mostly unarticulated. Third, it produces mainly articulated
vocalizations.

The visualization of the developmental sequence of the 9
independent simulations, provided Figure A2 in the Appendix,
shows important interindividual variations whereas initial con-
ditions are statistically similar due to initialization in line 1 of
Algorithm 1. These variations can be understood through the

Unarticulated
Articulated

FIGURE 7 | Self-organization of vocal developmental stages. At each
time step t (x-axis), the percentage of each vocalization class between t
and t + 30, 000 is plotted (y-axis), in a cumulative manner (sum to 100%).
Vocalization classes are defined in section 2.1.3. Roman numerals shows
three distinct developmental stages. I: mainly no phonation or unarticulated
vocalizations. II: mainly unarticulated. III: mainly articulated. The boundaries
between these stages are not preprogrammed and are here manually set
by the authors, looking at sharp transitions between relatively
homogeneous phases.

4Each simulation involves several hours of computing on a desktop computer,
due to the complexity of Algorithm 1, in particular in the Bayesian inference
and update procedures.
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both in time (sound only for the first command) and space (around the neutral position), until it finally manages to phonate more globally at
the end of this stage. This could be correlated to the acquisition of articulated vocalizations. The percentages of vocalization belonging to
each vocalization class is provided in Table 3.

NN CN NC VN NV VV CV VC CC

4.0 % 26.9 % 0.1 % 62.2 % 0.1 % 3.4 % 0.5 % 2.5 % 0.2 %
Table 3. Percentage of vocalization classes produced in stage II of the studied developmental sequence.

Finally, in stage III (until 150.000 to the end), phonation almost always occurs during the perception time windows the vocalizations (see I
densities, both for goals and reached values). An example of such a VV vocalization can be observed in the supplementary data, Figure 18 in
section 4.1. This is much harder to achieve for two reasons: firstly because there is a need to control a sequence of 2 articulators movement in
order to reach two formant values in sequence (i.e. F1(1), F1(2), F2(1), F2(2)) instead of one in the previous stage (the second command
leading to no sound), and secondly because the position of the articulators reached for the second command also depend on the position of
the articulators reached for the first one (a kind of coarticulation due to the dynamical properties of the motor system). We observe that the
range of values explored in the sensorimotor space is larger than for the previous stage (both in motor and auditory spaces). The percentages
of vocalizations belonging to each vocalization class is provided in Table 4.

NN CN NC VN NV VV CV VC CC

1.6 % 3.7 % 0.1 % 12.1 % 0.8 % 67.5 % 6.5 % 6.8 % 0.8 %
Table 4. Percentage of vocalization classes produced in stage III of the studied developmental sequence.

3.2 INFLUENCE OF THE AUDITORY ENVIRONMENT

In a second set of experiments, we integrated a social environment providing a set of adult vocalizations. As explained in section 2.4, the
learner has an additional choice between exploring autonomously, or emulating the adult vocalizations. An “ambient language” is defined as
a set of two vocalizations. To make it coherent with human language and the learning process observed in the autonomous development, we
chose sounds corresponding to typical syllables, e.g. consonant-vowel sounds, or in our sensorimotor system, sounds corresponding to I1
with low values and I2 with high values.

Figure 9. Vocalizations of the learning agent in the early and mature stage of vocalization. a) All auditory outcomes s produced by the agent in its early
stage of vocalization are represented by blue dots in the 6-dimensional space of the auditory outcomes. The sounds of the environment are represented in
red circles. The auditory outcomes only cover a small area of auditory outcomes, and correspond mostly to I(2) = 0, which represent vowel-consonant
or consonant-consonant types of syllables. b) The auditory outcomes produced by the infant in its mature stage of vocalization cover a much larger area of
auditory outcomes.

Figure 9 shows a significant evolution in the agent’s vocalizations. In the early stage of its development, it can only make a few sounds.
Most sounds correspond to small values of I1(2), F1(1), F1(2), F2(1) and F2(2), and does not reproduce the ambient sounds of its
environment. In contrast, in later periods of its development, its vocalizations cover a wider range of sounds, with notably I(1) and I(2)
both positive, which means it now produces more articulated sounds. The development of vocalization for a self-exploring agent in the last
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both in time (sound only for the first command) and space (around the neutral position), until it finally manages to phonate more globally at
the end of this stage. This could be correlated to the acquisition of articulated vocalizations. The percentages of vocalization belonging to
each vocalization class is provided in Table 3.

NN CN NC VN NV VV CV VC CC

4.0 % 26.9 % 0.1 % 62.2 % 0.1 % 3.4 % 0.5 % 2.5 % 0.2 %
Table 3. Percentage of vocalization classes produced in stage II of the studied developmental sequence.

Finally, in stage III (until 150.000 to the end), phonation almost always occurs during the perception time windows the vocalizations (see I
densities, both for goals and reached values). An example of such a VV vocalization can be observed in the supplementary data, Figure 18 in
section 4.1. This is much harder to achieve for two reasons: firstly because there is a need to control a sequence of 2 articulators movement in
order to reach two formant values in sequence (i.e. F1(1), F1(2), F2(1), F2(2)) instead of one in the previous stage (the second command
leading to no sound), and secondly because the position of the articulators reached for the second command also depend on the position of
the articulators reached for the first one (a kind of coarticulation due to the dynamical properties of the motor system). We observe that the
range of values explored in the sensorimotor space is larger than for the previous stage (both in motor and auditory spaces). The percentages
of vocalizations belonging to each vocalization class is provided in Table 4.
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learner has an additional choice between exploring autonomously, or emulating the adult vocalizations. An “ambient language” is defined as
a set of two vocalizations. To make it coherent with human language and the learning process observed in the autonomous development, we
chose sounds corresponding to typical syllables, e.g. consonant-vowel sounds, or in our sensorimotor system, sounds corresponding to I1
with low values and I2 with high values.

Figure 9. Vocalizations of the learning agent in the early and mature stage of vocalization. a) All auditory outcomes s produced by the agent in its early
stage of vocalization are represented by blue dots in the 6-dimensional space of the auditory outcomes. The sounds of the environment are represented in
red circles. The auditory outcomes only cover a small area of auditory outcomes, and correspond mostly to I(2) = 0, which represent vowel-consonant
or consonant-consonant types of syllables. b) The auditory outcomes produced by the infant in its mature stage of vocalization cover a much larger area of
auditory outcomes.

Figure 9 shows a significant evolution in the agent’s vocalizations. In the early stage of its development, it can only make a few sounds.
Most sounds correspond to small values of I1(2), F1(1), F1(2), F2(1) and F2(2), and does not reproduce the ambient sounds of its
environment. In contrast, in later periods of its development, its vocalizations cover a wider range of sounds, with notably I(1) and I(2)
both positive, which means it now produces more articulated sounds. The development of vocalization for a self-exploring agent in the last
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Figure 11. Percentage of times each strategy is chosen with respect to the number of updates of the sensorimotor model GSM . These values have been
smoothened over a window of 100 updates. For t < 450, the agent mainly uses self-exploration strategy. When its knowledge enables it to make progress in
emulation, it chooses emulation strategy until it can emulate the ambient sounds well (and its competence progress decreases).

Figure 12. Vocalizations of the learning agent in the early and mature stage of vocalization in two different auditory environments. a and c) All auditory
outcomes produced by the infant in its early stage of vocalization are represented by blue dots in the 6-dimensional space of the auditory outcomes. The
sounds of the environment are represented in red circles. The auditory outcomes only cover a small area of auditory outcomes, and do not depend on the
demonstrations. b and d) The auditory outcomes produced by the infant in its mature stage of vocalization cover a larger area of auditory outcome, which
depend on the demonstrations.
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emulation, it chooses emulation strategy until it can emulate the ambient sounds well (and its competence progress decreases).

Figure 12. Vocalizations of the learning agent in the early and mature stage of vocalization in two different auditory environments. a and c) All auditory
outcomes produced by the infant in its early stage of vocalization are represented by blue dots in the 6-dimensional space of the auditory outcomes. The
sounds of the environment are represented in red circles. The auditory outcomes only cover a small area of auditory outcomes, and do not depend on the
demonstrations. b and d) The auditory outcomes produced by the infant in its mature stage of vocalization cover a larger area of auditory outcome, which
depend on the demonstrations.
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2. Computational Model of Motivation
Infant development of vocalisation
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3. Intrinsic Motivation for Hierarchical Learning
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Experimental setup 

•7 joints controlled by DMP 
•14 parameters primitives:  
•Outcome space:
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Evaluation 

Experimental setup
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•Multi-task Learning : policies of different complexities 
■Compound actions = sequences of primitive actions of 

adapted size 

•Discover and exploit the task hierarchy 
■Task-oriented combination of skills 

•Automatic Curriculum Learning 
■Goal Babbling 
■Active Imitation of several teachers 

Socially-Guided Intrinsic Motivation with Procedure Babbling 
(SGIM-PB)

Learning compound actions using task hierarchy
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Results: Evaluation performance 

•  
•  
•  
•  
•  
•  
•  
•  
•  
•  
•  
•  
•  
•  
•  
•Both learners with demonstrations outperform their teachers knowledge 
•SGIM-PB outperforms SGIM-ACTS showing the potency of procedural teachers 
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Which subgoals are associated to each task ? 

•SGIM-PB able to learn the task hierarchy 
•Even without teacher to help it for  

Results: Procedures learned
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•  

•SGIM-PB able to self-organize its learning process 

Results: Strategic choices
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•  

•Use mainly policies for simple tasks and procedures for most 
hierarchical 

Results: Strategic choices
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•Multi-task learning: 

■Procedures enable the discovery of task hierarchy 
■Transfer knowledge from easy tasks to complex 

tasks  
•Curriculum learning:  

■Choose easy tasks first 
■Choose the most adapted teachers for each task 

•Human demonstrations bootstrap learning 
■Policies for the simplest tasks 
■Procedures for the highest hierarchical and 

complex tasks 
■What, When, How, Whom to imitate ? 

Contributions
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