# Towards ergonomically enhanced robotic co-workers

# **Pauline Maurice**

CNRS – Loria – Team Larsen



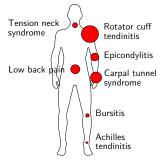
AFIA Journée Robotique et IA Interactions : Humains, Robots, Environnement

# Collaborative robotics: A physical assistance for complex tasks

# RobotHuman> Weight compensation> Technical expertise> Strength amplification> Decision> Guidance via virtual paths> Adaptability



# Physical Human-Robot Collaboration






#### Work-related musculoskeletal disorders: A major health issue

- Over 50 % of industrial workers worldwide
- 1st occupational disease in Europe
- Direct cost in France: > 830M€ a year
- Global cost in the US:  $\simeq$  \$50B a year

 Biomechanical risk factors: posture, effort, static work, repetitive work









# Human-robot collaboration is growing fast in multiple domains



How to design and control robots so that the physical collaboration is efficient, comfortable, and intuitive?

AFIA 2020

# Maximizing the benefit provided by a collaborative robot

Virtual ergonomics for collaborative robot design P. Maurice, V. Padois, Y. Measson, P. Bidaud

[Maurice et al., Int. J. of Industrial Ergonomics, 2017]

Activity recognition for automatic ergonomics assessment A. Malaisé, P. Maurice, F. Colas, S. Ivaldi

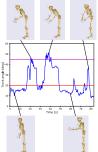
Exoskeletons to assist strenuous tasks
 P. Maurice, J. Čamernik, D. Gorjan, B. Schirrmeister, L. Tagliapietra, C. Latella, S. Ivaldi, J. Bornmann, D. Pucci, J. Babič
 N. Settembre, P. Maurice, J. Paysant, J. Theurel, L. Claudon, A. Kimoun, B. Levy, H. Hani, B. Chenuel, S. Ivaldi

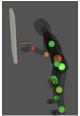


#### **Ergonomics worksheets**

- Global level of risk
- Task-specific: no robot




| If 2 kg to 10 kg (intermittent): +1;              |                    |
|---------------------------------------------------|--------------------|
| If 2 kg to 10 kg (static or repeated): +2;        | Force/load Score = |
| If more than 10 kg load or repeated or shocks: +3 |                    |


| Standing (and walking) |      |                                                                        | Kneeling or crouching                                 |    |    |                                 |  |
|------------------------|------|------------------------------------------------------------------------|-------------------------------------------------------|----|----|---------------------------------|--|
| 1                      |      | Standing & walking in alteration, standing with support                |                                                       | 12 | 22 | Upright                         |  |
| 2                      | LA - | Standing, no body support (for other<br>restrictions see Extra Points) |                                                       | 13 | 22 | Bent forward                    |  |
| 3                      | °}-∛ |                                                                        | Bent forward (20-60")<br>with suitable support        | 14 | 22 | Elbow at / above shoulder level |  |
| 4                      | 87)  | a<br>b                                                                 | Strongly bent forward (>60°)<br>with suitable support |    |    | -                               |  |

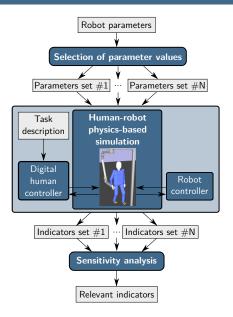
#### Biomechanical / physiological measures

- Generic
- Numerous local indicators

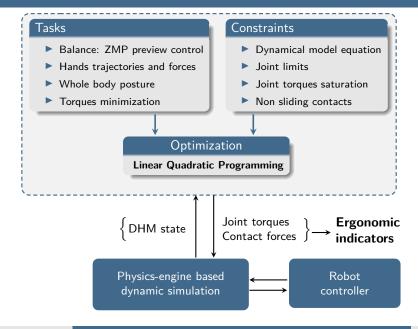






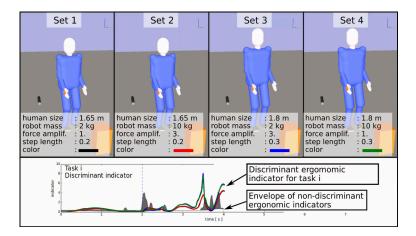

# Selecting task-specific indicators for ergonomics comparison of cobots

#### Sensitivity analysis


 Relevant indicators are the ones that vary the most

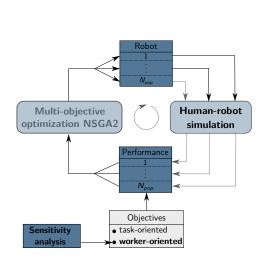
# Physics-based human-robot simulation

- Human control: Linear Quadratic Programming
- Autonomous simulation: no mocap needed
- Testing different human morphologies




# Simulating human-robot co-manipulation: A robotics-based DHM controller




# Automatic selection of relevant ergonomics indicators with H-R simulation

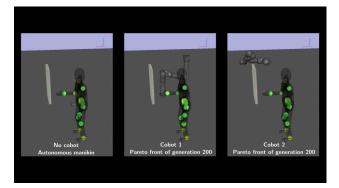
**Indicators:** position, velocity, acceleration, torque, power of right/left arm/back/legs, kinetic energy, balance, manipulability ...



#### 3 to 9 indicators selected among 30, represent >70% of variance

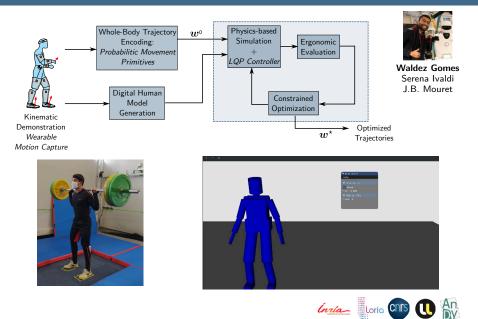
# Application: Optimal design of collaborative robots








#### **Optimization variables**


- Segments lengths L<sub>i</sub>
- Base position
- Base orientation

# Application: Optimal design of collaborative robots

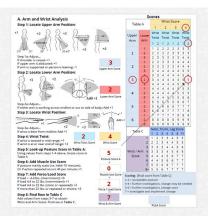


- Pre-selection of the best performing robots
- Human like aspect of simulated motion?

# On-going work: Postural optimization for cobot control






Virtual ergonomics for collaborative robot design

Activity recognition for automatic ergonomics assessment A. Malaisé, P. Maurice, F. Colas, S. Ivaldi [Malaisé et al., IEEE Robotics and Automation Letters, 2019] [Maurice et al., Int. J. of Robotics Research, 2019]

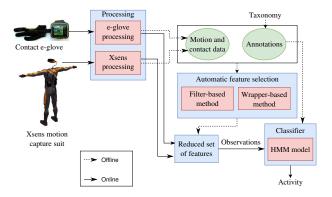
Exoskeletons to assist strenuous tasks



# Automatic assessment of ergonomics in industrial settings






Adrien Malaisé Serena Ivaldi Francis Colas

- Context: Reduction of work-related musculoskeletal disorders
- Goal: On-line warning, monitoring...
- Issue: Ergonomics is evaluated with pen-and-paper worksheets

#### Automatic identification of postures and actions with a reduced set of sensors

# Activity recognition with Hidden Markov Models

- Geometrical measures not sufficient: Time-series and contextual elements needed
   Machine learning based models (supervised)
- Industrial applications: Limit number of wearable sensors
   Feature selection methods



Posture: Based on the EAWS ergonomics assessment worksheet → Stand upright, stand bent forward, sit arms above head level...

| Star | Standing (and walking) |                                                                     |                                                         | Kneeling or crouching |                 |                                 |
|------|------------------------|---------------------------------------------------------------------|---------------------------------------------------------|-----------------------|-----------------|---------------------------------|
| 1    |                        |                                                                     | tanding & walking in alteration,<br>anding with support | 12                    | J.L.            | Upright                         |
| 2    |                        | Standing, no body support (for other restrictions see Extra Points) |                                                         | 13                    | 13 Bent forward |                                 |
| 3    | Z ~~~"                 | a                                                                   | Bent forward (20-60°)                                   | 14                    | 22              | Elbow at / above shoulder level |
| 3    |                        | b                                                                   | with suitable support                                   |                       |                 |                                 |
|      | مرکرہ                  | a                                                                   | Strongly bent forward (>60°)                            |                       |                 |                                 |
| 4    |                        | b                                                                   | with suitable support                                   |                       |                 |                                 |

► Action: Goal-oriented actions → Reach, carry, screw, idle...

#### Database

- 13 participants
- Series of 6 manual industry-inspired activities
- 5 hours of data

#### Sensors

- Xsens MVN inertial motion tracking suit
- Qualisys optical motion capture
- Sensorized e-glove
- 2 video cameras

#### Annotations

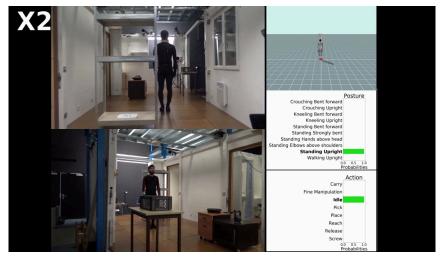
3 independent human annotators





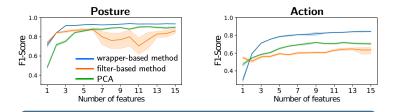









Publicly available database: https://zenodo.org/record/3254403


AFIA 2020

#### Automatic activity recognition: Demo



Code: https://github.com/inria-larsen/AnDy-demo-activity-recognition

#### Feature selection and recognition performance



Recognition only requires a small number of features

| Features              | Dimension | F1-Score Posture | F1-Score Action |
|-----------------------|-----------|------------------|-----------------|
| Dedicated set         | 4         | 91.84            | 75.65           |
| Dedicated set         | 8         | 92.72            | 81.00           |
| Mandery <i>et al.</i> | 4         | 30.63            | 23.75           |
| Mandery <i>et al.</i> | 8         | 67.22            | 55.12           |
| All                   | 779       | 89.30            | 81.39           |

#### A dedicated set of features gives better results

AFIA 2020

#### Motion prediction

 $\rightarrow$  Detect a dangerous movement in advance

Feedback device

 $\rightarrow$  Efficiently warn workers in real-time



Activity recognition for automatic ergonomics assessment A. Malaisé, P. Maurice, F. Colas, S. Ivaldi

#### Exoskeletons to assist strenuous tasks

P. Maurice, J. Čamernik, D. Gorjan, B. Schirrmeister, L. Tagliapietra, C. Latella, S. Ivaldi, J. Bornmann, D. Pucci, J. Babič
N. Settembre, P. Maurice, J. Paysant, J. Theurel, L. Claudon, A. Kimoun, B. Levy, H. Hani, B. Chenuel, S. Ivaldi

[Maurice *et al.*, IEEE. Trans. Neural Systems and Rehabilitation Engineering, 2019] [Settembre *et al.*, Annals of Physical and Rehabilitation Medicine, 2020]



#### Passive exoskeletons to assist industrial work are on the market



AirFrame Levitate Tech.



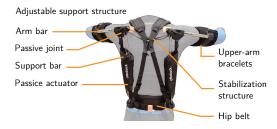
EksoVest Ekso Bionics



ShoulderX SuitX



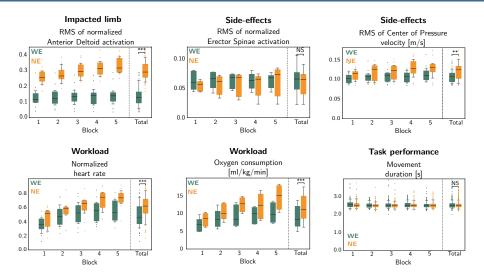
Paexo Shoulder Ottobock




Paexo back Ottobock

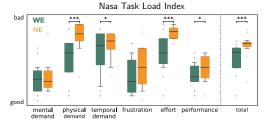


Laevo Laevo


# Overhead pointing task with Ottobock's passive exoskeleton PAEXO



- 12 participants
- With/without exoskeleton WE/NE
- Exoskeleton supports 100 % of arm weight when shoulder and elbow flexed at 90°




# Objective measures: Evaluation of the biomechanical benefit



PAEXO reduces fatigue without degrading task performance

### Subjective measures: Evaluation of users' opinion



#### Perceived workload

#### Users' opinion of exoskeleton

Technology acceptance score good bad attitude enjoyment ethics facilitating intention perceived perceived trust total toward condition to use ease usefulness system of use

#### Participants are positive about using the exoskeleton: all would use it again

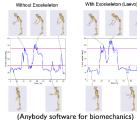
AFIA 2020

# Testing an exoskeleton to assist medical staff in ICU during Covid-19

# Prone-positioning of mechanically ventilated patients

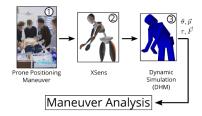
- First step: Pilot study at Hospital Simulation Center
- Second step: Feasibility tests in ICU at CHRU Nancy




Laevo low-back support passive exoskeleton



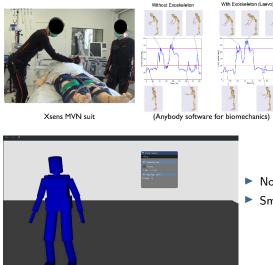
# Pilot study: Biomechanical and physiological evaluation


#### Kinematics analysis





Xsens MVN suit


# Torque analysis



- No modification of motion (practice)
- Small reduction of muscle effort

# Pilot study: Biomechanical and physiological evaluation

#### Kinematics analysis



- No modification of motion (practice)
- Small reduction of muscle effort

# ICU study: Feasibility and subjective evaluation

#### 2 physicians used the Laevo in ICU in April

- Feasible to use Laevo even in strict Covid conditions
- Laevo perceived helpful at head position (static posture)

#### Used again during second wave

Feedback from users: work in progress!



Passive exoskeletons provide limited support

Active exoskeletons are more powerful... ... but: how to predict human intention?







Plii













pauline.maurice@loria.fr