
The Longest Processing Time rule for

identical parallel machines revisited

Federico Della Croce1,2

1DIGEP - Politecnico di Torino, Italy

2CNR, IEIIT, Torino, Italy

AFIA / ROADEF - September 10, 2020

Outline

1 Introduction

2 Minimizing makespan on identical parallel machines and the LPT
rule.

3 Improving LPT

4 From approximation to heuristics: SLACK rule

5 Conclusions

ILP modeling and approximation

• Every standard undergraduate course on Operations Research
(OR) embeds a section devoted to [Integer] Linear Programming
(ILP) Modeling.

• OR experts and practitioners apply ILP models in order to
• provide formal representations of real problems;

• directly compute the corresponding solution by means of ILP
solvers (unfortunately does not always work that well...);

• compute heuristic solutions by means of matheuristics procedures
embedding the solutions of ILP subproblems ed into local search
approaches;

• Derive approximation bounds on problems where the related
ILP formulations presents strong structural properties

Approximation algorithms: standard notation

• OPT = optimal solution value

• A = solution value of the approximation algorithm

• rA = A
OPT = approximation ratio.

• We are typically interested in approximation algorithms requiring
polynomial time complexity.

Standard approximation via problem dependent ILP
modeling: Vertex Cover

• Input: A graph G = (V,E)

• Definition: A vertex cover of G is a subset of V that covers (i.e.,
“touches”) every edge in E.

• ILP formulation of the minimum vertex cover (MVC) problem

MVC =

 min
∑

i∈V xi

xi + xj > 1 ∀(i, j) ∈ E
xi ∈ {0, 1} ∀i ∈ V

MVC-r =

 min
∑

i∈V xi

xi + xj > 1 ∀(i, j) ∈ E
0 ≤ xi ≤ 1 ∀i ∈ V

• Solving to optimality MVC-r (requires polynomial time) and
setting xi = 1 for all variables with value ≥ 0.5 provides a
2-approximation ratio.

Approximation via non standard ILP modeling

• We focus here on non standard ILP modeling for
approximation.

• The aim is to mimick by ILP modeling the behavior of a
procedure (typically greedy).

• We apply this approach to

• Machine Scheduling: problem P ||Cmax and the LPT rule.

Parallel machines scheduling: Introduction

• We consider problem Pm||Cmax where the goal is to schedule n
jobs on m identical parallel machines Mi (i = 1, . . . ,m)
minimizing the makespan.

 blue and grey jobs start processing before j

machine Mi j

0

 time

Figure:

Parallel machines scheduling: Introduction

• We consider problem Pm||Cmax where the goal is to schedule n
jobs on m identical parallel machines Mi (i = 1, . . . ,m)
minimizing the makespan.

• We revisit the famous Longest Processing Time (LPT) rule
proposed by Graham - 1969.

• LPT rule: sort the jobs 1, ..., n in non-ascending order of their
processing times pj (j = 1, . . . , n) and then assign one job at a
time to the machine whose load is smallest so far.

• Assume the jobs indexed by non-increasing pj
(pj ≥ pj+1, j = 1, . . . , n− 1).

• Denote the solution values of the LPT schedule and the optimal
makespan by CLPT

m and C∗m respectively, where index m
indicates the number of machines.

• Denote by rk =
CLPT

m

C∗m
the approximation ratio of the LPT

schedule when k jobs are assigned to the machine yielding the
maximum completion time (the critical machine)

Pm||Cmax problem and LPT rule properties

• C∗m ≥ p1.

• C∗m ≥

n∑
j=1

pj

m .

• CLPT
m = C∗m if pj′ >

C∗m
3 (j′ denotes the critical job).

• CLPT
m ≤

j′−1∑
j=1

pj

m + pj′ ≤ C∗m + pj′(1− 1
m) ≤ (4

3 −
1

3m)C∗m -
[Graham 1969].

• For each job i assigned by LPT in position j on a machine:

pi ≤ C∗m
j - [Chen 1993].

LPT rule properties:

Known LPT approximation ratios.

• r1 = 1.

• r2 = 4
3 −

1
3(m−1) - [Chen 1993].

• r3 = 4
3 −

1
3m - [Graham 1969].

• rk = k+1
k −

1
km k ≥ 3 [Coffman and Sethi 1976 - generalizes

Graham].

Notice that

• r2 = 1 for m = 2;

• r2 = r4 for m = 3, r2 < r4 for m ≥ 4;

• rk < rk+1 for k ≥ 3

=⇒ Improving r3 improves LPT .
We concentrate then on instances where the critical job is in position
3.

Tight worst-case examples for LPT

• 2 machines - 5 jobs −→ [3, 3, 2, 2, 2].

• C∗m=2 = 6, CLPT
m=2 = 7, r3 = 4

3 −
1

3m = 7
6 .

• 3 machines, 7 jobs −→ [5, 5, 4, 4, 3, 3, 3].

• C∗m=3 = 9, CLPT
m=3 = 11, r3 = 4

3 −
1

3m = 11
9 .

• m machines, 2m + 1 jobs
−→ [2m− 1, 2m− 1, 2m− 2, 2m− 2, ...,m,m,m] .

• C∗m = 3m =
∑n

i=1 pi

m , CLPT
m = 4m− 1,

r3 = 4m−1
3m = 4

3 −
1

3m .

• Worst-case always occurs with 2m + 1 = n jobs where the critical
job is job 2m + 1 = n in position 3 and when C∗m =

∑n
i=1 pi/m.

LPT revisited

• We assume that the LPT critical job is the last one, namely
j′ = n. If not, we would have further jobs after the critical job
that do not affect the makespan provided by LPT but can
contribute to increase the optimal solution value.

• We analyze for m ≥ 3:
• 2m+ 2 ≤ j′ = n ≤ 3m (or else the critical job would be in

position ≥ 4);

• j′ = n = 2m+ 1.

• We employ Linear Programming to perform the analysis.

LPT revisited: 2m+ 2 ≤ n ≤ 3m

Proposition
If LPT schedules at least 3 jobs on a non crit. machine before
assigning the crit. job, then LPT has an approx. bound ≤ 4

3 −
1

3(m−1)
for m ≥ 5.

Sketch of proof.
• We assume n in position 3, or else either r2 holds or at least r4

holds. Hence, LPT schedules at least another job in position ≥ 3.
• We consider an LP model where we arbitrarily set the value

CLPT
m to 1 and minimize the value of C∗m.

• L denotes the starting time of job n, i.e. CLPT
m = L + pn.

• C1 is the compl. time of the non-crit. machine processing at least
3 jobs.

• C2 is the sum of compl. times of the other (m− 2) machines, i.e.

C2 =
n∑

j=1

pj − C1 − (L + pn).

• Due to list scheduling, condition C2

m−2 ≥ L holds.

• As n is in position 3, condition pn ≤ C∗m
3 holds.

LPT revisited: 2m+ 2 ≤ n ≤ 3m (LP formulation)

• We associate non-negative variables pn and sump with pn and
n∑

j=1

pj .

• We associate non-negative variables c1, c2, l, opt with C1, C2, L
and C∗m.

• The following LP model (for given m) is implied:

minimize opt (1)

subject to −m · opt + sump ≤ 0 (2)

3 · pn − c1 ≤ 0 (3)

l − c1 ≤ 0 (4)

(m− 2)l − c2 ≤ 0 (5)

c1 + l + pn + c2 − sump = 0 (6)

l + pn = 1 (7)

pn −
opt

3
≤ 0 (8)

pn, sump, c1, c2, l, opt ≥ 0 (9)

LPT revisited: 2m+ 2 ≤ n ≤ 3m (LP formulation)

• The minimization of the objective function (1), after setting
w.l.o.g LPT solution value to 1 (constraint (7)), provides an
upper bound on the performance ratio of LPT rule.

• Constraint (2 : −m · opt + sump ≤ 0) represents the bound

C∗m ≥

n∑
j=1

pj

m .
• Constraint (3 : 3 · pn − c1 ≤ 0) states that the value of c1 is at

the least 3pn, since 3 jobs with proc. time ≥ pn are assigned to a
non critical machine.

• Constraint (4 : l − c1 ≤ 0) states that the proc. time of the
critical machine before the last job is loaded is less than the
compl. time of the other machine processing at least three jobs.

• Constraint (5 : (m− 2)l − c2 ≤ 0) fulfills the list scheduling
requirement.

• Constraint (6 : c1 + l + pn + c2 − sump = 0) guarantees that

variable sump represents
n∑

j=1

pj

• Constraint (8) represents condition pn ≤ C∗m
3 .

• Constraints (9) state that all variables are non-negative.

LPT revisited: 2m+ 2 ≤ n ≤ 3m (LP formulation)

• The proposed LP model is continuous and contains just 6
variables and 7 constraints for any fixed m.

• By strong duality (and a little bit of reverse engineering) it is
possible to show that in the optimal solution, for any m ≥ 5, the
variables values are as follows

pn =
m− 1

4m− 5
; sump =

3m(m− 1)

4m− 5
;

c1 =
3(m− 1)

4m− 5
; c2 =

(m− 2)(3(m− 1)− 1)

4m− 5
;

l =
3(m− 1)− 1

4m− 5
; opt =

3(m− 1)

4m− 5
.

• Correspondingly, for any m ≥ 5, we have
CLPT

m

C∗m
≤ 1/opt = 4m−5

3(m−1) = 4
3 −

1
3(m−1) .

• Notice that this bound is not tight.

LPT revisited: 2m+ 2 ≤ n ≤ 3m

• A more general results, provided below, actually holds.

Proposition
If LPT schedules at least k jobs on a non crit. machine before
assigning the crit. job, then LPT has an approx. bound
≤ k+1

k −
1

k(m−1) for m ≥ k + 2.

• For 3 ≤ m ≤ 4, by lp-modeling and partial enumeration it is
possible to obtain the following result.

Proposition
In Pm||Cmax instances with 2m + 2 ≤ n ≤ 3m, LPT (with job n
critical) has an approximation ratio ≤ 4

3 −
1

3(m−1) for 3 ≤ m ≤ 4.

LPT revisited: further subcases

The following propositions also hold

Proposition
In Pm||Cmax instances with n ≤ 2m and m ≥ 3, LPT has an

approximation ratio ≤
(

4
3 −

1
3(m−1)

)
.

Proposition
In Pm||Cmax, m ≥ 3 and instances with n = 2m + 1, if LPT loads at
least three jobs on a machine before the critical job, then it has an

approximation ratio ≤
(

4
3 −

1
3(m−1)

)
.

• The only case remaining is then related to instances with
n = 2m + 1 where LPT schedules job n only in third position
and n is critical.

Improving LPT for n = 2m+ 1

• We consider a slight algorithmic variation where a set of the
sorted jobs is first loaded on a machine and then LPT is applied
on the remaining job set.

• We denote this variant as LPT (S) where S represents the set of
jobs assigned all together to a machine first.

We consider the following Algorithm 1.

Input: Pm||Cmax instance with n jobs and m ≥ 3 machines.
- Apply LPT yielding a schedule with makespan z1 and k − 1 jobs on
the critical machine before job n.
- Apply LPT ′ = LPT ({n}) with solution value z2.
- Apply LPT ′′ = LPT ({(n− k + 1), ..., n}) with solution value z3.
- Return min{z1, z2, z3}.

In practice, this algorithm applies LPT first and then re-applies LPT
after having loaded on a machine first either its critical job n alone or
the tuple of k jobs n− k + 1, ..., n.

Handling instances with n jobs and j′ = 2m+ 1 6= n

We consider first the case where j′ 6= n and there are jobs processed
after the critical job in LPT and one of such jobs is critical in either
LPT ′ or LPT ′′.

Proposition
In Pm||Cmax instances where there are jobs processed after the critical
job in the LPT solution and one of such jobs (say job l) is critical in
either LPT ′ or LPT ′′ schedules, Algorithm 1 has a performance
guarantee of 4

3 −
7m−4

3(3m2+m−1) .

Proof hints (formal proof needs some more algebra):

• it is sufficient to exploit the difference between
j′∑

j=1

pj and
n∑

j=1

pj .

• If
n∑

j=j′+1

pj is large enough, then

j′∑
j=1

pj

m + pj′/m�

n∑
j=1

pj

m + pl/m,

namely, the bound on the LPT approx. ratio becomes small
enough;

• if
n∑

j=j′+1

pj is small enough, then the approx. ratio of LPT ′ or

LPT ′′ also becomes small enough.

Handling instances with n = 2m+ 1 jobs and
j′ = n = 2m+ 1

• Note that LPT must couple jobs 1, . . . ,m respectively with jobs
2m, . . . ,m + 1 on the m machines before scheduling job 2m + 1,

or else LPT has an approximation ratio ≤
(

4
3 −

1
3(m−1)

)
.

• Hence, the LPT schedule is as follows

M1 : p1, p2m

M2 : p2, p2m−1

. . .

Mm−1 : pm−1, pm+2

Mm : pm, pm+1

where job 2m + 1 will be assigned to the machine with the least
completion time.

Handling instances with n = 2m+ 1 jobs and
j′ = n = 2m+ 1

We consider two specific cases:

1 p2m+1 ≥ p1 − pm. =⇒ The LPT ′ schedule is as follows

M1 : p2m+1, pm, p2m

M2 : p1, p2m−1

M3 : p2, p2m−2

. . .

Mm−1 : pm−2, pm+2

Mm : pm−1, pm+1

with subcases

1 The LPT ′ makespan is on M1.
2 The LPT ′ makespan is on M2,...Mm.

2 p2m+1 < p1 − pm.

Case j′ = n = 2m+ 1, p2m+1 ≥ p1 − pm,
LPT ′ makespan is on M1

• If LPT ′ is not optimal, then C∗m ≥ pm−1 + pm.

• We get the following result.

Proposition
If p2m+1 ≥ p1 − pm and LPT ′ makespan is equal to
p2m+1 + pm + p2m, then the proposed algorithm has an approximation
ratio not superior to 7

6 .

• Proof: we again employ Linear Programming to evaluate the
performance of LPT ′. We consider non-negative variables xj

associated with pj (j = 1, . . . , n) and a positive parameter
OPT > 0 associated with C∗m.

Case j′ = n = 2m+ 1, p2m+1 ≥ p1 − pm,
LPT ′ makespan is on M1

The LP model.

maximize x(2m+1) + xm + x2m (10)

subject to x(m−1) + xm ≤ OPT (11)

x(2m−1) + x2m + x(2m+1) ≤ OPT (12)

x(2m+1) − (x1 − xm) ≥ 0 (13)

x1 − x(m−1) ≥ 0 (14)

x(m−1) − xm ≥ 0 (15)

xm − x(m+1) ≥ 0 (16)

x(m+1) − x(2m−1) ≥ 0 (17)

x(2m−1) − x2m ≥ 0 (18)

x2m − x(2m+1) ≥ 0 (19)

x1, x(m−1), xm, x(m+1), x(2m−1), x2m, x(2m+1) ≥ 0 (20)

Case j′ = n = 2m+ 1, p2m+1 ≥ p1 − pm,
LPT ′ makespan is on M1

• The objective function value (10) represents an upper bound on
the worst case performance of the algorithm.

• Constraints (11)–(12) correspond to C∗m ≥ pm−1 + pm and
C∗m ≥ p2m−1 + p2m + p2m+1.

• Constraint (13) simply represents the initial assumption
p2m+1 ≥ p1 − pm.

• Constraints (14)–(19) state that the considered relevant jobs are
sorted by non-increasing processing times.

• Constraints (20) indicate that the variables are non-negative.

• Further viable constraints where not necessary to reach the
required result. By setting OPT = 1, the cost function has value
7
6 .

Further cases and subcases for j′ = n = 2m+ 1

By means of further LP models, the following results hold

Proposition
If p2m+1 ≥ p1 − pm and LPT ′ makespan is on M2, ...,Mm, then LPT ′

has a performance guarantee of 15
13 for m = 3 and 4

3 −
1

2m−1 for m ≥ 4.

Proposition
If p2m+1 < p1 − pm, LPT has a performance guarantee not superior
to 15

13 for m = 3 and 4
3 −

1
2m−1 for m ≥ 4.

Putting things together, the following Theorem holds

Theorem
The proposed algorithm has an approximation ratio not superior to
4
3 −

1
3(m−1) for m ≥ 3.

From approximation to heuristics

• W.r.t. the worst-case analysis for m ≥ 3, the relevant subcase
was the one with p2m+1 ≥ p1 − pm and LPT ′ required to
schedule p2m+1 first and then apply list scheduling first to the
sorted jobset p1, ..., pm according to LPT and then to the sorted
jobset pm+1, ..., p2m always according to LPT .

• We propose then an alternative approach that splits the sorted
job set in tuples of m consecutive jobs (1, . . . ,m;m + 1, . . . , 2m;
etc.) and sorts the tuples in non-increasing order of the difference
between the largest job and the smallest job in the tuple. Then a
list scheduling is applied to the set of sorted tuples. We denote
this approach as SLACK.

From approximation to heuristics

The SLACK heuristic:

Input: Pm||Cmax instance m machines and n jobs with processing
times pj (j = 1, . . . , n).
- Sort items by non-increasing pj .

- Consider
⌈

n
m

⌉
tuples of size m given by jobs 1, . . . ,m;m+ 1, . . . , 2m,

etc..
If n is not multiple of m, add dummy jobs with null proc. time in the
last tuple.
- For each tuple, compute the associated slack, namely
p1 − pm, p(m+1) − p2m, . . . , p(n−m+1) − pn.
- Sort tuples by non-increasing slack and then fill a list of consecutive
jobs in the sorted tuples.
- Apply List Scheduling to this job ordering and return the solution.

Since the construction and sorting of the tuples can be performed in
O(n + m logm), the running time of SLACK is O(n log n) due to the
initial jobs LPT sorting.

Computational testing

We compared SLACK to LPT on benchmark literature instances
(Iori, Martello 2008)

• Two classical classes of instances from literature are considered:
uniform instances (França et al. 1994) and non-uniform
instances (Frangioni et al. 2004).

• In uniform instances the processing times are integer uniformly
distributed in the range [a, b]. In non-uniform instances, 98% of
the processing times are integer uniformly distributed in
[0.9(b− a), b] while the remaining ones are uniformly distributed
in [a, 0.2(b− a)]. For both classes, we have
a = 1; b = 100, 1000, 10000.

• For each class, the following values were considered for the
number of machines and jobs: m = 5, 10, 25 and
n = 10, 50, 100, 500, 1000.

• For each pair (m,n) with m < n, 10 instances were generated for
a total of 780 instances.

Computational testing

SLACK LPT
wins draws wins

[a, b] m Instances # (%) # (%) # (%)
5 50 31 (62.0) 16 (32.0) 3 (6.0)

1-100 10 40 32 (80.0) 8 (20.0) 0 (0.0)
25 40 23 (57.5) 17 (42.5) 0 (0.0)
5 50 39 (78.0) 10 (20.0) 1 (2.0)

1-1000 10 40 40 (100.0) 0 (0.0) 0 (0.0)
25 40 27 (67.5) 12 (30.0) 1 (2.5)
5 50 39 (78.0) 10 (20.0) 1 (2.0)

1-10000 10 40 40 (100.0) 0 (0.0) 0 (0.0)
25 40 28 (70.0) 10 (25.0) 2 (5.0)

Table: Pm||Cmax non uniform instances.

Computational testing

SLACK LPT
wins draws wins

[a, b] m Instances # (%) # (%) # (%)
5 50 12 (24.0) 37 (74.0) 1 (2.0)

1-100 10 40 14 (35.0) 20 (50.0) 6 (15.0)
25 40 10 (25.0) 29 (72.5) 1 (2.5)
5 50 32 (64.0) 15 (30.0) 3 (6.0)

1-1000 10 40 27 (67.5) 5 (12.5) 8 (20.0)
25 40 24 (60.0) 12 (30.0) 4 (10.0)
5 50 36 (72.0) 12 (24.0) 2 (4.0)

1-10000 10 40 37 (92.5) 0 (0.0) 3 (7.5)
25 40 22 (55.0) 11 (27.5) 7 (17.5)

Table: Pm||Cmax uniform instances.

Computational testing

• SLACK shows up to be clearly superior to LPT : on 780
benchmark literature instances, SLACK wins 513 times, ties 224
times and loses 43 times only.

• If LPT ′′ is added to SLACK, then SLACK+LPT ′′ compared to
LPT wins 529 times, ties 213 times and loses 38 times only.

Conclusions

• We discussed how non standard ILP modeling can be successfully
applied to derive improved approximation results.

• We considered problem Pm||Cmax and revisited the LPT rule.

• By means of Linear Programming we improved Graham’s bound
from 4

3 −
1

3m to 4
3 −

1
3(m−1) for m ≥ 3.

• By similar analysis, a linear time algorithm for problem P2||Cmax

with a 13/12 approximation ratio can be derived;

• From the approximation analysis, we derived a simple O(n log n)
heuristic procedure that drastically improves upon the
performances of LPT .

• We believe that the proposed LP-based analysis can be
successfully applied in approximation theory as a valid alternative
to formal proof systems based on analytical derivation.

References

• F. Della Croce, R. Scatamacchia, ”The Longest Processing Time
rule for identical parallel machines revisited”, Journal of
Scheduling, 23, 163-176, 2020.

• F. Della Croce, R. Scatamacchia, V. T’Kindt, ”A tight linear
13/12-approximation algorithm for the P2 || Cmax problem”,
Journal of Combinatorial Optimization, 38, 608-617, 2019.

	Outline
	Introduction
	Minimizing makespan on identical parallel machines and the LPT rule.
	Improving LPT
	From approximation to heuristics: SLACK rule
	Conclusions

