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ILP modeling and approximation

® Every standard undergraduate course on Operations Research
(OR) embeds a section devoted to [Integer| Linear Programming
(ILP) Modeling.

® OR experts and practitioners apply ILP models in order to

® provide formal representations of real problems;

® directly compute the corresponding solution by means of ILP
solvers (unfortunately does not always work that well...);

® compute heuristic solutions by means of matheuristics procedures
embedding the solutions of ILP subproblems ed into local search
approaches;

® Derive approximation bounds on problems where the related
ILP formulations presents strong structural properties



Approximation algorithms: standard notation

® OPT = optimal solution value

A = solution value of the approximation algorithm

° A

TA = gpy — approximation ratio.

® We are typically interested in approximation algorithms requiring
polynomial time complexity.



Standard approximation via problem dependent ILP
modeling: Vertex Cover

¢ Input: A graph G = (V, E)

® Definition: A vertex cover of G is a subset of V' that covers (i.e.,
“touches”) every edge in E.

e ILP formulation of the minimum vertex cover (MVC) problem

min Y.y
MVC = ri+ax;>1V(4,j) e b
z; € {0,1} VieV
min Y.y
MVC-r = Ttz =21 V(Z,j) ek
0<z;,<1VieV

® Solving to optimality MVC-R (requires polynomial time) and
setting x; = 1 for all variables with value > 0.5 provides a
2-approximation ratio.



Approximation via non standard ILP modeling

® We focus here on non standard ILP modeling for
approximation.

® The aim is to mimick by ILP modeling the behavior of a
procedure (typically greedy).

® We apply this approach to

® Machine Scheduling: problem P||Cmax and the LPT rule.



Parallel machines scheduling: Introduction

® We consider problem P,,||Cynqa. where the goal is to schedule n
jobs on m identical parallel machines M; (1 =1,...,m)
minimizing the makespan.
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Parallel machines scheduling: Introduction

® We consider problem P,,||Cynqa. where the goal is to schedule n
jobs on m identical parallel machines M; (1 =1,...,m)
minimizing the makespan.

® We revisit the famous Longest Processing Time (LPT') rule
proposed by Graham - 1969.

e LPT rule: sort the jobs 1,...,n in non-ascending order of their
processing times p; (j =1,...,n) and then assign one job at a
time to the machine whose load is smallest so far.

¢ Assume the jobs indexed by non-increasing p;
(pj ijJrlvj: ]_7,TL—1)

® Denote the solution values of the LPT schedule and the optimal
makespan by CEPT and O, respectively, where index m
indicates the number of machines.

LPT
® Denote by r; = Cg‘— the approximation ratio of the LPT

schedule when k jogs are assigned to the machine yielding the
maximum completion time (the critical machine)



P,||Crnae problem and LPT rule properties

CLPT C* if pjr

(j denotes the critical job).

i1
> P

CLPT< J=1 —‘rp]/SC;l—‘rpj/(l—%)S(%_%)C* _
[Graham 1969]

For each job 1 assigned by LPT in position j on a machine:
pi < - [Chen 1993].



LPT rule properties:

Known LPT approximation ratios.

[ ) r = 1.
oy =14_ m [Chen 1993].
® r3 =3 — 5 - [Graham 1969].

® 1= % — ﬁ k > 3 [Coffman and Sethi 1976 - generalizes
Graham].

Notice that
® ro =1 form=2;
® ro =1y for m =3, ro <1y for m > 4;
® 1 <rpyq for k>3

—> Improving r3 improves LPT.
We concentrate then on instances where the critical job is in position
3.



Tight worst-case examples for LPT

® 2 machines - 5 jobs — [3,3,2,2,2].

* Choa=6, CIE=T7  m=g5-g;=§
¢ 3 machines, 7 jobs — [5,5,4,4,3,3,3].
*Chos=9, CrEf=11, m=§-g.=1%.

® m machines, 2m + 1 jobs
— 2m—-1,2m —1,2m —2,2m — 2,....,m,m,m| .

.C:;L:gm:w7 CépT:élm—l,
m

r _4m-—-1 _ 4 _ 1

3= "3m ~— 3 3m*

Worst-case always occurs with 2m 4 1 = n jobs where the critical
job is job 2m + 1 = n in position 3 and when C}, = >"""_| p;/m.



LPT revisited

® We assume that the LPT critical job is the last one, namely
j' = n. If not, we would have further jobs after the critical job
that do not affect the makespan provided by LPT but can
contribute to increase the optimal solution value.

® We analyze for m > 3:
® 2m +2 < j =n < 3m (or else the critical job would be in
position > 4);

® i =n=2m+1.

® We employ Linear Programming to perform the analysis.



LPT revisited: 2m +2 <n < 3m

Proposition

If LPT schedules at least 3 jobs on a non crit. machine before

assigning the crit. job, then LPT has an approx. bound < % —

1
3(m—1)

form > 5.
Sketch of proof.

We assume n in position 3, or else either r5 holds or at least 74
holds. Hence, LPT schedules at least another job in position > 3.
We consider an LP model where we arbitrarily set the value
CLPT 6 1 and minimize the value of C7,.

L denotes the starting time of job n, i.e. CEPT =L 4 p,.

(1 is the compl. time of the non-crit. machine processing at least
3 jobs.

(5 is the sum of compl. times of the other (m — 2) machines, i.e.

Cy=> pj—Ci—(L+pn).
j=1

Due to list scheduling, condition mcfz > L holds.

As n is in position 3, condition p,, < Cg” holds.



LPT revisited: 2m + 2 < n < 3m (LP formulation)

® We associate non-negative variables p,, and sump with p,, and

® We associate non-negative variables ¢y, co, [, opt with Cy,Co, L

® The following LP model (for given m) is implied:

n
> Pj-
j=1
and C},.
minimize
subject to

opt

—m - opt+ sump <0
3:pn—c1 <0

l—c1 <0
(m—2)l—c <0
c1+1l+pn+co—sump=0
l+p,=1

pn*?go

Dn, SUMP, €1, C2, 1, 0pt >0



LPT revisited: 2m + 2 < n < 3m (LP formulation)

® The minimization of the objective function (1), after setting
w.l.o.g LPT solution value to 1 (constraint (7)), provides an
upper bound on the performance ratio of LPT rule.

e Constraint (2: —m - opt + sump < 0) represents the bound

f: pj
Cr > =,

° Constramt (3: 3-pp —c1 <0) states that the value of ¢; is at
the least 3p,,, since 3 jobs with proc. time > p,, are assigned to a
non critical machine.

® Constraint (4 : | — ¢ < 0) states that the proc. time of the
critical machine before the last job is loaded is less than the
compl. time of the other machine processing at least three jobs.

e Constraint (5: (m — 2)l — co < 0) fulfills the list scheduling
requirement.

® Constraint (6 : ¢1 + 1+ p, + co — sump = 0) guarantees that

n
variable sump represents > p;

j=1
C’:;L
=

® Constraint (8) represents condition p,, <
¢ Constraints (9) state that all variables are non-negative.



LPT revisited: 2m + 2 < n < 3m (LP formulation)

® The proposed LP model is continuous and contains just 6
variables and 7 constraints for any fixed m.

¢ By strong duality (and a little bit of reverse engineering) it is
possible to show that in the optimal solution, for any m > 5, the
variables values are as follows

_m—-1 cum _3m(m—1)
L — P= "5
. _3(m—1) . _ (m—=2)3(m—1)—1)
YT am =5 - 4m—5 ’
~3(m—-1)—-1 ~ 3(m—1)
= dm -5 ot = dm —5

® Correspondingly, for any m > 5, we have

cLPT _ 4m-5 _ 4 1
&— < 1/opt = 50=0 = 3 — 31y

® Notice that this bound is not tight.




LPT revisited: 2m +2 <n < 3m

® A more general results, provided below, actually holds.
Proposition
If LPT schedules at least k jobs on a non crit. machine before

assigning the crit. job, then LPT has an approx. bound

< Bl form > 42

® For 3 < m <4, by lp-modeling and partial enumeration it is
possible to obtain the following result.

Proposition

In P,||Chax instances with 2m + 2 <n < 3m, LPT (with jobn
critical) has an approximation ratio < % — m for3<m < 4.



LPT revisited: further subcases

The following propositions also hold
Proposition
In Pp||Caz instances with n < 2m and m > 3, LPT has an

approzimation ratio < (% - m)

Proposition

In Pp||Craz, m > 3 and instances with n = 2m + 1, if LPT loads at
least three jobs on a machine before the critical job, then it has an
approximation ratio < (% — ﬁ)

® The only case remaining is then related to instances with
n = 2m + 1 where LPT schedules job n only in third position
and n is critical.



Improving LPT for n = 2m + 1

® We consider a slight algorithmic variation where a set of the
sorted jobs is first loaded on a machine and then LPT is applied
on the remaining job set.

® We denote this variant as LPT(S) where S represents the set of
jobs assigned all together to a machine first.

We consider the following Algorithm 1.

Input: P,,||Cpq. instance with n jobs and m > 3 machines.

- Apply LPT yielding a schedule with makespan z; and k£ — 1 jobs on
the critical machine before job n.

- Apply LPT' = LPT({n}) with solution value z.

- Apply LPT” = LPT({(n — k4 1),...,n}) with solution value z3.

- Return min{zy, 22, 23}

In practice, this algorithm applies LPT first and then re-applies LPT
after having loaded on a machine first either its critical job n alone or
the tuple of k jobsn —k+1,...,n.



Handling instances with n jobs and ' =2m + 1 #n

We consider first the case where j° # n and there are jobs processed
after the critical job in LPT and one of such jobs is critical in either
LPT' or LPT".

Proposition
In P,,||Cas instances where there are jobs processed after the critical
job in the LPT solution and one of such jobs (say job 1) is critical in

either LPT" or LPT" schedules, Algorithm 1 has a performance

4 Tm—4
guarantee of 3 — G =T

Proof hints (formal proof needs some more algebra):
j’ n
e it is sufficient to exploit the difference between ) p; and ) p;.
=1 j=1

n ‘]21 pj il b
e If > pjislarge enough, then “—— 4 p;/m < “=—— 4 p;/m,
=71
namely, the bound on the LPT approx. ratio becomes small
enough;
n

e if 3" pj is small enough, then the approx. ratio of LPT" or
j=7+1
T.PT"” aleo becomes small enonich



Handling instances with n = 2m + 1 jobs and
j=n=2m-+1

® Note that LPT must couple jobs 1,..., m respectively with jobs
2m,...,m + 1 on the m machines before scheduling job 2m + 1,

or else LPT has an approximation ratio < (% — 3(;)

m—1)
® Hence, the LPT schedule is as follows

My 2 p1,pam
M3 2 pa, pam—1

M1 P Pm—1,Pm+2
M 2 Py Pt

where job 2m + 1 will be assigned to the machine with the least
completion time.



Handling instances with n = 2m + 1 jobs and
j=n=2m-+1

We consider two specific cases:

® pomi1 > p1 — Pm- = The LPT schedule is as follows

Ml P2m+15PmsP2m
My : p1,pam—1
M3 : pa2, pam—2

M1 P Pm—2;Pm+2
M., P Pm—1,Pm+1

with subcases

® The LPT’ makespan is on M;.
® The LPT’ makespan is on Ma,...M,,.

D Pom+1 < P1 — Dme-



Case j ' =n=2m+ 1, poami1 > P1 — Pm,
LPT'" makespan is on M;

e If LPT’ is not optimal, then C*, > pym—1 + pm.

® We get the following result.
Proposition
If poma1 > p1 — pm and LPT' makespan is equal to

D2m+1 + Pm + Pam, then the proposed algorithm has an approzimation
ratio not superior to %.

® Proof: we again employ Linear Programming to evaluate the
performance of LPT’. We consider non-negative variables x;
associated with p; (j =1,...,n) and a positive parameter
OPT > 0 associated with C}\,.



Case j ' =n=2m+ 1, poami1 > P1 — Pm,
LPT'" makespan is on M;

The LP model.

maximize

subject to

T(2m+1) T Tm + Tam

T(m—-1) + Tm < OPT

T(2m—1) T Tom + T(ams1) < OPT
Tmy1) — (01— 2m) >0

T1 = T(m—1) =0

T(m-1) — Tm =0

T — T(my1) = 0

T(m+1) ~ T(2m-1) = 0

T(2m—1) — Tam = 0

Tom — T(2m+1) = 0

T1, T(m—1)) Tm> T(m41), L(2m—1)> L2m> L(2m+1) >0



Case j ' =n=2m+ 1, poami1 > P1 — Pm,
LPT'" makespan is on M;

® The objective function value (10) represents an upper bound on
the worst case performance of the algorithm.

® Constraints (11)—(12) correspond to C¥, > py—1 + P and
Cr = P2m—1 + P2m + P2m1-

® Constraint (13) simply represents the initial assumption
Po2m+1 Z P1— Pm-

e Constraints (14)—(19) state that the considered relevant jobs are
sorted by non-increasing processing times.

® Constraints (20) indicate that the variables are non-negative.

® Further viable constraints where not necessary to reach the

required result. By setting OPT = 1, the cost function has value
7

6"



Further cases and subcases for j' =n =2m + 1

By means of further LP models, the following results hold

Proposition
If pos1 > p1 — pm and LPT' makespan is on Mo, ..., M, then LPT’
has a performance guarantee of % form =3 and % — 2771171 form > 4.
Proposition

If pam+1 < p1 — Pm, LPT has a performance guarantee not superior
to%form:i’) and%fﬁformZ&

Putting things together, the following Theorem holds

Theorem

The proposed algorithm has an approzimation ratio not superior to

% — 73("3_1) form > 3.



From approximation to heuristics

® W.r.t. the worst-case analysis for m > 3, the relevant subcase
was the one with po, 411 > p1 — pm and LPT' required to
schedule poy,41 first and then apply list scheduling first to the
sorted jobset p1, ..., pm according to LPT and then to the sorted
jobset P41, ..., P2, always according to LPT.

® We propose then an alternative approach that splits the sorted
job set in tuples of m consecutive jobs (1,...,m;m +1,...,2m;
etc.) and sorts the tuples in non-increasing order of the difference
between the largest job and the smallest job in the tuple. Then a
list scheduling is applied to the set of sorted tuples. We denote
this approach as SLACK.



From approximation to heuristics

The SLACK heuristic:

Input: P, ||Cpa. instance m machines and n jobs with processing
times p; (j =1,...,n).

- Sort items by non-increasing p;.

- Consider [%—‘ tuples of size m given by jobs 1,...,m;m+1,...,2m,
ete..

If n is not multiple of m, add dummy jobs with null proc. time in the
last tuple.

- For each tuple, compute the associated slack, namely

P1 = Pm,P(m+1) — P2my -+ - s P(n—m+1) — Pn-

- Sort tuples by non-increasing slack and then fill a list of consecutive
jobs in the sorted tuples.

- Apply List Scheduling to this job ordering and return the solution.

Since the construction and sorting of the tuples can be performed in
O(n 4+ mlogm), the running time of SLACK is O(nlogn) due to the
initial jobs LPT sorting.



Computational testing

We compared SLACK to LPT on benchmark literature instances
(Tori, Martello 2008)

® Two classical classes of instances from literature are considered:
uniform instances (Franga et al. 1994) and non-uniform
instances (Frangioni et al. 2004).

® In uniform instances the processing times are integer uniformly
distributed in the range [a,b]. In non-uniform instances, 98% of
the processing times are integer uniformly distributed in
[0.9(b — a), b] while the remaining ones are uniformly distributed
in [a,0.2(b — a)]. For both classes, we have
a = 1;b =100, 1000, 10000.

® For each class, the following values were considered for the
number of machines and jobs: m = 5,10, 25 and
n = 10,50, 100, 500, 1000.

e For each pair (m,n) with m < n, 10 instances were generated for
a total of 780 instances.



Computational testing

SLACK LPT

wins draws wins

[a,b] m | Instances | # (%) # | %) | # | %)
5 50 [ 31] (62.0) |16 | (32.0) | 3 | (6.0)

1100 10| 40 |32 (80.0) | 8 | (20.0) | 0 | (0.0)
25 | 40 | 23| (57.5) | 17| (42.5) | 0 | (0.0)

5 50 [39] (78.0) |10 ] (20.0) | 1 | (2.0)
11000 10| 40 |40 | (100.0) | 0 | (0.0) | 0 | (0.0)
25 | 40 | 27| (675) |12 ] (30.0) | 1| (2.5)

5 50 [ 39 (78.0) |10 ] (20.0) | 1 | (2.0)
110000 10 | 40 |40 | (100.0) | 0 | (0.0) | 0 | (0.0)
25 | 40 | 28| (70.0) | 10| (25.0) | 2 | (5.0)

Table: Pp,||Cmas non uniform instances.



Computational testing

SLACK LPT

wins draws wins

[a,b] m | Instances | # | (%) | # | (%) | # | (%)
5 50 | 12 | (24.0) | 37 | (74.0) | T | (2.0)

1100 10| 40 | 14| (35.0) | 20 | (50.0) | 6 | (15.0)
25 | 40 10 | (25.0) [ 29 | (72.5) | 1 | (2.5)

5 50 [ 32 ] (64.0) | 15 | (30.0) | 3 | (6.0)
11000 10| 40 | 27| (67.5) | 5 | (125) | 8 | (20.0)
25 40 24 | (60.0) | 12 | (30.0) | 4 | (10.0)

5 50 36| (72.0) | 12 | (24.0) | 2 | (4.0)
110000 10 | 40 | 37| (925) | 0 | (0.0) | 3| (7.5)
25 40 22 | (55.0) | 11 | (27.5) | 7 | (17.5)

Table: Pp,||Cmae uniform instances.



Computational testing

® SLACK shows up to be clearly superior to LPT: on 780
benchmark literature instances, SLACK wins 513 times, ties 224
times and loses 43 times only.

e If LPT” is added to SLACK, then SLACK+LPT" compared to
LPT wins 529 times, ties 213 times and loses 38 times only.



Conclusions

® We discussed how non standard ILP modeling can be successfully
applied to derive improved approximation results.

® We considered problem P,,||Cinq. and revisited the LPT rule.

® By means of Linear Programming we improved Graham’s bound
4 1 4 1

fromg—%t05—mf0rm23.
® By similar analysis, a linear time algorithm for problem P2||Cax
with a 13/12 approximation ratio can be derived;

® From the approximation analysis, we derived a simple O(nlogn)
heuristic procedure that drastically improves upon the
performances of LPT.

® We believe that the proposed LP-based analysis can be
successfully applied in approximation theory as a valid alternative
to formal proof systems based on analytical derivation.
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