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Current follow-up in Neurodegenerative Diseases

Now at the Hospital

Once/Twice a year

Specialized and fastidious tests
Analysis by experts
Wearisome and Expensive



Current follow-up in Neurodegenerative Diseases

Now at the Hospital

e Limitations in Clinical Trials

e Limited understanding of the disease

e Only reactions and not prevention of
difficult life events

Once/Twice a year

Specialized and fastidious tests
Analysis by experts
Wearisome and Expensive



Clinical question

How to monitor the evolution of neurodegenerative diseases under less controlled
conditions, more frequently and automatically?
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Clinical question

How to monitor the evolution of neurodegenerative diseases under less controlled

conditions, more frequently and automatically?

Alzheimer’s Disease
KC Fraser, JA Meltzer, F
Rudzicz 2016

Parkinson’s Disease
A Tsanas, MA Little, PE
McSharry, LO Ramig
2010
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Huntington’s Disease
Riad et al. 2020

Multiple Sclerosis
J Rusz et al. 2018

Frontotemporal Dementia
Zimerrer et al. 2020

Primary Progressive Aphasia
Wilson et al. 2010, Fraser et al. 2014



Researcher’'s/Engineer’s problem

Then, how do we obtain measurements of naturalistic turn-taking and linguistic
behaviors for clinical applications?
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Human expert annotations
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Annotation protocol

Human expert annotations °™"
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Human expert annotations
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Huntington’s Disease, Parkinson Disease,

Human expert annotahons Daylong recordings in Amazonia

https://qithub.com/bootphon/pygamma-agreement
Titeux, Riad 2021 under review JOSS
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https://qithub.com/bootphon/seshat
Titeux*, Riad* et al. LREC 2020
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Crowdsourcing
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Crowdsourcing

Semenazin, ..., Cristia. SLT 2021

https://www.zooniverse.org/

» 0:00/0:00

< TASK TUTORIAL

(L) E‘ Please classify this sound:
Canonical
Non-Canonical
Laughing
Crying

Junk

NEED SOME HELP WITH THIS TASK?

Angelman’s Syndrome

Angleman’s Syndrome:

10 children (6 males, 4
females; age range 11-53 months,
mean=41.5 months)

Control:
10 low-risk control children (6 males, 4

females; age range 4-18 months,
mean=11.7 months)

17



Angelman’s Syndrome

Crowdsourcing

Semenzin, ..., Cristia. SLT 2021 =0.833
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Fig. 3. Individual children’s linguistic ratio according to
Zooniverse versus Lab annotations. Black points correspond
& to children diagnosed with Angelman Syndrome, red for low-
risk control.

NEED SOME HELP WITH THIS TASK?




Automatic methods
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Huntington’s Disease

Automatic methods

Riad et al. 2021 Table 1. Interviewee demographics and clinical scores

Controls Huntington’s disease
Gene carriers
1 yz t Sub-groups C PreHD HD
N 22 18 54
Gender 10F/12M 10F/8M 32F/22M

Softmax Softmax Softmax

Age (years) 54.1 (8.6) | 50.1 (11.8) | 53.5(11.3)
CAG Triplets <35 41.5(1.7) | 44.23.3)

TFC [20] — 13.0 (0.0) 10.4 (2.1)

o — | omao |m3ase

Embeddlng Layer

x1 xz o xt

https://github.com/MarvinLvn/voice-
tvype-classifier
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https://github.com/MarvinLvn/voice-type-classifier

Huntington’s Disease

Automatic methods

Speaker Enrollment Methods

R|ad et al 2021 Pretrained VAD/SCD Retrained VAD/SCD Ground Truth Segmentation
- Pretrained Spk Emb. —%— —— L 2
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[ ] 500] | ke ol
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o T __= ‘
40.0 A e . .
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E 30.0 e % ///'77‘7”"**\*+7/F*7‘—*
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Automatic methods

Riad et al. 2021

Predicted: Ratio of Silence in the Interview
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Ground truth: SD duration of Interviewee's utterances
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Comparison
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Scalability

Skills to launch such
project

Human expert
annotations

+++

+++

Organization, Data
management
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Crowdsourcing

+(depends on how
much can be shared)

~ (depends)

+

Organization, Data
management

Automatic methods

+ (depends on training
data)

~ (models can leak
training data)

+++

Engineering systems,
Machine Learning
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Future work

Self-supervised learning
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Future work

Self-supervised learning

Active learning
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