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Outline	of	the	talk 

•  Bayesian	networks:	From	probability	to	causality 

•  Manipulation	theorem	to	estimate	the	effect	of	external	interventions 

•  Confounding:	 fundamental	 impediments	 to	 the	 elucidation	 of	 causal	
inferences	from	observational	data 

•  Elucidation	of	some	well-known	controversies	:	 
•  The	selection	bias	or	Berkson’s	paradox	(1946),	 
•  The	birth-weight	paradox	(1967) 
•  The	Simpson's	paradox	(1899)	 
•  The	old	debate	on	the	relation	between	smoking	and	lung	cancer	(1964), 
•  Sex	discrimination:	The	«	reverse	regression	controversy	»	between	sex	

and	salary	which	occupied	the	social	science	in	the	1970s 

•  Rules	of	«	do	calculus	»	 
•  Case	study:	effect	of	the	pesticides	on	agricultural	yields	 
•  Unbiased	estimates	despite	selection	bias	and	missing	data	 
	
	
	



Cause-effect	relationships	 
•  The	 central	 aim	 of	 many	 studies	 in	 the	 physical,	 behavioral,	 social,	 and	

biological	sciences	 is	 the	elucidation	of	cause-effect	relationships	among	
variables	 or	 events,	 e.g.,	 risk	 factor	 exposure	 on	 disease	 occurrence,	
advertising	campaign	on	benefits,	treatment	on	recovery	rate,	etc. 

	
•  However,	 the	appropriate	methodology	for	extracting	such	relationships	

from	data	has	been	fiercely	debated.  
	

•  Graphical	models	provide	clear	semantics	for	causal	claims,	and	non-trivial	
causal	 phenomena,	 paradoxes	 and	 controversies	 in	 causal	 analysis	 that	
long	were	regarded	as	metaphysical	can	now	be	understood,	exemplified,	
analyzed	and	solved	using	elementary	mathematics. 

	
•  Most	of	the	material	presented	here	is	borrowed	from	Judea	Pearl’s	books	

and	papers. 
	
	
	



Bayesian	Networks 

General	Factorization	: 

x4 x5 1 0 

0 0 0.4 0.6 

0 1 0.1 0.9 

1 0 0.7 0.3 

1 1 0.6 0.4 

Conditional	distribution	for	(binary)	node	x7	: 

Corollary	 (Markov	 condition)	 :	 every	 node	 given	 its	 parents	 is	 independent	 on	 its	 non-
descendants	nodes.	Other	independencies	are	entailed	(d-separation	criterion).	

Illustration	from	Christopher	Bishop’s	book	:	“Pattern	recognition	and	machine	learning”.	



Independence	models 
 

Overlapping	 between	 probabilistic	 independence	 models	 (p),	 independence	
models	based	on	u-separation	(UG-faithful),	and	d-separation	(DAG-faithful).		

     
    
  



Conditional	Independence:	Example	1 



Conditional	Independence:	Example	1 



Conditional	Independence:	Example	2 



Conditional	Independence:	Example	2 



Conditional	Independence:	Example	3 

	
	
	
	
	
	
	
	
	
	
	
Note:	this	is	the	opposite	of	Example	1,	with	c	unobserved. 



Conditional	Independence:	Example	3 

	
	
	
	
	
	
	
	
	
	
	
Compared to the previous examples, the opposite is observed:  
Two independent variables become dependent given a third variable! 
 



Limits	of	Bayesian	Networks 

•  Two	 given	 DAGs	 are	 observationally	 equivalent	 if	 every	 probability	
distribution	that	 is	compatible	(or	faithful)	with	one	of	the	DAGs	is	also	
compatible	with	the	other	(same	conditional	independences	encoded). 

	
•  Theorem:	 Two	 DAGs	 are	 observationally	 equivalent	 if	 and	 only	 if	 they	

have	the	same	skeletons	and	the	same	sets	of	v-structures,	that	is,	two	
converging	arrows	whose	tails	are	not	connected	by	an	arrow. 

	
•  Observational	 equivalence	 places	 a	 limit	 on	 our	 ability	 to	 infer	

directionality	from	probabilities	alone.	 
	
•  Networks	 that	 are	 observationally	 equivalent	 cannot	 be	 distinguished	

without	 resorting	 to	 manipulative	 experimentation	 or	 human	
knowledge 



	
	

Causal	Bayesian	Networks 



Graphs	as	Models	of	Interventions 

•  Causal	 models,	 unlike	 probabilistic	 models,	 can	 serve	 to	 predict	 the	
effect	 of	 interventions.	 This	 added	 feature	 requires	 that	 the	 joint	
distribution	P	 be	 supplemented	with	 a	 causal	 diagram	 -	 that	 is,	 a	 DAG	
that	identifies	causal	connections. 

•  The	 causal	 diagram	may	 represent	 the	 investigator's	 understanding	 of	
the	major	causal	influences	among	measurable	quantities	in	the	domain. 

	
•  Each	child-parent	family	in	a	DAG	G	represents	a	deterministic	function:	 
 
 
 
 

where	pai	are	 the	 parents	 of	 variable	 xi	 in	G;	 the	 	 	 	 	 	 (i=1,…,n)	 	 are	
mutually	independent,	arbitrarily	distributed	random	disturbances. 

•  The	 equality	 signs	 in	 structural	 equations	 convey	 the	 asymmetrical	
relation	of	"is	determined	by“. 



Causal	Bayesian	Networks 

General	Factorization 

Now	supplemented	with	causal	
assumptions 



Finding	causal	relationships 

•  For	 finding	 causal	 relationships,	 the	 gold	 standard	 are	 	 randomized	
controlled	 trials	 	 initially	 developed	 in	 the	 context	 of	 agricultural	
research	(Fisher,	1926).		

•  Problem:	Not	always	feasible	for	ethical,	financial	or	other	reasons.		
	 		

We	are	left	with	two	problems:	
•  Problem	1	 (Causal	Structure):	Given	observational	data,	 find	the	DAG	

representing	the	causal	structure,	or,	if	this	is	not	possible,	give	a	class	
of	DAGs	to	which	the	true	DAG	belongs. 	 	 	 	

		
•  Problem	2	(Interventional	Distribution):	Given	observational	data,	find	

the	interventional	distribution	of	a	random	variable	Y	after	some	other	
random	variable	X	was	set	to	a	certain	value	by	external	intervention	to	
make	quantitative	predictions	on	the	effect	of	interventions.		



Manipulation	theorem 

•  The	manipulation	 theorem	 (Spirtes	 et	 al.	 1993)	 states	 that	 given	
an	external	 intervention	on	a	variable	X	 in	a	causal	graph,	we	can	
derive	 the	posterior	probability	distribution	over	 the	entire	graph	
by	simply	modifying	the	conditional	probability	distribution	of	X.		

	
•  Intervention	amounts	to	removing	all	edges	that	are	coming	into	

X.	Nothing	 else	 in	 the	 graph	needs	 to	 be	modified,	 as	 the	 causal	
structure	of	the	system	remains	unchanged.	

	
•  Thus,	 intervention	 can	 be	 expressed	 in	 a	 simple	 truncated	

factorization	formula.	



The	do(.)	operator 

•  Interventions	 are	 defined	 through	 a	 new	mathematical	 operator	 called	
do(X=x),	 which	 simulates	 physical	 interventions	 by	 deleting	 the	
probability	 factor	 corresponding	 to	 variable	X	 in	 the	 joint	 factorization,	
while	keeping	the	rest	unchanged	elsewhere	with	X	fixed	to	x.	

•  The	 causal	 effect	 of	 X	 on	 Y	 is	 denoted	 P(y|do(X=x)).	 It	 is	 termed	 an	
interventional	 distribution	 and	 should	 not	 be	 confused	 from	 the	
observational	distribution	P(y|x).	

	
•  Interventions	 can	 be	 expressed	 as	 a	 simple	 truncated	 factorization	

formula:	



The	do(.)	operator 

Can	be	rewritten	as: 

In	compact	form:	

Summing	over	all	variables	except	xi	and	y	leads	to	the	result	called	
adjustment	for	direct	causes:	 



Controlling	confounding	biais 

	
•  We	adjust	our	measurements	for	possible	variations	of	the	parents	of	

X	 in	 the	 causal	 DAG	 G,	 they	 are	 acting	 as	 “covariates”	 or	
«	confounders	». 

•  Adjustment	 for	 the	 direct	 parents	 amounts	 to	 partitioning	 the	
population	into	groups	that	are	homogeneous	relative	to	pax		assessing	
the	effect	of	X	on	Y	 in	each	homogeneous	group,	and	 then	averaging	
the	results.	 

•  This	 expression	 requires	 all	 the	 parents	 to	 be	 observed.	 Are	 other	
variables	appropriate	for	adjustment?	

•  What	 criterion	 should	 one	 use	 to	 decide	 which	 variables	 are	
appropriate	for	adjustment?	



Back-Door	adjustment	
	
More	generally,	 a	 set	of	 variables	Z	 satisfies	
the	back-door	criterion	 relative	 to	 (X,Y)	 in	a	
DAG	G	iff, 
	
•  No	node	in	Z	is	a	descendant	of	X,	and 

•  Z	blocks	every	path	between	X	and	Y	that	
contains	an	arrow	into	X. 

	
Theorem	–	If	a	set	of	variables	Z	satisfies	the	
back-door	criterion	relative	to	(X,Y),	then	the	
causal	 effect	 of	 X	 on	 Y	 is	 identifiable	 and	 is	
given	by	the	formula, 
	

•  The	sets	Z	={X3,X4}	and	 
Z	={X4,X5}	meet	the	back-door	
criterion	relative	to	(Xi,Xj) 
	
•  But		Z	={X4}	does	not	!	
		

Example:	



	
	

Paradoxes	&	Controversies 



Berkson’s	paradox 

•  Berkson's	 paradox	 is	 a	 result	 in	 conditional	 probability	 (not	 related	
de	 causality)	 which	 is	 counterintuitive	 for	 some	 people:	 given	 two	
independent	 events,	 if	 you	 only	 consider	outcomes	where	 at	 least	
one	event	occurs,	then	they	become	negatively	dependent.	 

	
•  Example:	Berkson's	original	illustration	involves	a	retrospective	study	

examining	a	 risk	 factor	 for	a	disease	 in	a	 statistical	 sample.	Because	
samples	are	taken	from	a	hospital	 in-patient	population,	rather	than	
from	 the	 general	 public,	 this	 can	 result	 in	 a	 spurious	 negative	
association	between	the	disease	and	the	risk	factor	

	
	

Berkson,	Joseph.	"Limitations	of	the	Application	of	Fourfold	Table	Analysis	to	Hospital	Data".	Biometrics	Bulletin.	1946 



Berkson’s	paradox 

D 

H 

E 

●  The	prevalence	of	the	disease	(D)	is	50%	among	exposed	(E)	and	unexposed.	
●  70%	are	hospitalized	(H)	among	exposed	patients	(30%	among	non	exposed)	
●  60%	are	hospitalized	among	diseased	patients	(40%	among	non	diseased).	
	
●  Within	 those	 hospitalized,	 the	 prevalence	 of	 the	 disease	 is	 57%	 among	

exposed	and	66%	among	unexposed	patients.	



Birth	weight	paradox	
	
•  The	birth-weight	paradox	concerns	the	relationship	between	the	birth	

weight	 and	mortality.	Children	of	 smoking	mothers	 are	more	 likely	
to	 be	 of	 low	 birth	 weight	 and	 low	 birth	 weight	 children	 have	 a	
significantly	 higher	mortality	 rate	 than	others	 (it	 is	 in	 fact	 100-fold	
higher) 

	
•  Contrary	 to	 expectations,	 low	 birth	 weight	 babies	 of	 smoking	

mothers	have	a	lower	child	mortality	than	low	birth	weight	babies	of	
nonsmokers.	 	Having	a	smoking	mother	might	be	beneficial	to	one's	
health! 

	
•  Like	 the	 Berkson’s	 paradox,	 it	 is	 counterintuitive	 as	 it	 involves	 two	

independent	 events	 that	 become	 negatively	 dependent,	 having	
observed	a	third	event. 

	
	
Hernández-Díaz	et	al.	“The	birth	weight	paradox	uncovered?”	Am	J	Epidemiol	2006	
Wilcox	A.	“On	the	importance—and	the	unimportance—of	birth	weight”.	Int	J	Epidemiol	2001.	



Birth	weight	paradox	

●  Smoking	may	 be	 harmful	 in	 that	 it	 contributes	 to	 low	 birth	 weight,	 but	
other	 causes	 (not	 measured)	 of	 low	 birth	 weight	 are	 generally	 more	
harmful.	 

●  Consider	a	low	weight	baby,	finding	that	the	mother	smokes	reduces	the	
likelihood	that	those	other	causes	are	present. 

Other 
causes	

Smoking 

Low	birth	
weight Death	

+ 

+ 
+ 

+ 

+ 



Simpson's	paradox 

C	:	taking	a	certain	drug	or	treatment		
E	:	recovery	
F	:	gender		

Under	 a	 causal	 interpretation	 the	
drug	 seems	 to	 be	 harmful	 to	 both	
males	and	females	yet	beneficial	to	
the	population	as	a	whole	!	



Simpson's	paradox 

Three	causal	models	capable	of	generating	the	data	Model		
(a) dictates	use	of	the	gender-specific	tables,		
whereas	(b)	and	(c)	dictates	use	of	the	combined	table. 

Treatment Treatment Treatment 

Recovery Recovery Recovery 

Gender Blood  
pressure 

Playing 
golf 

Social  
status 

Healthy 

(a) (b) (c) 



Simpson's	paradox 

	 



Front-Door	adjustment	
	
A	set	of	variables	Z	 is	said	to	satisfy	the	front-
door	criterion	relative	to	(X,	Y)	if 
▪  Z	intercepts	all	directed	paths	from	X	to	Y; 
▪  there	is	no	back-door	path	from	X	to	Z; 
▪  all	back-door	paths	from	Z	to	Y	are	blocked	

by	X. 

Theorem	:	If	Z	satisfies	the	front-door	criterion	relative	to	(X	,Y)	and	if	P(x,z)	>	0,	
then	the	causal	effect	of	X	on	Y	is	identifiable	and	is	given	by	the	formula: 

	 

If	Z	were	not	observed,	the	causal	effect	of	X	on	Y	would	not	be	identifiable!	 



Smoking	and	Lung	Cancer	

●  Old	debate	on	the	relation	between	smoking,	X,	and	lung	cancer,	Y.			
	
●  If	we	ban	smoking,	will	the	rate	of	cancer	cases	be	roughly	the	same	as	

the	one	we	find	today	among	non	smokers	in	the	population	? 

	
●  Controlled	experiments	could	answer	the	question	but	they	are	illegal	

to	conduct. 



Smoking	and	Lung	Cancer	

The	 tobacco	 industry	 has	 managed	 to	 forestall	 antismoking	 legislation	
(1964)	by	arguing	that	the	observed	correlation	between	smoking	and	lung	
cancer	 could	 be	 explained	 by	 some	 sort	 of	 carcinogenic	 genotype,	 U	
(unknown),	that	involves	inborn	craving	for	nicotine. 



Smoking	and	Cancer 

	 



Numerical	application 

•  Crude	analysis: 
	
	
	
	
	

•  These	 results	 seem	 to	 prove	 that	 smoking	 is	 a	 major	
contributor	to	lung	cancer.		

•  However,	 the	 tobacco	 industry	might	 argue	 that	 the	 table	
tells	a	different	story	-	that	smoking	actually	decreases	one's	
risk	of	lung	cancer… 



Numerical	application 

Contrary	 to	 expectation,	 the	 data	 prove	 smoking	 to	 be	
somewhat	beneficial	to	one's	health	!	

	 



Discrimination	controversy 

•  Another	 example	 involves	 a	 controversy	 called	 «	 reverse	 regression	 »,		
which	occupied	the	social	science	literature	in	the	1970s.		

	
•  Should	we,	 in	 salary	 discrimination	 cases,	 compare	 salaries	 of	 equally	

qualified	men	and	women	or	instead	compare	qualifications	of	equally	
paid	men	and	women?		

	
•  Remarkably,	the	two	choices	may	lead	to	opposite	conclusions.	It	turns	

out	 that	men	 earns	 a	 higher	 salary	 than	 equally	 qualified	women	 and,	
simultaneously,	men	are	more	qualified	than	equally	paid	women.		

	
•  The	 moral	 is	 that	 all	 conclusions	 are	 extremely	 sensitive	 to	 which	

variables	we	choose	to	hold	constant	when	we	are	comparing	groups.	



Discrimination	controversy 

	 



Discrimination	controversy 

? 
G Q	

S	

+ + 

- 

Let	G=1	for	men,	G=1	and	S=1	for	high	qualification	and	salary.	Suppose	two	
direct	 effects	 are	 positive	 (hence	 sex	 discrimination	on	 salary).	 Conditioned	
on	S,	G	and	Q	become	negatively	correlated	via	the	open	path	in	dotted	lines. 

? G Q	

S	

+ + 

Men	earns	a	higher	salary	than	equally	qualified	women												Men	are	more	qualified	than	equally	paid	women 
 



The	Rules	of	do-calculus 

	
●  When	 a	 query	 is	 given	 in	 the	 form	 of	 a	 do-expression,	 for	 example	

P(y|do(x),z),	 its	 identifiability	 can	be	decided	systematically	using	an	
algebraic	procedure	known	as	the	do-calculus.	

	
●  The	 do-calculus	 was	 developed	 by	 J.	 Pearl	 in	 1995	 to	 facilitate	 the	

identification	of	causal	effects	in	non-parametric	models.	
	
●  It	consists	of	three	inference	rules	that	permits	to	map	interventional	

and	 observational	 distributions	 whenever	 certain	 conditions	 hold	 in	
the	causal	diagram	G.   

    
●  The	 do-calculus	 was	 shown	 to	 be	 complete	 (Tian	 and	 Pearl	 2002a;	

Huang	 and	 Valtorta	 2006;	 Shpitser	 and	 Pearl	 2006;	 Bareinboim	 and	
Pearl	2012a).  	



Causal	graphs:	illustration 

●  We	 wish	 to	 assess	 the	 total	 effect	 of	 the	
fumigants	X	on	yields	Y.		

●  The	causal	diagram	represents	the	investigator's	
understanding	 of	 the	 major	 causal	 influences	
among	measurable	quantities	in	the	domain.		

	
●  Z1,	 Z2,	 Z3	 represent	 the	 eelworm	 population	

before	 treatment,	 after	 treatment,	 and	 at	 the	
end	of	the	season,	respectively.		

●  Z0	represents	last	year's	eelworm	population.		
●  B	is	the	population	of	birds	and	other	predators. 

Unmeasured	quantities	are	designated	by	hollow	circles	and	dashed	lines. 



The	Rules	of	do-calculus 

•  Using	 the	 do-calculus,	 one	 can	 establish	
that	 the	 total	 effect	 of	 X	 on	 Y	 can	 be	
estimated	consistently	from	the	observed	
distribution	of	X,	Z1,	Z2,	Z3,	and	Y. 

	
•  These	 conclusions	 are	 obtained	 by	

performing	 a	 sequence	 of	 symbolic	
derivations	(the	3	inference	rules). 



 
 
Confounding & Selection bias 



Confounding	&	Selection	bias	
	
● The	 biases	 arising	 from	 confounding	 and	 selection	 are	 fundamentally	
different,	 though	 both	 constitute	 threats	 to	 the	 validity	 of	 causal	
inferences.		

● The	 confounding	 bias	 is	 the	 result	 of	 treatment	 X	 and	 outcome	 Y	
being	affected	by	common	ancestral	variables,		
● The	selection	bias	is	due	to	treatment	X	or	outcome	Y	(or	ancestors)	
affecting	the	inclusion	of	the	subject	in	the	sample.		

	
● In	 both	 cases,	 we	 have	 extraneous	 “flow”	 of	 information	 between	
treatment	 and	 outcome,	 which	 falls	 under	 the	 rubric	 of	 “spurious	
correlation,”	since	it	is	not	what	we	seek	to	estimate.  
 

● What	 are	 the	 conditions	 for	 recoverability	 of	 interventional	
distributions	for	when	selection	and	confounding	biases	are	both	present?	
 



Confounding	with	latent	variables		
● Some	relevant	confounders	are	difficult	 to	measure	 in	many	real-world	
applications	 (e.g.,	 intention,	 mood,	 DNA	mutation),	 which	 leads	 to	 the	
need	 of	modelling	 explicitly	 latent	 variables	 that	 affect	more	 than	 one	
observed	variable	in	the	system	(Semi-	Markovian	models).	
	
● In	such	models,	identifiability	is	not	always	achievable.		
	
● Causal	Effects	Identifiability:	 	Let	be	V	the	set	of	observable	variables,	U	
is	the	set	of	unobservable	variables.	The	causal	effect	of	an	action,	do(X	=	
x)	 is	 said	 to	 be	 identifiable	 from	 P	 in	 G	 if	 P(y|do(x))	 	 is	 uniquely	
computable	from	P(v).	
	
● The	 evaluation	 of	 identifiability	 goes	 through	 a	 non-trivial	 algebraic	
process,	namely	the	do-calculus.	

	 	 	 		
	 	 	 	 
  	



Confounding	:	risks	and	pitfalls		

	
● Researchers	must	weigh	the	benefit	of	reducing	confounding	bias	carried	
by	those	covariates	against	the	risk	of	amplifying	residual	bias	carried	by	
unmeasured	confounders. 	 	 		
	
● According	to	Judea	Pearl,	epidemiologists	often	adjust	for	wrong	sets	of	
covariate	(usually	Sex	and	Age	but	other	covariates	are	missing)	.	
	
● Is	the	prevailing	practice	in	epidemiology	misguided? 	 		

	 	 	 	 
  	



Selection	bias	
● Another	major	 challenge	 that	 needs	 to	 be	 addressed	 when	 evaluating	
the	 effect	 of	 interventions	 is	 the	 problem	 of	 selection	 bias,	 caused	 by	
preferential	exclusion	of	samples	from	the	data.	
	
● Selection	 bias	 is	 a	 major	 obstacle	 to	 valid	 causal	 and	 statistical	
inferences;	 it	 can	 hardly	 be	 detected	 in	 either	 experimental	 or	
observational	studies.	
	
● Example:	in	a	typical	study	of	the	effect	of	training	program	on	earnings,	
subjects	 achieving	 higher	 incomes	 tend	 to	 report	 their	 earnings	 more	
frequently	than	those	who	earn	less.		



Selection	bias	
● To	illuminate	the	nature	of	this	bias,	consider	a	variable	S	affected	by	both	X	
(treatment)	and	Y	(outcome),	indicating	entry	into	the	data	pool.	
	
● Such	preferential	selection	to	the	pool	amounts	to	conditioning	on	S,	which	
creates	spurious	association	between	X	and	Y.	
	
● Our	 assumption	 about	 the	 selection	 mechanism	 are	 embodied	 in	 an	
augmented	causal	graph	Gs.  
 
 
 

● Illustration	:	Effect	of	training	program	on	earnings	
	
	
● S	 	 represents	 the	 selection	 mechanism.	 S=1	 indicates	 presence	 in	 the	
sample,	and	S=0	exclusion.		
	



Recoverability		
 

●  Under	what	conditions	P(y|do(x))	can	be	recovered	from	data	drawn	
from	P(y,	x|S	=	1)?	

	
●  Recoverability	 from	 Selection	 Bias:	 Given	 a	 causal	 graph	 Gs	

augmented	with	S,	P(y|do(x))	is	said	to	be	recoverable	from	selection	
biased	 data	 in	 Gs	 if	 P(y|do(x))	 is	 expressible	 in	 terms	 of	 the	
distribution	under	selection	bias	P(v|S	=	1).	

	
	
●  In	this	example,	P(y|do(x))	is	not	recoverable	
	
	
	



Osteoporotic	fracture	risk	assessment	
 

A.	Aussem	et	al.	“Analysis	of	risk	factors	of	hip	fracture	with	causal	Bayesian	networks”.	IWBBIO	2014.	
P.Caillet	et	al.	“Hip	fracture	in	the	elderly:	a	re-analysis	of	the	EPIDOS	Study	with	causal	Bayesian	Networks”,	Plos	One,	2015	

•  Prospective	 cohort	 study	 with	 7500	
e lde r l y	 o s teoporo t i c	 women	
followed-up	during	4	years.	

•  A	 plausible	 causal	 BN	 was	 learned	
from	 a	 combinat ion	 of	 non-
experimental	 data	 and	 qualitative	
assumptions	 that	 are	 deemed	 likely	
by	health	experts.	

•  Inclusion	 of	 a	 selection	 mechanism	
and	an	unobserved	confounder.	

•  We	seek	 to	estimate	 the	 strength	of	
the	 causal	 effect	 of	 psychotropic	
drugs	on	the	risk	of	hip	fracture:	

	
P(Fracture|do(Psycho))	=	?	

	
	



	
	

Missing	data 



Missing	data 

• All	branches	of	experimental	science	are	plagued	by	missing	data	
	
• The	“missing	data”	problem	arises	when	values	for	one	or	more	variables	
are	missing	from	recorded	observations	
	
• Occurs	 often	 in	 social	 science,	 epidemiology,	 biology	 and	 survival	 data	
analysis	etc.		
	
• Caused	 by	 varied	 factors	 such	 as	 high	 cost	 involved	 in	 measuring	
variables,	 failure	 of	 sensors,	 reluctance	 of	 respondents	 in	 answering	
certain	questions		
	
• Improper	 handling	 of	 missing	 data	 can	 bias	 outcomes	 and	 potentially	
distort	the	conclusions	drawn	from	a	study.	 
	



Misingness	mechanism	:	m-graph 

          
    
     
      

Observed and partially missing variables are represented by full and hollow circles respectively.  
     
    
   

●  Associated	 with	 every	 partially	
observed	 variable	 Vj	 ∈	 Vmiss	 are	
two	other	variables	Rj	and	Vj

∗	
	
●  Vj

∗	 is	 a	 proxy	 variable	 that	 is	
actually	observed.	

	
●  Rj	 represents	 the	 status	 of	 the	

causal	mechanism	responsible	for	
the	missingness	of	Vj∗	



Missingness	mechanisms 

          
    
     
      
    
    	

●  Vj
∗	 is	 a	 proxy	 variable	 that	 is	 actually	 observed,	 and	 Ri	 represents	 the	

status	of	the	causal	mechanism	responsible	for	the	missingness	of	Vj.	
	
●  Data	that	are:	(a)	MCAR,	(b)	MAR,	(c)	&	(d)	MNAR.	Hollow	and	solid	circles	
denote	partially	and	fully	observed	variables	respectively		

	 	 	 		
Mohan	K.	et	al.		“Missing	Data	as	a	Causal	Inference	Problem”.	NIPS,	2013	   

  
     
    
   



Recoverability	with	missing	data		

Let	Vobs,	Vmiss		be	the	set	of	observed	and	missing	variables	
	
	
●  Recoverability	 from	 Data	Missingness	 Bias:	Given	 a	 causal	 graph	 G	

augmented	with	 the	missingness	 variables	R,	P(y|do(x))	 is	 said	 to	be	
recoverable	 in	 G	 if	 P(y|do(x))	 is	 expressible	 in	 terms	 of	 the	
distributions	P(Vobs,	Vmiss|R	=	0).	

     
    
   

  
     
    
   



Conclusions 

•  Testing	 for	 cause	 and	 effect	 is	 difficult,	 discovering	 cause	 effect	 is	
even	more	difficult.	

•  But,	 once	 the	 causal	 diagram	 is	 provided	 (both	 from	 expert	
knowledge	 and	 data),	 	 identification	 of	 causal	 effects	 is	
straightforward	using	the	do-calculus	rules.		

•  Many	 paradoxes	 and	 controversies	 in	 social	 and	 medical	 sciences	
can	be	illustrated	and	understood	by	simple	graphical	means.	

•  The	 data	 missingness	 and	 selection	 mechanisms	 can	 easily	 be	
represented	in	the	diagram	for	bias	correction	purposes.	

•  Inference	 of	 causal	 relationships	 from	 massive	 data	 sets	 is	 still	 a	
challenge	but	may	eventually	lead	to	new	discoveries	(e.g.	cancer)	
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Thank	you	for	your	attention,	any	question	? 


