

École Normale Supérieure Collège de France www.di.ens.fr/data

Deep Convolution Networks

- Spectacular supervised learning : prediction of y given data x . Classification, regression: *images, speech, natural languagee, bio-data, go...* but black boxes.
- Spectacular unsupervised learning: data models *x*. Generation of *textures, complex images, speech, music*...
- Good results for inverse problems and denoising: improvements of *1db* relatively to state of the art *(Unser et. al.)*.
- **Opening the black box**: powerful statistical tools.

 L_j : spatial convolutions and linear combination of channels $\rho(a) = \max(a, 0)$: Relu Supervised learning of L_j from n examples $\{x_i, y_i\}_{i \leq n}$ Exceptional results for *images, speech, language, bio-data...* Transfer learning of $\Phi(x)$ to classify over different data bases. Open questions:

- Why is such a filter-bank architecture effective ?
- Need to learn $\Phi(x)$ or prior information could be enough ?

Unsupervised Learning

- Estimation $\tilde{p}(x)$ of a probability density p(x) for $x \in \mathbb{R}^d$ given n realizations $\{x_i\}_{i \leq n}$ of a random vector X.
- \bullet Generation of a typical realisation by sampling $\tilde{p}(x)$
- Models for all statistical applications
- If p(x) is locally regular: Lipschitz $\mathbb{E}(\|p - \tilde{p}\|_{\mathcal{H}}) \leq \epsilon \implies n \geq C \epsilon^{-d}$ Curse of dimensionality

Turbulence x(u) $d = 10^{6}$

Problem: Find regularity properties which can break the curse of dimensionality.

Deep Net. Models from 1 Example

M. Bethdge et. al.

- Supervised network training (ex: on ImageNet)
- For 1 realisation x of X, compute each layer
- Compute correlation statistics of network coefficients
- Synthesize \tilde{x} having similar statistics

channels

What mathematical interpretation ?

Learned Generative Networks

• Variational autoencoder: trained on n examples $\{x_i\}_{i \leq n}$

ENS

Network trained on faces of celebrities: G(Z)

What mathematical interpretation ?

Maximum Entropy with Moments Jaynes

Approximation of p(x) conditioned on K moments $\mathbb{E}_p(\phi_k(x))$ by \tilde{p} which maximizes the entropy $H_{\tilde{p}} = -\int \tilde{p}(x) \log \tilde{p}(x) dx$

Theorem [Gibbs distributions] If $\tilde{p}(x)$ satisfies $\forall k \leq K$, $\mathbb{E}_{\tilde{p}}(\phi_k(x)) = \int_{\mathbb{R}^N} \phi_k(x) \ \tilde{p}(x) \, dx = \mathbb{E}_p(\phi_k(x))$ and maximizes $H_{\tilde{p}} = -\int \tilde{p}(x) \log \tilde{p}(x) \, dx$ then $\tilde{p}(x) = \mathcal{Z}^{-1} \exp\left(-\sum_{k=1}^K \beta_k \phi_k(x)\right).$

> How to choose the ϕ_k ? Can we avoid computing the β_k ?

Which moments ?

• Linearization:

ENS 🔪

$$-\log \tilde{p}(x) = \log \mathcal{Z} + \sum_{k=1}^{K} \beta_k \phi_k(x) \approx -\log p(x)$$

$$\phi_k(x) \text{ specified from "priors" on the regularity of } p(x)$$

- Stationarity: p(x) invariant to translations obtained with $\phi_k(x)$ also invariant Other priors: regularity to deformations, ...
- Quadratic: $\phi_k(x) = \sum_u x(u) x(u \tau_k) \Rightarrow \tilde{p}(x)$ is Gaussian

Kolmogorov

• Higher order moments: large variance, sensitive to outliers. Failure!

Prior: Scale Separation

• Architecture of complexity: hierarchical Herbert Simons

C O L L È G E DE FRANCE

scales

• Architecture of complexity: hierarchical Herbert Simons

scales

Interactions de d variables x(u): pixels, particules, agents...

Interactions across scales

COLLÈGE DE FRANCE

Multiscale regroupement of interactions of d variables into interactions of $O(\log d)$ groups of variables,

Scale separation \Rightarrow wavelet transforms, filter banks A path to Deep Nets.

Multiscale Wavelet Transform

• Dilated wavelets: $\psi_{\lambda}(t) = 2^{-j/Q} \psi(2^{-j/Q}t)$ with $\lambda = 2^{-j/Q}$

- Wavelet transform: $Wx = \begin{pmatrix} x \star \phi_{2^J}(t) \\ x \star \psi_{\lambda}(t) \end{pmatrix}_{\lambda \leq 2^J}$: average Preserves norm: $||Wx||^2 = ||x||^2$.
 - Wavelets are stable to deformations

Scale separation with Wavelets

Fourier

• Wavelet filter $\psi(u)$: = +i =

rotated and dilated: $\psi_{2^{j},\theta}(u) = 2^{-j} \psi(2^{-j}r_{\theta}u)$

Preserves norm: $||Wx||^2 = ||x||^2$. Wavelets are stable to deformations

 2^J Scale

Wavelet Filte<mark>r Bank</mark>

Wavelet Translation Invariance

Need to recover lost high frequencies: $|x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}(t)$

 $\Rightarrow \text{ wavelet transform: } |W_2| |x \star \psi_{\lambda_1}| = \left(\begin{array}{c} |x \star \psi_{\lambda_1}| \star \phi_{2J}(t) \\ |x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}(t)| \end{array} \right)_{\lambda_2}$

Amplitude Modulation

Harmonic sound: $x(t) = a(t) e \star h(t)$ with varying a(t)

Wavelet Scattering Network

Convolutional tree: no combination along channels

$S_{J}x = \begin{pmatrix} x \star \phi_{2^{J}} \\ |x \star \psi_{\lambda_{1}}| \star \phi_{2^{J}} \\ ||x \star \psi_{\lambda_{1}}| \star \psi_{\lambda_{2}}| \star \phi_{2^{J}} \\ ||x \star \psi_{\lambda_{1}}| \star \psi_{\lambda_{2}}| \star \phi_{2^{J}} \\ |||x \star \psi_{\lambda_{2}}| \star \psi_{\lambda_{2}}| \star \psi_{\lambda_{3}}| \star \phi_{2^{J}} \\ \dots \end{pmatrix}_{\lambda_{1},\lambda_{2},\lambda_{3},\dots}$

 $||W_k x|| = ||x|| \Rightarrow ||W_k x| - |W_k x'|| \le ||x - x'||$

Theorem: For appropriate wavelets, a scattering is contractive $||S_J x - S_J y|| \le ||x - y||$ (L² stability) translations invariance and deformation stability: if $D_{\tau} x(u) = x(u - \tau(u))$ then $\lim_{J \to \infty} ||S_J D_{\tau} x - S_J x|| \le C ||\nabla \tau||_{\infty} ||x||$ Estimate the distribution p(x) of a stationary X Scattering transform of X(u) up to order 2:

Unsupervised Learning

$$S_J(X) = \begin{pmatrix} X \star \phi_J \\ |X \star \psi_{\lambda_1}| \star \phi_J \\ ||X \star \psi_{\lambda_1}| \star \psi_{\lambda_2}| \star \phi_J \end{pmatrix}_{\lambda_1,\lambda_2}$$

 $2^{J} \to \infty$ Concentration with ergodicity/decorrelation conditions $\mathbb{E}(S(X)) = \begin{pmatrix} \mathbb{E}(X) \\ \mathbb{E}(|X \star \psi_{\lambda_{1}}|) \\ \mathbb{E}(||X \star \psi_{\lambda_{1}}| \star \psi_{\lambda_{2}}|) \end{pmatrix}_{\lambda_{1},\lambda_{2}}$ concentration towards is co

 $\Omega_{\epsilon} = \{x : \|S_J(x) - \overline{S_J(x_1)}\| \leq \epsilon\}: \text{ microcanonial ensemble.}$ $\hat{p}(x): \text{ uniform density over the microcanoniccal ensemble}$ Max entropy inversion of S_J : micro canonical model \widehat{X}

• Sampling: initialize x with Gaussian white noise Z Minimize $||S_J(x) - S_J(x_1)||^2$ by stochastic gradient descent

Texture Reconstructions Joan Bruna

Texture of d pixels

Turbulence 2D

 $d=6\,10^4$

 $\mathbb{E}[X(u) X(u')]$ Gaussian process model with d second order moments

From $O(\log^2 d)$ 2nd order scattering coefficients

What is missing ?

Representation of Audio Textures

Original
Gaussian
in time
Scattering
Order 2

Paper
Model of the second se

Cocktail Party

Failures of Audio Synthesis

Typical of \tilde{X} is not typical of X

• Missing frequency connections \Rightarrow misalignments How to connect frequencies ?

Scale

Lines of Constant Phase

• Lines of constant phase specify the geometry: edge detection

Phase Harmonics

• Filters with a phase shift α

Sixin Zhang

$$\psi_{j,\theta,\alpha} = \operatorname{Real}(e^{i\alpha} \psi_{j,\theta})$$

Rectification:

$$x(u, j, \theta, \alpha) = \rho \left(x \star \psi_{j, \theta, \alpha}(u) \right)$$
 with $\rho(a) = \max(a, 0)$

Theorem : Fourier transform along the phase α :

$$\widehat{x}(u,j,\theta,k) = c_k |x \star \psi_{j,\theta}(u)| e^{i k \varphi(x \star \psi_{j,\theta}(u))}$$

Linear combination across network channels creates harmonics of the phase \Rightarrow connections across scales/frequencies.

Scale Connections with Harmonics -ENS

 $6\,10^4$ pixels

 $3\,10^3$ correlations

Same quality as with learned Deep networks with much less moments

II- Adversarial Network Generation

• What if X is not stationary ? Estimate \widehat{X} from many realisations $\{x_i\}_i$ of X

- Spectacular results with a jungle of convolutional networks: GAN's, Autoencoders, Recurrent Neural Nets, WaveNets...
- Complex training with dual networks and little theory.

• Can we simplify algorithms and relate it to existing maths ?

• The encoder Φ must produce a nearly white noise $Z = \Phi(X)$ variational cost: $KL(p_{\Phi}(z/x)||\mathcal{N}(0, Id))$

Problem: distance estimation is untractable Arora et. al.

• The decoder G must nearly restore X: inverse problem by minimizing $\mathbb{E}(\|X-G(\Phi(X))\|^2)$

Generation as an Inverse Problem

- From prior on p(x), define Φ with $\Phi(X)$ nearly Gaussian. Avoids the intractable step.
- Encode by whitening with a linear operator $L: \widehat{Z} = L \Phi(X).$ *Encoder* $X \longrightarrow \Phi \longrightarrow \widehat{Z} \longrightarrow \widehat{Z} \longrightarrow G \longrightarrow \widehat{X}$
- The generator should invert Φ on X: $G(\Phi(X)) \approx X$.

Regularized inverse over deep network operators \mathcal{G} :

Does not maximize entropy

Gaussianization from Prior

 p(x) is locally or globally invariant to translations of x nearly invariant to small deformations has sparse typical realisations with wavelets

$$S_J(X) = \begin{pmatrix} X \star \phi_J \\ |X \star \psi_{\lambda_1}| \star \phi_J \\ ||X \star \psi_{\lambda_1}| \star \psi_{\lambda_2}| \star \phi_J \end{pmatrix}_{\lambda_1,\lambda_2}$$

• Averaging by ϕ_J Gaussianizes: central limit theorem when $2^J \to \infty$

Scattering Inverse Network

- Tomás Angles
- Encoder: whitens $S_J X$ with a linear operator L

ENS

$$X \longrightarrow S_J \longrightarrow L \longrightarrow \widehat{Z} \quad : \text{ white nearly Gaussian}$$

• Decoder: $Z \sim \mathcal{N}(\mu, Id) \longrightarrow L^{-1} \longrightarrow G \longrightarrow \widehat{X}$

Regularized inversion of S_J with a deep net G minimising:

$$G = \min_{\hat{G} \in \mathcal{G}} \sum_{i} \left(\|\hat{G}(S_J(x_i)) - x_i\| \right)$$

regularized inverse scattering

J layers

Training Reconstruction

$\begin{array}{c} \text{Training } x_i \\ \text{Polygones} \end{array}$

ENS

Celebrities Data Basis

 $G(S_J(x_i))$

Testing Reconstruction

Testing x_t

ENS

 $G(S_J(x_t))$

Images synthesised from Gaussian white noise Z:

G: regularized inversion of S_J

Networks regularize with some form of "memory storage". Sparse activations for images from data basis. Memory can saturate if data basis is too complex:

Loss of resolution or loss of structures (mode dropping)

Training images

Variatival AdvoesariderSets. Reconstructed from Noise

Generative Adversarial Networks

T. Karras, T. Aila, S. Laine, J. Lehtinen Generated from Hollywood celebrities data basis

Generative adversarial networks do not reduce quality but "forget" images (mode dropping).

Conclusion

- Deep neural network architectures are providing a new statistical tools beyond high order moments.
- Scale separation and interactions through filters/wavelets.
- Distributed memory storage: not understood as most properties...
- Opening the black box: a beautiful statistical and information processing problem!