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Deep Convolution Networks

• Spectacular supervised learning : prediction of y given data x . 
Classification, regression: images, speech, natural languagee, 
bio-data, go…  but black boxes. 

• Spectacular unsupervised learning: data models x.           
Generation of textures, complex images, speech, music… 

• Good results for inverse problems and denoising: improvements 
of 1db relatively to state of the art (Unser et. al.). 

• Opening the black box: powerful statistical tools.               



Supervised Deep Learning

Exceptional results for images, speech, language, bio-data...
Supervised learning of Lj from n examples {xi, yi}in

• Deep convolutional neural network to predict y = f(x):

Lj : spatial convolutions and linear combination of channels

�(x)

L1

Lj

⇢(a) = max(a, 0): Relu

⇢

⇢ linear

• Why is such a filter-bank architecture e↵ective ?
Open questions:

Transfer learning of �(x) to classify over di↵erent data bases.

ỹ

x

Scale axis

• Need to learn �(x) or prior information could be enough ?



         Unsupervised Learning

given n realizations {xi}in of a random vector X.

• Estimation p̃(x) of a probability density p(x) for x 2 Rd

Turbulence x(u)E(kp� p̃kH)  ✏ ) n � C ✏�d

• If p(x) is locally regular: Lipschitz

Problem:

break the curse of dimensionality.
Find regularity properties which can

d = 106Curse of dimensionality

• Generation of a typical realisation by sampling p̃(x)

• Models for all statistical applications



 Deep Net. Models from 1 Example

• Supervised network training (ex: on ImageNet)

• For 1 realisation x of X, compute each layer

x
6 104 pixels

x̃
2 105 correlations

M. Bethdge et. al.

• Compute correlation statistics of network coe�cients

• Synthesize x̃ having similar statistics

What mathematical interpretation ?



   Learned Generative Networks

L1

⇢
Lj

⇢X

Encoder

W1 W2 Wj

eX = G(Z)

Decoder

Z = �(X)

Gaussian white� G

• Variational autoencoder: trained on n examples {xi}in

Network trained on bedroom images:

Under review as a conference paper at ICLR 2016

Figure 4: Top rows: Interpolation between a series of 9 random points in Z show that the space
learned has smooth transitions, with every image in the space plausibly looking like a bedroom. In
the 6th row, you see a room without a window slowly transforming into a room with a giant window.
In the 10th row, you see what appears to be a TV slowly being transformed into a window.

6.3.2 VECTOR ARITHMETIC ON FACE SAMPLES

In the context of evaluating learned representations of words (Mikolov et al., 2013) demonstrated
that simple arithmetic operations revealed rich linear structure in representation space. One canoni-
cal example demonstrated that the vector(”King”) - vector(”Man”) + vector(”Woman”) resulted in a
vector whose nearest neighbor was the vector for Queen. We investigated whether similar structure
emerges in the Z representation of our generators. We performed similar arithmetic on the Z vectors
of sets of exemplar samples for visual concepts. Experiments working on only single samples per
concept were unstable, but averaging the Z vector for three examplars showed consistent and stable
generations that semantically obeyed the arithmetic. In addition to the object manipulation shown
in (Fig. 7), we demonstrate that face pose is also modeled linearly in Z space (Fig. 8).

These demonstrations suggest interesting applications can be developed using Z representations
learned by our models. It has been previously demonstrated that conditional generative models can
learn to convincingly model object attributes like scale, rotation, and position (Dosovitskiy et al.,
2014). This is to our knowledge the first demonstration of this occurring in purely unsupervised
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Z2

Network trained on faces of celebrities:
G(Z)

What mathematical interpretation ?

Linearization of deformations



Maximum Entropy with Moments

Hp̃ = �
Z

p̃(x) log p̃(x) dxby p̃ which maximizes the entropy

Approximation of p(x) conditioned on K moments Ep(�k(x))

Jaynes

and maximizes Hp̃ = �
R
p̃(x) log p̃(x) dx then

8k  K , Ep̃(�k(x)) =

Z

RN

�k(x) p̃(x) dx = Ep(�k(x))

p̃(x) = Z�1 exp
⇣
�

KX

k=1

�k �k(x)
⌘
.

Theorem [Gibbs distributions ] If p̃(x) satisfies

How to choose the �k ?

Can we avoid computing the �k ?



      Which moments ?

Kolmogorov
Gaussian

• Quadratic: �k(x) =
P

u x(u)x(u� ⌧k) ) p̃(x) is Gaussian

Kolmogorov
Gaussian

• Higher order moments: large variance, sensitive to outliers.

• Linearization:

� log p̃(x) = logZ +
KX

k=1

�k �k(x) ⇡ � log p(x)

• Stationarity: p(x) invariant to translations ) idem for �k(x)
obtained with �k(x) also invariant

Other priors: regularity to deformations, ...

�k(x) specified from ”priors” on the regularity of p(x)

Failure!



  Prior: Scale Separation 
           

scales

• Architecture of complexity: hierarchical Herbert Simons



  Prior: Scale Separation 
           

u1

u2

Interactions de d variables x(u): pixels, particules, agents...

into interactions of O(log d) groups of variables,

Multiscale regroupement of interactions of d variables

) wavelet transforms.Scale separation

A path to Deep Nets.

scales

• Architecture of complexity: hierarchical Herbert Simons

, filter banks

Interactions
across scales



• Dilated wavelets:  �(t) = 2�j/Q  (2�j/Qt) with � = 2�j/Q .

  Multiscale Wavelet Transform

Q-constant band-pass filters �̂�

|�̂�(⇥)|2

�

|�̂��(⇥)|2

�� �0

|�̂(⇥)|2��(t)
���(t)

Wx =

✓
x ? �2J (t)
x ?  �(t)

◆

�2J
• Wavelet transform:

Preserves norm: �Wx�2 = �x�2 .

: average

: higher
frequencies

x ?  �(t) =

Z
x(u) �(t� u) du ) \x ?  �(!) = bx(!) b �(!)

Wavelets are stable to deformations



     Scattering Transform

t

|x ?  �1(t)|

        Wavelet Spectrogram

�1log! =

t

x(t)

Wavelet transform modulus: |W | frequency

time



rotated and dilated:
real parts imaginary parts

 Scale separation with Wavelets

 2j ,✓(u) = 2�j  (2�jr✓u)

• Wavelet transform:
: average

: higher
frequencies

Wx =

✓
x ? �2J (u)
x ?  2j ,✓(u)

◆

jJ,✓

• Wavelet filter  (u):

�1

�2

 ̂2j ,✓(!)

x ?  2j ,✓(u) =

Z
x(v) 2j ,✓(u� v) dv

+ i

✓

2j

Fourier

) x̂(!)  ̂2j ,✓(!)

Preserves norm: �Wx�2 = �x�2 .

Wavelets are stable to deformations
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|x ?  21,✓|

      Fast Wavelet Filter Bank

CHAPTER 2. TRANSLATION SCATTERINGAND CONVOLUTIONAL NETWORKS34
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Figure 2.3: Three Morlet wavelet families with different sets of parameters. For each
set of parameters, we show, from left to right, the gaussian window φJ , all the Morlet
wavelets ψθ,j, and the associated Littlewood Paley sum A(ω). When the number of scales
J increases, so does the width of the low pass wavelet φJ . When the number of orientations
C increases or when the number of scales per octave Q decreases, the Morlet wavelets
become more elongated in the direction perpendicular to their orientation, and hence have
an increased angular sensitivity.

|W1|

2J

Scale
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|W1|

      Wavelet Filter Bank
x(u)⇢(↵) = |↵|

|x ?  2j ,✓|



x(t)

|W1|x =

✓
x ? �2J
|x ?  �1 |

◆

�1

First wavelet transform

W1x =

✓

x ?  �1

◆

�1

x ? �2J

    Wavelet Translation Invariance

|x ?  �1 | ? �2J (t)

2J

local translation invariance
x ? �2J (t)

full translation invariance

2J = 1

Lost high frequencies: x ?  �1(t)

Eliminate the phase: |x ?  �1(t)|

Invariant:

|x ?  �1 | ?  �2(t)

|W2| |x ?  �1 |=
✓

|x ?  �1 | ? �2J (t)
||x ?  �1 | ?  �2(t)|

◆

�2

) wavelet transform:

Need to recover lost high frequencies:

non-linearity



lo
g

(!
1
)

t

First−order windowed scattering (small scale)

lo
g

(!
1
)

t

First−order windowed scattering (large scale)
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g
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2
)

t

Second−order windowed scattering (large scale) Band #75

18 Hz

Harmonic sound: x(t) = a(t) e ? h(t) with varying a(t)

        Amplitude Modulation
�

1
=

lo
g(

⇥
1
)

�
2

=
lo

g(
⇥

2
)

1977 Hz

�
1

=
lo

g(
⇥

1
) 512ms window

|x ⇥� �1 |(t)

|x ?  �1 | ? �(t)

||x ?  �1 | ?  �2 | ? �(t) for �1 = log(1977)



    Wavelet Scattering Network

⇢L1

⇢L2

⇢LJ

⇢W1 ⇢W2 ... ⇢WJ

x

⇢(↵) = |↵|

|x ?  �1 |

x ? �J

SJ =

SJx =
n
|||x ?  �1 |? �2 ? ...| ?  �m | ? �J

o

�k

||x ?  �1 | ?  �2 | ? �J

20

2J

Scale

21

Convolutional tree: no combination along channels



= . . . |W3| |W2| |W1|xSJx =

0

BBBB@

x ? �2J
|x ?  �1 | ? �2J

||x ?  �1 | ?  �2 | ? �2J
|||x ?  �2 | ?  �2 | ?  �3 | ? �2J

...

1

CCCCA

�1,�2,�3,...

kWkxk = kxk ) k|Wkx|� |Wkx
0|k  kx� x0k

translations invariance and deformation stability:

if D⌧x(u) = x(u� ⌧(u)) then

lim
J!1

kSJD⌧x� SJxk  C kr⌧k1 kxk

   Scattering  Network Properties

contractive kSJx� SJyk  kx� yk (L2 stability)

Theorem: For appropriate wavelets, a scattering is



     Unsupervised Learning

SJ(X) =

0

@
X ? �J

|X ?  �1 | ? �J
||X ?  �1 | ?  �2 | ? �J

1

A

�1,�2

2J ! 1

concentration towards

with ergodicity/decorrelation conditions

E(S(X)) =

0

@
E(X)

E(|X ?  �1 |)
E(||X ?  �1 | ?  �2 |)

1

A

�1,�2

Concentration

low-order

Scattering transform of X(u) :

How to avoid computing Lagrange multipliers of max entropy ?

up to order 2:

Estimate the distribution p(x) of a stationary X



S�1
J

bX

 Microcanonical Models: Stat. Phys.
Joan Bruna

SJ

X

Maximum scale 2J = signal size

1 realisation of X

kSJ(X)� E(S(X))k  ✏/2 ) kSJ(X)� SJ(x1)k  ✏

concentration: with high probability

Z ⌦✏

Minimize kSJ(x)� SJ(x1)k2 by stochastic gradient descent

• Max entropy inversion of SJ : micro canonical model bX
p̂(x): uniform density over the microcanoniccal ensemble

⌦✏ = {x : kSJ(x)� SJ(x1)k  ✏}: microcanonial ensemble.

• Sampling: initialize x with Gaussian white noise Z



  Texture Reconstructions Joan Bruna

u
u0

E[X(u)X(u0)]

Turbulence 2D

What is missing ?

d = 6104

d0 = 6104

d0 = 6102

From O(log2 d) 2nd order scattering coe�cients



Original

Paper

Cocktail Party

Representation of Audio Textures
Joan Bruna
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 Failures of Audio Synthesis

Original Time Scattering

How to connect frequencies ?



20

Scale

21

23

|x ?  2j ,✓(u)|

|x ?  2j ,✓(u)|

|x ?  2j ,✓(u)|

|x ?  2j ,✓(u)|

phase phase

phase phase

    Using Complex Phase



  Lines of Constant Phase
• Lines of constant phase specify the geometry: edge detection



   Phase Harmonics
Sixin Zhang

 j,✓,↵ = Real(ei↵  j,✓)

Fourier transform along the phase ↵:Theorem :

bx(u, j, ✓, k) = ck |x ?  j,✓(u)| ei k'(x? j,✓(u))

• Filters with a phase shift ↵

x(u, j, ✓,↵) = ⇢
⇣
x ?  j,✓,↵(u)

⌘
with ⇢(a) = max(a, 0)

Rectification:

) connections across scales/frequencies.

Linear combination across network channels creates

harmonics of the phase



k = 1

|x ?  j,✓(u)| '(x ?  j,✓(u))

k = 2

k '(x ?  j,✓(u))

j

 Scale Connections with Harmonics

scale

�1

�2

�1

�2

k = 1

k = 2

Frequency domain

Correlations:X

u

x̂(u, j, ✓, k) x̂(u, j + 1, 2k)



          Synthesis with Scale Connections

x

x̃

Same quality as with learned Deep networks
with much less moments

6 104 pixels

3 103 correlations



   II- Adversarial Network Generation

GAN’s, Autoencoders, Recurrent Neural Nets, WaveNets...

and little theory.• Complex training with dual networks

• Can we simplify algorithms and relate it to existing maths ?

• Spectacular results with a jungle of convolutional networks:

• What if X is not stationary ?

Estimate bX from many realisations {xi}i of X



       Variational Autoencoders

• The encoder � must produce a nearly white noise Z = �(X)

variational cost: KL(p�(z/x)||N (0, Id))

• The decoder G must nearly restore X:

by minimizing E(kX �G(�(X))k2)
inverse problem

Problem: distance estimation is untractable Arora et. al.

L1

⇢
Lj

⇢X

Encoder

W1 W2 Wj

Decoder

Z = �(X)

Gaussian white� G

eX = G(Z)



  Generation as an Inverse Problem
• From prior on p(x), define � with �(X) nearly Gaussian.
Avoids the intractable step.

GL�1 bX

Decoder

• The generator should invert � on X: G(�(X)) ⇡ X.

Encoder

• Encode by whitening with a linear operator L: bZ = L�(X).

L bZ�X

Does not maximize entropy

Regularized inverse over deep network operators G:



   Gaussianization from Prior
• p(x) is locally or globally invariant to translations of x

nearly invariant to small deformations

SJ(X) =

0

@
X ? �J

|X ?  �1 | ? �J
||X ?  �1 | ?  �2 | ? �J

1

A

�1,�2

has sparse typical realisations with wavelets

when 2J ! 1
• Averaging by �J Gaussianizes: central limit theorem



 Scattering Inverse Network

J layers

X LSJ
bZ : white nearly Gaussian

Z ⇠ N (µ, Id) GL�1 bX• Decoder:

Z
bX

W2L�1

Regularized inversion of SJ with a deep net G minimising:

G = min
Ĝ2G

X

i

⇣
kĜ(SJ(xi))� xik

⌘

Tomás Angles

regularized inverse scattering

• Encoder: whitens SJX with a linear operator L



   Training Reconstruction
xi G(SJ(xi))

Training
Polygones

Celebrities Data Basis



     Testing Reconstruction
Testing

xt
G(SJ(xt))



 Generative Interpolations

Z = ↵Z1 + (1� ↵)Z2

CelebritiesTomás Angles
Polygons

Generative networks as inverse problems

with Scattering transforms

Tomás Angles2 & Stéphane Mallat1,2
1: Collège de France, Paris, France

2: Département d’Informatique - Team DATA

École normale supérieure, CNRS, PSL Research University, 75005 Paris, France

Introduction

Given realizations of a random process X , VAEs and GANs allow to find a network
bG that transforms white Gaussian noise Z into a model bX of X :

bX = bG(Z)

A property of bG is that it allows to interpolate between generated images through
deformations.

- We show that a network bG with those properties can be obtained without opti-

mizing jointly a discriminator or an encoder.

- We propose a suitable embedding operator � that is not learned but which is
su�cient to obtain bG as a solution of a regularized inverse problem.

- Since � is not learned, we avoid the curse of dimensionality (explained in Arora
et al. 2017) when optimizing for a function that gaussianizes a high-dimensional
process, as in VAEs.

Computing a generator from an embedding

Given the following elements:

1. {xi}in : realizations of X (training set)

2.G: family of networks defined by a particular architecture

3. An embedding operator �

We propose to compute bG 2 G by inverting � on the training samples:

bG = argmin
G2G

n�1
nX

i=1

kxi �G(�(xi))k1

To avoid collapsing two di↵erent images to the same embedding we impose that:

8i, i0  n ,
1

↵
kxi � xi0k  k�(xi)� �(xi0)k  kxi � xi0k

for some ↵ > 0.

Observation: Even when � is invertible over the space of all images, we don’t have
bG = ��1. The bG that we obtain is regularized by the training data, the architecture
of the network and the optimization procedure.

- Simple experiments show that not any embedding operator will allow to find a
bG that transforms white Gaussian noise into a good model of X and interpolates
between generated images through deformations.

=) To obtain bG, we propose to look for an embedding operator � with the
following properties:

Gaussianization: The distribution of �(X) is close to a white Gaussian noise.

Continuity to deformations: The embedding � is continuous to deformations
over domains of size 2J if for all image x and a deformation of the image x⌧ we
have:

k�(x)� �(x⌧)k  C kxk
⇣
2�J|⌧ |1 + |r⌧ |1

⌘

for some real constant C.

Inverting a Scattering transform

with a generative network

An embedding operator that has the properties stated before can be implemented
with a Scattering transform.

- We choose a wavelet  , that will be scaled by 2` for di↵erent values of ` and
rotated along Q angles, and a low-pass filter �J of size 2�J to define:

SJ(x) =
h
x ? �J , |x ?  `,q| ? �J , ||x ?  `,q| ?  `0,q0| ? �J

i

1`<`0J, 1q,q0Q

The low-pass filter �J performs an averaging that under certain conditions can gaus-
sianize the process X thanks to the Central Limit Theorem. Also, one can show
that SJ is continuous to deformations of size 2�J .

The operator SJ can be obtained by cascading convolution matrices Vj and the
complex modulus as a non-linearity:

Sj = |VjSj�1| for 1  j  J

=) SJ is an instance of a deep convolutional network whose filters are specified
by wavelets and where the non-linearity is chosen to be a modulus.

- To whiten the process SJ(X) and reduce its dimensionality we compute and diag-
onalize the empirical covariance matrix and then consider only the first d principal
components as shown in the diagram:

The generator illustrated in the diagram is a DCGAN generator (Radford et al.,
2016) of depth J+2. The operators ⇢Wj compute a progressive inversion of SJ(x),
calculated with the convolutional operators |Vj| for 1  j  J .

- Finally, to obtain bG we invert the obtained embedding on the training samples by
minimizing the proposed loss stochastically using Adam with default hyperparame-
ters.
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Experimental results

We use S4 and d = 512 for the embedding operator with three datasets: Polygon5,
CelebA and LSUN-bedrooms; 65536 training and 16384 test samples for each.

Top: original images x (training set). Bottom: reconstructions from �(x) using bG.

Top: original images x (test set). Bottom: reconstructions from �(x) using bG.

Images bX = bG(Z) generated from a Gaussian white noise Z.

Interpolations through deformations. For each dataset, the first row is computed
with two training images and the second row with two test images.

CelebA Polygon5 LSUN-bedrooms

Train 25.95 42.43 21.77
Test 21.17 34.44 18.53

PSNR reconstruction errors in dB of train and test images from their whitened
Scattering embedding.
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1: Collège de France, Paris, France
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Introduction

Given realizations of a random process X , VAEs and GANs allow to find a network
bG that transforms white Gaussian noise Z into a model bX of X :

bX = bG(Z)

A property of bG is that it allows to interpolate between generated images through
deformations.

- We show that a network bG with those properties can be obtained without opti-

mizing jointly a discriminator or an encoder.

- We propose a suitable embedding operator � that is not learned but which is
su�cient to obtain bG as a solution of a regularized inverse problem.

- Since � is not learned, we avoid the curse of dimensionality (explained in Arora
et al. 2017) when optimizing for a function that gaussianizes a high-dimensional
process, as in VAEs.

Computing a generator from an embedding

Given the following elements:

1. {xi}in : realizations of X (training set)

2.G: family of networks defined by a particular architecture

3. An embedding operator �

We propose to compute bG 2 G by inverting � on the training samples:

bG = argmin
G2G

n�1
nX

i=1

kxi �G(�(xi))k1

To avoid collapsing two di↵erent images to the same embedding we impose that:

8i, i0  n ,
1

↵
kxi � xi0k  k�(xi)� �(xi0)k  kxi � xi0k

for some ↵ > 0.

Observation: Even when � is invertible over the space of all images, we don’t have
bG = ��1. The bG that we obtain is regularized by the training data, the architecture
of the network and the optimization procedure.

- Simple experiments show that not any embedding operator will allow to find a
bG that transforms white Gaussian noise into a good model of X and interpolates
between generated images through deformations.

=) To obtain bG, we propose to look for an embedding operator � with the
following properties:

Gaussianization: The distribution of �(X) is close to a white Gaussian noise.

Continuity to deformations: The embedding � is continuous to deformations
over domains of size 2J if for all image x and a deformation of the image x⌧ we
have:

k�(x)� �(x⌧)k  C kxk
⇣
2�J|⌧ |1 + |r⌧ |1

⌘

for some real constant C.

Inverting a Scattering transform

with a generative network

An embedding operator that has the properties stated before can be implemented
with a Scattering transform.

- We choose a wavelet  , that will be scaled by 2` for di↵erent values of ` and
rotated along Q angles, and a low-pass filter �J of size 2�J to define:

SJ(x) =
h
x ? �J , |x ?  `,q| ? �J , ||x ?  `,q| ?  `0,q0| ? �J

i

1`<`0J, 1q,q0Q

The low-pass filter �J performs an averaging that under certain conditions can gaus-
sianize the process X thanks to the Central Limit Theorem. Also, one can show
that SJ is continuous to deformations of size 2�J .

The operator SJ can be obtained by cascading convolution matrices Vj and the
complex modulus as a non-linearity:

Sj = |VjSj�1| for 1  j  J

=) SJ is an instance of a deep convolutional network whose filters are specified
by wavelets and where the non-linearity is chosen to be a modulus.

- To whiten the process SJ(X) and reduce its dimensionality we compute and diag-
onalize the empirical covariance matrix and then consider only the first d principal
components as shown in the diagram:

The generator illustrated in the diagram is a DCGAN generator (Radford et al.,
2016) of depth J+2. The operators ⇢Wj compute a progressive inversion of SJ(x),
calculated with the convolutional operators |Vj| for 1  j  J .

- Finally, to obtain bG we invert the obtained embedding on the training samples by
minimizing the proposed loss stochastically using Adam with default hyperparame-
ters.
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Experimental results

We use S4 and d = 512 for the embedding operator with three datasets: Polygon5,
CelebA and LSUN-bedrooms; 65536 training and 16384 test samples for each.

Top: original images x (training set). Bottom: reconstructions from �(x) using bG.

Top: original images x (test set). Bottom: reconstructions from �(x) using bG.

Images bX = bG(Z) generated from a Gaussian white noise Z.

Interpolations through deformations. For each dataset, the first row is computed
with two training images and the second row with two test images.

CelebA Polygon5 LSUN-bedrooms

Train 25.95 42.43 21.77
Test 21.17 34.44 18.53

PSNR reconstruction errors in dB of train and test images from their whitened
Scattering embedding.



 Generative Scattering Networks

Images synthesised from Gaussian white noise Z:

Z ⇠ N (µ, Id) GL�1 bX

Tomás Angles

G: regularized inversion of SJ

Networks regularize with some form of ”memory storage”.
Sparse activations for images from data basis.



 More Complex Bases˚(bedrooms) 
Memory can saturate if data basis is too complex:

Training images Reconstructed from Noise
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GAN

GLO with Lap1

Figure 5: Generation of samples on the LSUN 64⇥64 dataset.

3.3.4 INTERPRETABILITY OF THE LATENT SPACE

The latent space can be explored by decomposing the covariance matrix of the latent vectors and
moving along the eigenvectors associated with the largest eigenvalues from an image. The resulting
image transformation often contains information about attributes that varies in the dataset. Figure 8
show some examples of image deformation along the principal axes. The image in the middle is the
original image. Moving in either direction along an axis produces the images on its left and its right.
We see that the main axes seem to contain information about standard face attributes. For example,
the 4th component seems to be capturing information about facial expression while the 9th one seems
to be capturing information about the age. In absence of supervision, some directions make several
attributes move simultaneously, for example smiling seems correlated with the hair color. These
correlations are artifacts of the CelebA dataset distribution.

3.3.5 NOISE VECTOR ARITHMETIC

In the spirit of Radford et al. (2015), we showcase the effect of simple arithmetic operations in the
noise space of the various models. More precisely, we average the noise vector of three images
of men wearing sunglasses, remove the average noise vector of three images of men not wearing
sunglasses, and add the average noise vector of three images of women not wearing sunglasses. The
resulting image resembles a woman wearing sunglasses glasses, as shown in Figure 9.

8

Variational Autoencoders

Under review as a conference paper at ICLR 2018

GAN

GLO with Lap1

Figure 5: Generation of samples on the LSUN 64⇥64 dataset.

3.3.4 INTERPRETABILITY OF THE LATENT SPACE

The latent space can be explored by decomposing the covariance matrix of the latent vectors and
moving along the eigenvectors associated with the largest eigenvalues from an image. The resulting
image transformation often contains information about attributes that varies in the dataset. Figure 8
show some examples of image deformation along the principal axes. The image in the middle is the
original image. Moving in either direction along an axis produces the images on its left and its right.
We see that the main axes seem to contain information about standard face attributes. For example,
the 4th component seems to be capturing information about facial expression while the 9th one seems
to be capturing information about the age. In absence of supervision, some directions make several
attributes move simultaneously, for example smiling seems correlated with the hair color. These
correlations are artifacts of the CelebA dataset distribution.

3.3.5 NOISE VECTOR ARITHMETIC

In the spirit of Radford et al. (2015), we showcase the effect of simple arithmetic operations in the
noise space of the various models. More precisely, we average the noise vector of three images
of men wearing sunglasses, remove the average noise vector of three images of men not wearing
sunglasses, and add the average noise vector of three images of women not wearing sunglasses. The
resulting image resembles a woman wearing sunglasses glasses, as shown in Figure 9.
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Generative Adversarial Nets.

Loss of resolution or loss of structures (mode dropping)
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Figure 5: 1024 ⇥ 1024 images generated using the CELEBA-HQ dataset. See Appendix F for a
larger set of results, and the accompanying video for latent space interpolations.

Mao et al. (2016b) (128⇥ 128) Gulrajani et al. (2017) (128⇥ 128) Our (256⇥ 256)

Figure 6: Visual quality comparison in LSUN BEDROOM; pictures copied from the cited articles.

Our contributions allow us to deal with high output resolutions in a robust and efficient fashion.
Figure 5 shows selected 1024 ⇥ 1024 images produced by our network. While megapixel GAN
results have been shown before in another dataset (Marchesi, 2017), our results are vastly more
varied and of higher perceptual quality. Please refer to Appendix F for a larger set of result images
as well as the nearest neighbors found from the training data. The accompanying video shows latent
space interpolations and visualizes the progressive training. The interpolation works so that we first
randomize a latent code for each frame (512 components sampled individually from N (0, 1)), then
blur the latents across time with a Gaussian (� = 45 frames @ 60Hz), and finally normalize each
vector to lie on a hypersphere.

We trained the network on 8 Tesla V100 GPUs for 4 days, after which we no longer observed
qualitative differences between the results of consecutive training iterations. Our implementation
used an adaptive minibatch size depending on the current output resolution so that the available
memory budget was optimally utilized.

In order to demonstrate that our contributions are largely orthogonal to the choice of a loss function,
we also trained the same network using LSGAN loss instead of WGAN-GP loss. Figure 1 shows six
examples of 10242 images produced using our method using LSGAN. Further details of this setup
are given in Appendix B.
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T. Karras, T. Aila, S. Laine, J. Lehtinen
Hollywood celebrities data basisGenerated from

Generative adversarial networks do not reduce quality
but ”forget” images (mode dropping).



          Conclusion

• Deep neural network architectures are providing a new statistical 
tools beyond high order moments.  

• Scale separation and interactions through filters/wavelets.  

• Distributed memory storage: not understood as most properties… 

• Opening the black box: a beautiful statistical and information 
processing problem!


