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S! Fi.Deep Convolution Networks -y

e Spectacular supervised learning : prediction of y given data x .
Classification, regression: images, speech, natural languagee,
bio-data, go... but black boxes.

e Spectacular unsupervised learning: data models x.
Generation of textures, complex images, speech, music...

e Good results for inverse problems and denoising: improvements
of 1db relatively to state of the art (Unser et. al.).

e Opening the black box: powerful statistical tools.



e Supervised Deep Learning

e Deep convolutional neural network to predict y = f(x):
T O(x)
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/
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L;: spatial convolutions and linear combination of channels
p(a) = max(a,0): Relu

Supervised learning of L; from n examples {z;, yi }i<n
Exceptional results for images, speech, language, bio-data...
Transfer learning of ®(x) to classify over different data bases.
Open questions:
e Why is such a filter-bank architecture effective 7

e Need to learn ®(x) or prior information could be enough ?



: Unsupervised Learning
e Estimation p(zx) of a probability density p(x) for x € R?

given n realizations {x;};<, of a random vector X.
e Generation of a typical realisation by sampling p(x)
e Models for all statistical applications
o If p(x) is locally regular: Lipschitz

43(
Turbulence iU(U)
Curse of dimensionality d = 10°

p—p|ln)<e = n>Ce®

Problem: Find regularity properties which can
break the curse of dimensionality.




Deep Net. Models from 1 Example

M. Bethdge et. al.
e Supervised network training (ex: on ImageNet)

e For 1 realisation  of X, compute each layer

channels

e Compute correlation statistics of network coefficients

e Synthesize T having similar statistics

6 10* pixels

210° correlations

What mathematical interpretation 7
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e Variational autoencoder: trained on n examples {xz}zgn

Encoder & (Gaussian white Decoder G
/[ = <I>

G(Z)
" ,_gj ;q ﬁqm
Network trained on bedroom images:

[ = OéZl + (1 — Oé)ZQ
Linearization ¢of deformations

X




Aaximum Entropy with Moments Jayng

)

Approximation of p(zx) conditioned on K moments E,(¢x(x)
by p which maximizes the entropy H; = — /ﬁ(x) log p(x) dx

Theorem |Gibbs distributions | If p(x) satisfies

k<K . Ep(on(a) = [ on(@) ple)do = Ey(gp(x))

RNV

and maximizes H; = — [ p(x logp r) dr then

plx) = Z~ eXP( Zﬁkﬁbk )

How to choose the ¢ 7

Can we avoid computing the 3 7



Which moments ?

¢ Linearization: .
—logp(x) =log Z+ Y B ¢r(x) ~ —log p(x)
k=1
¢r(x) specified from ”priors” on the regularity of p(x)

e Stationarity: p(x) invariant to translations
obtained with ¢ () also invariant

Other priors: regularity to deformations, ...

o Quadratic: ¢i(z) =), x(u)z(u—T7) = p(z) is Gaussian
| Gassa

e Higher order moments: large variance, sensitive to outliers.
Failure!



{Friwte  Prior: Scale Separation

e Archltecture of complexity: hierarchical Herbert Simons

scales
>



(i sotes Prior: Scale Separation

e Archltecture of complexity: hierarchical Herbert Simons

Interactions
across scales

Multiscale regroupement of interactions of d variables

into interactions of O(logd) groups of variables,

Scale separation = wavelet transforms, filter banks
A path to Deep Nets.



(Q-constant band-pass filters &A

A

7 % A (E) = / () YAt —u)du = 7% P(w) = F(w) r(w)

T % { . average
e Wavelet transform: Wax = ( bo (1) )
A<27

. higher
f o
Preserves norm: |[Wz||* = ||z||? . requencies

Wavelets are stable to deformations



frequency

Wavelet transform modulus: |W| logw = A

’Qj * ¢>\1 (t)|




ol cale separation with Wavelets -

e Wayvelet filter v (u): = + 1 =

rotated and dilated: 155 g(u) = 277 (277 rgu) Fourier

%5

0 imaginary parts os g(w)
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37*¢23‘,9(“) :/x(v) %j,e(u—v) dv = Z(w) 2@29‘,9(60)

real parts

2J

. average
e Wavelet transtorm: Wy = ( v gsz(u) ) . hicher
T * P23 ,0(u) J<T0 fregquencies
Preserves norm: HW:I:‘H2 = HCIZ‘H2 :

Wavelets are stable to deformations
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NS . Wavelet Translation Invariance .=

First wavelet transform (1) il granslation invariance. |
7 *7? ; €T * ¢2J (t)
1L = L $2J ﬁL&L{\\\, .
|‘I//‘I/[1%E B ( 33**?7&@}\1))1)\1 27 — 0 ?

Lost high frequencies: x x ¥y, (%)
Eliminate the phase: |x %y, (t)| non-linearity

Invariant: |z * ¥y, | * ¢os (1)

o AN
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Need to recover lost high frequencies: |x x ¢, | % ¥y, (1)

= wavelet transform: |Ws| |x x ¥y, |= ( ‘

T * Py, | * por(t) >
x*w>q *%b(t)‘ Ao



Harmonic sound: z(t) = a(t) e x h(t) with varying a(t)
ot 0

<1977 Hz
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Scale

S;=pWi pWy . pW;

pla) = |af Sja::{|||x*¢,\1\*w,\2*...\*%m|*¢J}

Convolutional tree: no combination along channels

k



Scattering Network Properties

CC*ngJ \
’$*¢A1’*¢2J
Sy = |2 % x| * Py | * P = ... |Ws3||Wy| |[W1|z
[ % b, [ % o, | *x Pag| * Pav
//\1,/\2,,\3,...
/ /
Wie| = [lzf] = [[[Wie| = [Wea'||| < |lz — a7

Theorem: For appropriate wavelets, a scattering S

contractive ||Syz — Syy| < ||z —y| (L* stability)
translations invariance and deformation stability:
if Drx(uw) = x(u — 7(u)) then

dim [[S;Dra — Syz|| < OVl [|2]



ﬂ

Unsupervised Learning

Estimate the distribution p(z) of a stationary X

Scattering transform of X (u) up to order 2:
X % ¢J

S7(X) = ( X xpa, | * @y )
X s n [ xdal*os ) o,

Concentration
27 — o0 with ergodicity/decorrelation conditions
v E(X) concentration towards
E(S(X)) = E(|X %, |) : scattering moments.
E(‘ ’X * ¢>\1 ’ * ¢A2 D A Ao low-order

How to avoid computing Lagrange multipliers of max entropy 7



icrocanonical Models: Stat. Phys.

Joan Bruna

Maximum scale 27 = signal size
concentration: with high probability

15(X) —E(S(X)) <¢/2 = [[S7(X) = Ss(z1)]| < e

Sy : 1 reTalisation of X

y|

S

Z\\ §).

Q. ={x : [|Ss(x) — Ss(x1)]| < e}: microcanonial ensemble.

A

p(xz): uniform density over the microcanoniccal ensemble

Max entropy inversion of S ;: micro canonical model X

e Sampling: initialize x with Gaussian white noise Z

Minimize ||S;(x) — S;(x1)||* by stochastic gradient descent




What 1S missing ‘7



Joan Bruna

Gaussian Scattering
in time Order 2

Cocktail Party



Typical of X is not typical of X

e Missing frequency connections = misalignments

How to connect frequencies 7
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e Lines of constant phase specify the geometry: edge detection

&- ._Lines of Constant Phase !n'i




Phase Harmonics

e Filters with a phase shift o Sixin Zhang
V)00 = Real(e' 1;0)
Rectification:

7(u,,0,0) = p(2 % 1j0.0(u) ) With p(a) = max(a,0)

Theorem : Fourier transform along the phase «a:
P(u, 1,0,k) = e | % 1y ()| € 200

Linear combination across network channels creates

harmonics of the phase = connections across scales/frequencies.



) \ . | Correlations:
J ¥ scale Z@(u,j,@,k) i(uﬂ._'_lazk)

u



3103 correlations

Same quality as with learned Deep networks
with much less moments



|E‘ II- Adversarial Network Generation

E 1 S
e What if X is not stationary 7

Estimate X from many realisations {z;}; of X

e Spectacular results with a jungle of convolutional networks:
GAN’s, Autoencoders, Recurrent Neural Nets, WaveNets...

e Complex training with dual networks and little theory.

e Can we simplify algorithms and relate it to existing maths 7



e The encoder ® must produce a nearly white noise Z = ®(X)
variational cost: KL (pg(z/2)||N(0,1d))

Problem: distance estimation is untractable Arora et. al.

e The decoder G must nearly restore X:inverse problem

by minimizing E(| X — G((X))|[2)




Generation as an Inverse Problem

e From prior on p(x), define ® with ®(X) nearly Gaussian.
Avoids the intractable step.

AN

e Encode by whitening with a linear operator L: Z = L ®(X).

Encoder Decoder

N

X_.(I)_.L_>2—.L—1—>G._.X

e The generator should invert ® on X: G(®(X)) = X.

Regularized inverse over deep network operators G:

Does not maximize entropy



Gaussianization from Prior

e p(x) is locally or globally invariant to translations of x
nearly invariant to small deformations

has sparse typical realisations with wavelets

X * @y
SJ(X): ’X*¢A1’*¢J
[ X x o [ *x o[ x o /5,

e Averaging by ¢; Gaussianizes: central limit theorem
when 27 — oo



. Tomas Angles
e Encoder: whitens S;X with a linear operator L

X—| S; —| L > 7 . white nearly Gaussian

AN

e Decoder: Z~N(u,Id) — 171 | ¢ — X

Regularized inversion of S; with a deep net G minimising:

G = minz (||G(SJ($z)) — 37@”)

Geg P

regularized inverse scattering

?_.

>

J layers



NS Training Reconstruction .

Tralning x;
Polygones

v

v

Celebrities Data Basis
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"\":l
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Generative Interpolations

Celebrities

Tomds Angles

Polygons
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Generative Scattering Networks <

Tomds Angles

ENS

Images synthesised from Gaussian white noise Z:

AN

Z ~ N(u, Id) I 1 — g —X

|

GG: regularized inversion of S

¢

e
Tl

Networks regularize with some form of "memory storage”.
Sparse activations for images from data basis.

v -




Ll ore Complex Bases (bedrooms

Memory can saturate if data basis is too complex:
Loss of resolution or loss of structures (mode dropping)

Vanetaoned AdveesanidbiNets.

1raining 1mages Reconstructed from Noise

"
o




T. Karras, T. Aila, S. Laine, J. Lehtinen
Generated from Hollywood celebrities data basis

Generative adversarial networks do not reduce quality
but ”forget” images (mode dropping).



S,F.;! _ Conclusion -

e Deep neural network architectures are providing a new statistical
tools beyond high order moments.

e Scale separation and interactions through filters/wavelets.

e Distributed memory storage: not understood as most properties...

e Opening the black box: a beautiful statistical and information
processing problem!



