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The universality problem Definition

Setup

Machine learning as an input/output problem:

Input z contains available information for the solution of the problem
(historical data, explanatory factors, features of the individuals that
need to be classified).
Output y contains the solution of the problem (forecasted data,
explained variables, classification results).

Problem consists in determining (learning) function(al)s from z to y.

We distinguish between static, dynamic, discrete-time, and
continuous-time setups and between deterministic and stochastic
situations.

The universality problem refers generically to the characterization of the
space of function(al)s from z to y that can be learnt.
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The universality problem Definition

Setups considered

Static Dynamic (discrete time)
Deterministic Stochastic Deterministic Stochastic

Ingredients
z ∈ Rn

y ∈ Rd
z ∈ Lp (Ω,Rn)
y ∈ Lp

(
Ω,Rd

) z ∈ (Rn)Z−

y ∈
(
Rd
)Z− z ∈ Lp

(
Ω, (Rn)Z−

)
y ∈ Lp

(
Ω,
(
Rd
)Z−)

Problem to be
solved

y = f (z)
f measurable

E [y | z] y(·) = F (z(·)) E [y(·) | z(·)]

Examples and
Applications

• observables or
diagnostics variables
in complex physical

or noiseless
engineering

systems
• translators
• transcription

• image classification
• speech recognition
• factor analysis
• anomaly detection

• integration or
path continuation of
(chaotic) differential

equations
• molecular dynamics
• structural mechanics
• vibration analysis
• space mission design
• autopilot systems
• robotics

• memory tasks
• games

• physiological time
series classification
• financial bubble

detection
• time series forecasting
• volatility filtering
• system identification

(blackboxing)
• filters (transducers)

and equalizers
• imputation of
missing values

• source separators
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The universality problem Discrete vs continuous-time

Discrete vs continuous-time

The discrete-time setup is technically much more complicated.

“...il convient de rappeler que les systèmes non linéaires en temps discret
sont beaucoup plus mystérieux que les continus. Pour ces derniers, un
certain nombre de techniques relevant de l’analyse fonctionnelle, de la

géométrie différentielle ou des variables non commutatives sont
disponibles. En discret, il n’y a rien ou presque. Or, il faut souligner que

l’informatique tend à privilégier les systèmes discrets.”

Michel Fliess and Dorothée Normand-Cyrot (1976)
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The neural networks example

The neural networks example
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Output y
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layer

Input
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Output
layerW 1 w2

y = ψ

 N∑
i=1

w2
i σ

 T∑
j=1

w1
ij zj
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The neural networks example

Universality in neural networks and approximation theorems

Implemented as a machine learning device by tuning the weights wi

using a gradient descent algorithm (backpropagation) that minimizes
the approximation error based on a training set.

Universality problem: how large is the class of input-output
functions that can be generated using feedforward neural networks?
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The neural networks example Famous universality theorems

The Kolmogorov-Arnold-Sprecher representation theorems

Theorem (Kolmogorov-Arnold [Kol56, Arn57, Spr65, Spr96, Spr97])

There exist constants λp and fixed continuous increasing functions ϕq(x)
on I = [0, 1] such that each continuous function f on I n can be written as

f (x1, . . . , xn) =
2n+1∑
q=1

gq

 n∑
p=1

λpϕq(xp)


where the gq are properly chosen continuous functions of one variable.

The only genuinely multivariate function is the sum!

This is a representation and not an approximation theorem

The gq functions depend on f but not λp and ϕq.

Not ideal for machine learning applications: need to train the gq.

Extended to measurable functions: Rüschendorf and Thomsen [RT98].
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The neural networks example Famous universality theorems

The Cybenko and the Hornik et al. theorems

Theorem (Cybenko [Cyb89], Hornik, Stinchcombe, and White [HSW89])

Let σ be a continuous squashing function. Then, the functions
Gσ,N : I n → R of the form

Gσ,N(z;θ) =

(
N∑

1=1

w2
j σ
(
〈w1

j , z〉+ θj
))

, w1
j , z ∈ Rn,w2 ∈ RN , θj ∈ R,

are dense in C (I n), that is, given any function f ∈ C (I n) and ε > 0, there
is a sum of this type for which

|Gσ,N(z;θ)− f (z)| < ε, for all z ∈ I n.

This result proves that any continuous function can be approximated
using a feedforward neural network with a single hidden layer and
continuous activation function.
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Dynamic problems and reservoir computing Reservoir computing

Dynamic problems and reservoir computing

Modification of traditional RNN in which the architecture and the neuron
weights of the network are created in advance (for example randomly) and
remain unchanged during the training stage

If readout layer is linear:

Data intensive applications become tractable
Inference and theoretical performance evaluation becomes possible!!

Compatible with high performance hardware implementations
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Dynamic problems and reservoir computing Hardware realizations, scalability, and big data compatibility

Physical implementation: reservoir computing (RC) devices

A major feature of the RC is the possibility of constructing physical
realizations of reservoirs instead of simulating them using a computer

Chaotic dynamical systems can be used to construct reservoirs that exhibit
the RC features: in [ASV+11] using chaotic electronic oscillators or using
optoelectronic devices like in [LSB+12]

Optoelectronic implementation of RC with a single nonlinear element subject to
delayed feedback [LSB+12]
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Dynamic problems and reservoir computing Hardware realizations, scalability, and big data compatibility
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Dynamic problems and reservoir computing Hardware realizations, scalability, and big data compatibility
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Dynamic problems and reservoir computing Hardware realizations, scalability, and big data compatibility

Mathematical formulation of reservoir computing

A reservoir computer (RC) is a type of recurrent neural network (RNN):{
xt = F (xt−1, zt),

yt = h(xt),

(1)

(2)

determined by a reservoir map F : RN × Rn −→ RN and a readout map
h : RN → R that transform (or filter) an infinite discrete-time input
z = (. . . , z−1, z0, z1, . . .) ∈ (Rn)Z into an output signal y ∈ RZ.

zt ∈ Rn is an input signal, xt ∈ RN is the reservoir state.

The static readout h : RN → R is trained in order to obtain the
desired output yt out of the input zt .

Multitasking: different readouts can be trained on the same reservoir
output to extract different pieces of information about the input.
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Dynamic problems and reservoir computing Three application examples

Forecasting of a Mackey-Glass chaotic time series

We take one solution of the TDDE:

dx

dt
=

0.2x(t − τ)

1 + x(t − τ)10 − 0.1x(t)
delay τ = 17.

We forecast a chaotic path by learning not the forecasting functional
but by learning the dynamical system.
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Dynamic problems and reservoir computing Three application examples

We forecast with a very simple reservoir computer called Echo State
Network: {

xt = σ (Axt−1 + czt + u) ,

yt = W>xt .
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Dynamic problems and reservoir computing Three application examples
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Dynamic problems and reservoir computing Three application examples

Learning a chaotic PDE

The Kuramoto-Sivashinsky model for flame propagation

yt = −yyx − yxx − yxxxx + µ cos

(
2πx

λ

)

Prediction using an ESN-based learning of this system by Edward
Ott’s group in [PLH+17, PHG+18]

It works well up to eight Lyuapunov times
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Dynamic problems and reservoir computing Three application examples

Figure: (a) is the actual solution, (b) is the solution produced by the ESN proxy
(c) and (d) are the errors obtained by substraction using two different initializa-
tions
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Dynamic problems and reservoir computing Three application examples
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Dynamic problems and reservoir computing Three application examples

Realized correlation forecasting

Data cleaning / preprocessing and computation of realized covariances done by Oleksandra
Kukharenko; ESN/HAR results are taken from the master thesis of Larissa Zimmermann.
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Dynamic problems and reservoir computing Three application examples
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Dynamic problems and reservoir computing Three application examples

Figure: Multistep forecasting of realized covariance matrices for 4 assets: JPMorgan
(JPM), Pfizer (PFE), Merck (MRK), CenturyLink (CTL). Dataset: from 10-Sep-
2004 to 21-Feb-2018.
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Dynamic problems and reservoir computing Universality: short literature review

Universality: short literature review

Universality established in different setups with various hypotheses:

Continuous time: available for linear reservoirs with polynomial
readouts or for bilinear reservoirs with linear readouts.

Compact time: corollary of classical results in systems theory by
Fliess, Normand-Cyrot, and Sussmann [Fli76, Sus76].
Infinite time: first formulated by Boyd and Chua [BC85] using the
notion of fading memory. See also [MS00, MNM02, MNM04, MJS07]
for reservoirs coming from the modeling of neural circuits.

Discrete and compact time: when readout is linear required the
introduction in [FNC80, DNC84] of the so-called (homogeneous)
state-affine systems (SAS) (see also [Son79a, Son79b]).

Internal approximation approach: approximating filters via the
approximation of the state equations.
[San91a, San91b, Mat92, Mat93, Per96, SP97].

Infinite negative time is an important need in the modeling of
subsystems.
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Dynamic problems and reservoir computing Our contributions

Our contributions

We extend the previous results to infinite discrete time with stochastic
inputs.

1 Non-homogeneous variant of the state-affine systems (SAS):
identify sufficient conditions for the associated reservoir computers
with linear readouts to be causal, time-invariant, and fading memory.

2 Universal subset of this class characterized in the category of
fading memory filters with uniformly bounded outputs.

3 Stochastic setup extension: version of the universality result that is
valid for almost-surely uniformly bounded and measurable inputs with
the L∞ and Lp norms, respectively.

4 Echo state networks are universal: this is the dynamic analog of
the classical Cybenko and Hornik et al theorems in the static setup.
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Universality via Stone-Weierstrass Notation and hypotheses

Filters and functionals

Filters U : (Dn)Z −→ RZ and functionals H : (Dn)Z −→ R:

Causal filter: for any two elements z,w ∈ (Dn)Z that satisfy that zτ = wτ

for all τ ≤ t, for any given t ∈ Z, we have that U(z)t = U(w)t .

Time-invariant filter: when U commutes with the time delay operator Uτ
defined by (Uτz)t := zt−τ , that is, Uτ ◦ U = U ◦ Uτ .

Bijection between causal time-invariant filters and functionals on (Dn)Z− :

U −→ HU(z) := U(ze)0

H −→ UH(z)t := H((PZ− ◦ U−t)(z)),

where U−t is the (−t)-time delay operator and PZ− : (Dn)Z −→ (Dn)Z− is
the natural projection. It is easy to verify that:

HUH
= H, for any functional H : (Dn)Z− −→ R,

UHU
= U, for any causal time-invariant filter U : (Dn)Z −→ RZ.

Let H1,H2 : (Dn)Z− −→ R, λ ∈ R, then UH1+λH2 (z) = UH1 (z) + λUH2 (z),
for any z ∈ (Dn)Z
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Universality via Stone-Weierstrass Notation and hypotheses

Reservoir filters

The reservoir system {
xt = F (xt−1, zt),

yt = h(xt),

(3)

(4)

determines a filter when the following existence and uniqueness property
holds (echo state property [Jae10, YJK12]): for each z ∈ (Dn)Z there
exists a unique x ∈ (DN)Z such that for each t ∈ Z, the relation (3) holds.

The state filter UF : (Dn)Z −→ (DN)Z is determined by
UF (z)t := xt ∈ DN

The reservoir filter UF
h : (Dn)Z −→ RZ is determined by the entire

reservoir system, that is, UF
h (z)t := h

(
UF (z)t .

)
= yt .

The filters UF and UF
h are causal by construction and are necessarily

time-invariant [GO18]. We can hence associate to UF
h a reservoir

functional HF
h : (Dn)Z− −→ R determined by HF

h := HUF
h

.
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Universality via Stone-Weierstrass Notation and hypotheses

Weighted norms, uniformly bounded sequences,
compactness

The weighted norm ‖ · ‖w on (Rn)Z− associated to the weighting
sequence w : N −→ (0, 1] as the map:

‖ · ‖w : (Rn)Z− −→ R+

z 7−→ ‖z‖w := supt∈Z− ‖ztw−t‖,

where ‖ · ‖ denotes the Euclidean norm in Rn. The space

`∞w (Rn) :=
{

z ∈ (Rn)Z− | ‖z‖w <∞
}
, (5)

endowed with weighted norm ‖ · ‖w forms a Banach space [GO18].

Two important lemmas: Let M > 0 and let

KM :=
{

z ∈ (Rn)Z− | ‖zt‖ ≤ M for all t ∈ Z−
}

= Bn(0,M)
Z−
. For any

weighting sequence w and z ∈ KM , we have that KM is a compact
topological space when endowed with the relative topology inherited from
the norm topology in the Banach space (`∞w (Rn), ‖·‖w ).
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Universality via Stone-Weierstrass The fading memory property

The fading memory property

We want filters for which the inputs in the far past do not count.

We encode the fading memory property (FMP) as a continuity property:
the causal and time-invariant filter U : (Dn)Z −→ (R)Z has the FMP
whenever there exists a weighting sequence w : N −→ (0, 1] such that the
map HU : ((Dn)Z− , ‖ · ‖w ) −→ R is continuous. This means that for any
z ∈ (Dn)Z− and any ε > 0, there exists a δ(ε) > 0 such that for any
s ∈ (Dn)Z− that satisfies that

‖z− s‖w = sup
t∈Z−

‖(zt − st)w−t‖ < δ(ε), then |HU(z)− HU(s)| < ε.

If w is s.t. wt = λt , for some λ ∈ (0, 1) and all t ∈ N, then U is said to
have the λ-exponential fading memory property.

FMP does not depend on the weighting sequence: it can be shown
[GO18] that in the case of uniformly bounded input sequences, if a filter has
the FMP with respect to a given weighting sequence, it necessarily has the
same property with respect to any other weighting sequence.
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Universality via Stone-Weierstrass Universality results in the deterministic setup

Universality results in the deterministic setup

Goal: identify families of reservoir filters that are able to uniformly
approximate any time-invariant, causal, and fading memory filter with
deterministic inputs with any desired degree of accuracy. Such families of
reservoir computers are said to be universal.

Tools: The Stone-Weierstrass theorem for polynomial subalgebras of
real-valued functions defined on compact metric spaces.

Approach: One needs to prove that filters form polynomial algebras. If
Dn ⊂ Rn and HU1 ,HU2 : (Dn)Z− −→ R are the functionals associated to
the causal and time-invariant filters U1,U2 : (Dn)Z −→ RZ, one defines
HU1 · HU2 : (Dn)Z− −→ R and HU1 + λHU2 : (Dn)Z− −→ R, λ ∈ R, as

(HU1 ·HU2) (z) := HU1 (z)·HU2 (z) , (HU1+λHU2) (z) := HU1 (z)+λHU2 (z) , z ∈ (Dn)Z− .
(6)
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Universality via Stone-Weierstrass Universality for fading memory RCs with non-linear readouts

Theorem

Let

R := {HFi
hi

: KM → R | hi ∈ C∞(DNi
),Fi : DNi

× Bn(0,M)→ DNi
, i ∈ I}

be a set of reservoir filters defined on KM that have the FMP with respect
to a given weighted norm ‖ · ‖w . Let A(R) be the polynomial algebra
generated by R. If A(R) contains the constant functionals and separates
the points in KM , then any causal, time-invariant fading memory filter
H : KM −→ R can be uniformly approximated by elements in A(R): for
any fading memory filter H and any ε > 0, there exist a finite set of
indices {i1, . . . , ir} ⊂ I and a polynomial p : Rr −→ R such that

‖H − HF
h ‖∞ := sup

z∈KM

|H(z)− HF
h (z)| < ε,

with h := p(hi1 , . . . , hir ) and F := (Fi1 , . . . ,Fir ).
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Universality via Stone-Weierstrass Universality for fading memory RCs with non-linear readouts

The reservoir systems family is universal

Corollary: The set of all reservoir filters with uniformly bounded inputs in
KM and that have the FMP with respect to a given weighted norm ‖ · ‖w

Rw := {HF
h : KM −→ R | h ∈ C∞(DN),F : DN × Bn(0,M) −→ DN}

is universal, that is, it is dense in the set (C 0(KM), ‖ · ‖w ) of real-valued
continuous functions on (KM , ‖ · ‖w ).

Consequence of:

HF1
h1
· HF2

h2
= HF

h , with h := h1 · h2 ∈ C∞(DN1 × DN2), (7)

HF1
h1

+ λHF2
h2

= HF
h′ , with h′ := h1 + λh2 ∈ C∞(DN1 × DN2), (8)

and where F : (DN1 × DN2)× Bn(0,M) −→ (DN1 × DN2) is given by

F (((x1)t , (x2)t), zt) := (F1((x1)t , zt),F2((x2)t , zt)) . (9)
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Universality via Stone-Weierstrass Universality for fading memory RCs with non-linear readouts

Linear reservoirs with polynomial readouts are universal

Linear reservoir computer:

{
xt = Axt−1 + czt , A ∈MN , c ∈MN,n,

yt = h(xt), h ∈ R[x].

(10)

(11)

Corollary

The set Lε formed by all the linear reservoir systems as in (10)-(11) with
matrices A ∈MN such that σmax(A) < 1− ε is made of λρ-exponential
fading memory reservoir functionals, with λρ := (1− ε)ρ, for any
ρ ∈ (0, 1). This family is dense in (C 0(KM), ‖ · ‖wρ).
The same universality result can be stated for two smaller subfamilies of
Lε generated by diagonal and nilpotent matrices.
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Universality via Stone-Weierstrass Universality with linear readouts: state-affine systems (SAS)

State-affine systems (SAS)

Take two polynomials p(z) ∈MN,N [z ] and q(z) ∈MN,1[z ] on the variable
z with matrix coefficients, that is

p(z) := A0 + zA1 + z2A2 + · · ·+ zn1An1 ,

q(z) := B0 + zB1 + z2B2 + · · ·+ zn2Bn2

The non-homogeneous state-affine system (SAS) associated to p, q
and W is the reservoir system determined by the state-space
transformation: {

xt = p(zt)xt−1 + q(zt),

yt = W>xt .

(12)

(13)
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Universality via Stone-Weierstrass Universality with linear readouts: state-affine systems (SAS)

Integrability of SAS

Proposition

Consider a non-homogeneous SAS defined on IZ, I := [−1, 1]. If
maxz∈I ‖p(z)‖2 < 1 then:

The system has a unique causal and time-invariant solution:
xt =

∞∑
j=0

(
j−1∏
k=0

p(zt−k)

)
q(zt−j),

yt = W>xt .

(14)

(15)

We denote by Up,q
W : IZ −→ IZ and Hp,q

W : IZ− −→ R the
corresponding SAS reservoir filter and SAS functional, respectively.

Up,q
W has the fading memory property.
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Universality via Stone-Weierstrass Universality with linear readouts: state-affine systems (SAS)

SAS form a polynomial algebra

Proposition

Hp1,q1

W1
,Hp2,q2

W2
: DZ− −→ R two SAS reservoir functionals. Then:

(i) Closedness under linear combinations:

Hp1,q1

W1
+ λHp2,q2

W2
= Hp1⊕p2,q1⊕q2

W1⊕λW2
.

(ii) Closedness under products:

Hp1,q1

W1
· Hp2,q2

W2
= H

p,q1⊕q2⊕(q1⊗q2)
0⊕0⊕(W1⊗λW2) ,

where p(z) the polynomial with matrix coefficients:

p :=

 p1 0 0
0 p2 0

p1 ⊗ q2 q1 ⊗ p2 p1 ⊗ p2

 .

The expression p1 ⊗ q2 (respectively, q1 ⊗ p2) denotes the
linear map from V1 (respectively, V2) to V1 ⊗ V2 that
associates to any v1 ∈ V1 the element (p1(z)v1)⊗ q2(z)
(respectively, q1(z)⊗ (p2(z)v2)).

The equalities (6) and (6) show that the SAS family forms a polynomial
algebra.
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Universality via Stone-Weierstrass Universality with linear readouts: state-affine systems (SAS)

Theorem (Universality of SAS reservoir computers)

Let
IZ− := {z ∈ RZ− | zt ∈ [−1, 1], for all t ≤ 0},

and let Sε be the family of functionals Hp,q
W : IZ− −→ R induced by the

state-affine systems in (12)-(13) that satisfy that
Mp := maxz∈I ‖p(z)‖2 < 1− ε and Mq := maxz∈I ‖q(z)‖2 < 1− ε. The
subfamily Sε is dense in (C 0(IZ−), ‖ · ‖wρ).
Equivalently, for any fading memory filter H and any ε > 0, there exist a
natural number N ∈ N, polynomials p(z) ∈MN [z ], q(z) ∈MN,1[z ] with
Mp,Mq < 1− ε, and a vector W ∈ RN such that

‖H − Hp,q
W ‖∞ := sup

z∈IZ−
|H(z)− Hp,q

W (z)| < ε.

The same universality result can be stated for the smaller subfamily
formed by SAS reservoir systems determined by nilpotent polynomials.
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Extension to stochastic inputs The stochastic setup

Stochastic inputs and outputs

Inputs and outputs: almost surely bounded time series or discrete-time stochastic
processes, that is, elements in the space

L∞
(

Ω, (Rn)Z
)

:=
{

z : Z× Ω −→ Rn stochastic process | ‖z‖L∞ <∞
}
,

with

‖z‖L∞ := ess sup
ω∈Ω

‖z(ω)‖∞ = ess sup
ω∈Ω

{
sup
t∈Z
{‖zt(ω)‖}

}
. (16)

Additionally, L∞
(
Ω, (Rn)Z

)
= L∞ (Ω, `∞(Rn)) and

(
L∞
(
Ω, (Rn)Z

)
, ‖ · ‖L∞

)
is a

Banach space.

Weighted norm: consider w a weighting sequence and let ‖ · ‖w be the associated
weighted norm in (Rn)Z− . We work with L∞w

(
Ω, (Rn)Z−

)
, the space of processes

z : Z− × Ω with finite ‖·‖L∞w norm defined as:

‖z‖L∞w := ess sup
ω∈Ω

‖z(ω)‖w = ess sup
ω∈Ω

{
sup
t∈Z−

{‖zt(ω)‖w−t}

}
. (17)

Again L∞w
(
Ω, (Rn)Z−

)
= L∞ (Ω, `∞w (Rn)) and L∞w

(
Ω, (Rn)Z−

)
is a Banach space.
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Extension to stochastic inputs The stochastic setup

Deterministic filters in a stochastic setup

Intrinsically deterministic filters: almost surely bounded stochastic inputs

z ∈ D
L∞Z
n ⊂ L∞(Ω, (Rn)Z) are presented to filters U : (Dn)Z −→ RZ

The dependence on the probability space of the image (U(z))(ω) takes place
exclusively through the dependence z(ω) in the input

Causality/time-invariance of filters are defined as in the deterministic case

As in the deterministic case there is also a correspondence between causal and
time-invariant filters and functionals

Given a weighting sequence w and a time-invariant filter U : D
L∞Z−
n −→ L∞(Ω,RZ)

with stochastic inputs, one says that U has the fading memory property w.r.t. w

when the associated functional HU :
(
D

L∞Z−
n , ‖ · ‖L∞w

)
−→ L∞(Ω,R) is continuous

Almost surely uniformly bounded inputs/outputs: define

KL∞
M :=

{
z ∈ L∞(Ω, (Rn)Z− ) | ‖z‖L∞ ≤ M

}
=

{
z ∈ L∞(Ω, (Rn)Z− ) | ‖zt‖L∞ ≤ M, for all t ∈ Z−

}
.
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Extension to stochastic inputs The transfer theorem

The transfer theorem

Theorem (Fading memory and the universality properties inherited by
deterministic filters with a.s. bounded inputs)

Let M > 0 and let KM and KL∞

M be the sets of deterministic and stochastic
inputs, respectively. The following properties hold true:

(i) Let H : (KM , ‖·‖w ) −→ R be a causal and time-invariant filter. Then H has
the fading memory property IFF the associated filter with a.s. uniformly
bounded inputs has a.s. bounded outputs, that is,
H : (KL∞

M , ‖ · ‖L∞w ) −→ L∞(Ω,R), and it has the fading memory property.

(ii) Let T := {Hi : (KM , ‖·‖w ) −→ R | i ∈ I} be a family of causal and
time-invariant fading memory filters. Then, T is dense in the set
(C 0(KM), ‖ · ‖w ) IFF the corresponding family with intputs in KL∞

M is
universal in the set of continuous maps of the type
H : (KL∞

M , ‖ · ‖L∞w ) −→ L∞(Ω,R).
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Echo state networks are universal Internal approximation

Universality via internal approximation

Theorem

Let KM ⊂ (Rn)Z− and KL ⊂
(
RN
)Z− be subsets of uniformly bounded sequences, let

F : B‖·‖(0, L)× B‖·‖(0,M) −→ B‖·‖(0, L) be a continuous reservoir map.

(i) Existence of solutions: for each z ∈ KM there exists a x ∈ KL (not necessarily
unique) that solves the reservoir equation associated to F , that is,

xt = F (xt−1, zt), for all t ∈ Z−.

(ii) Uniqueness and continuity of solutions (ESP and FMP): if F is a contraction,
then the reservoir system associated to F has the echo state property. Moreover,
this system has a unique associated causal and time-invariant filter
UF : KM −→ KL with the fading memory property.

(iii) Internal approximation: let F1,F2 : B‖·‖(0, L)× B‖·‖(0,M) −→ B‖·‖(0, L) be
continuous reservoir maps s.t. F1 is a contraction with 0 < r < 1 and F2 has the
existence of solutions property. Let UF1 ,UF2 : KM −→ KL be the corresponding
filters. Then, for any ε > 0, we have that

‖F1 − F2‖∞ < δ(ε) := (1− r)ε implies that |||UF1 − UF2 |||∞ < ε. (18)
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Echo state networks are universal

Theorem (Echo state networks are universal)

Let U : I
Z−
n −→

(
Rd
)Z− be a causal and time-invariant filter that has the fading

memory property. Then, for any ε > 0 and any weighting sequence w , there is an
echo state network {

xt = σ (Axt−1 + Czt + ζ) ,

yt = W xt .

(19)

(20)

whose associated generalized filters UESN : I
Z−
n −→

(
Rd
)Z− satisfy that

|||U − UESN|||∞ < ε. (21)

In these expressions C ∈MN,n for some N ∈ N, ζ ∈ RN , A ∈MN,N , and
W ∈Md,N . The function σ : RN −→ [−1, 1]N in (19) is constructed by
componentwise application of a continuous squashing function σ : R −→ [−1, 1].

When the approximating echo state network (19)-(20) satisfies the echo state
property, then it has a unique filter UESN associated which is necessarily

time-invariant. The corresponding reservoir functional HESN : I
Z−
n −→ Rd

satisfies that
|||HU − HESN|||∞ < ε. (22)
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Future work

Future work

Performance bounds. Maurey-Barron-Jones Theorems and the curse
of dimensionality.

Capacity estimates.

We solved the approximation error problem. What about the
estimation error problem?

Relation to time series analysis.
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