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» If n — oo, then, strong law of large numbers

ép a.s, Cp,
or equivalently, in spectral norm
és -] =50

Random Matrix Regime

> No longer valid if p,n — oo with p/n — ¢ € (0, 00),

Cp —CpH A 0.

» For practical p,n with p ~ n, leads to dramatically wrong conclusions
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The Maréenko—Pastur law
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Figure: Histogram of the eigenvalues of C'p for p = 500, n = 2000, Cp, = I,.
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The Maréenko—Pastur law

Definition (Empirical Spectral Density)
Empirical spectral density (e.s.d.) up of Hermitian matrix A, € CPX? is

12
= 0D i(ap):
Pz

7/113



The Maréenko—Pastur law
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Hp =D 0xi(ap)-
)

Theorem (Maréenko—Pastur Law [Mar&enko,Pastur’67])
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Definition (Empirical Spectral Density)
Empirical spectral density (e.s.d.) up of Hermitian matrix A, € CPX? is

12
Hp =D 0xi(ap)-
)

Theorem (Maréenko—Pastur Law [Mar&enko,Pastur’67])
Xp € CPX™ with i.i.d. zero mean, unit variance enttries.
As p,n — oo with p/n — ¢ € (0,00), e.s.d. pp of %XPX; satisfies

a.s,
Hp — He

weakly, where
> 1o({0}) = max{0,1— ¢~ 1}
» on (0,00), ue has continuous density f. supported on [(1 — +/c)?, (1 + +/c)?]

fol@) = —— /@ — (1= VO (1 +v)? — ).

2mex
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The Maréenko—Pastur law
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The Maréenko—Pastur law
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Spiked Models

Small rank perturbation: C), = I, + P, P of low rank.

T
X X},
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0.4 |~ —
0.2 |- |
0 X x| x
1+w1+al+“1, 1+w2+cl+w2
Figure: Eigenvalues of %YPYP*, Cp =diag(1,...,1,2,2,3,3), p =500, n = 1500.
——
p—4
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Spiked Models

Theorem (Eigenvalues [Baik,Silverstein’06])

Let Y, = CF Xy, with
» X, with ii.d. zero mean, unit variance, E[| X, ?j] < 00.
> Cp =1,+ P, P=UQU*, where, for K fixed,

Q = diag (w1, . ..,wr) € REXK with wy > ... > wg > 0.
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Let Y, = CF Xy, with
» X, with ii.d. zero mean, unit variance, E[| X, ?j] < 00.
> Cp =1,+ P, P=UQU*, where, for K fixed,

Q = diag (w1, . ..,wr) € REXK with wy > ... > wg > 0.
. _ 1 *
Then, as p,n — o0, p/n — ¢ € (0,00), denoting Am = Am (:YpYy) (Am > Am+1),

P Lt wm +cE2m > (140)2 , wn > Ve
1+ ve)? , wm € (0,/¢].
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Spiked Models

Theorem (Eigenvectors [Paul’07])
1
Let Yy = CF X,, with
» X, with i.i.d. zero mean, unit variance, E[| X ?j} < 00.

> Cp=Ip+P,P=UQU*:Zfilwiuiuf,wl >...>wpy > 0.
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Spiked Models

Theorem (Eigenvectors [Paul’07])
1
Let Yy = CF X, with
» X, with i.i.d. zero mean, unit variance, E[| X Lilj} < 00.

> Cp:IerP,P:UQU*=Zfilwiuiuf,w1 > ... >wy > 0.

Then, as p,n — oo, p/n — ¢ € (0,00), for a,b € CP deterministic and 1, eigenvector

of X (1Y, Yy),
1 _Cw'i2 a.s
a*0;4;b — —=a"uuib- 1 -0
1 iUy w;>+/c
1+ cw;
In particular,
1 —cw 2
|6 wil® =% —— 1,5 e
1 + cw;
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Spiked Models
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Figure: Simulated versus limiting |4} u1|? for Y, = C2 X,p, Cp = I + wiuiu}, p/n =1/3,
varying wi .
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Other Spiked Models

Similar results for multiple matrix models:

> Y, = LI+ P)2X,X:(I+ P)2
>V, =L1lx,xx+ P

> Y, =1X3(I+P)X

> Y, = %(XP+P)*(XP+P)

> etc.
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Reminder on Spectral Clustering Methods

Context: Two-step classification of n objects based on similarity A € R™"*":

- T T =

0 spikes
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Context: Two-step classification of n objects based on similarity A € R™"*":

Eigenv. 1

Eigenv. 2

T T =

spikes
|} Eigenvectors |}
(in practice, shuffled)
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Reminder on Spectral Clustering Methods
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U

EM or k-means clustering.
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Kernel Spectral Clustering
Problem Statement

» Dataset z1,...,z, € RP
» Objective: “cluster” data in k similarity classes Cq,...,Cg.
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Kernel Spectral Clustering

Problem Statement
» Dataset z1,...,z, € RP
» Objective: “cluster” data in k similarity classes Cq,...,Cg.

» Kernel spectral clustering based on kernel matrix
n
K = {K(I/L‘7Ij)}z‘7‘7‘:1

> Usually, n(z,y) = f(@Ty) o n(z,y) = f(lz —y|?)

> Refinements: . .
» instead of K,use D — K, I, — D 'K, I, — D 2KD 2, etc.
P several steps algorithms: Ng—Jordan—Weiss, Shi-Malik, etc.

Intuition (from small dimensions)

» K essentially low rank with class structure in eigenvectors.
1 1 1 1
> Ng-Weiss—Jordan key remark: D™2 KD~ 2(D2j,) ~ D2j, (ja canonical
vector of Cq)
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Figure: Leading four eigenvectors of D~ 2 KD~ 2 for MNIST data, RBF kernel
(£(2) = exp(—t*/2)).
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Figure: Leading four eigenvectors of D~ 2 KD~ 2 for MNIST data, RBF kernel
(£(2) = exp(—t*/2)).

1
» Important Remark: eigenvectors informative BUT far from D2 j,!
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Model and Assumptions

Gaussian mixture model:

> zi,...,xn € RP,
» k classes Cq,...,Ck,
> x1,...,Tn, ECl,...,zn_nk+1,...,xn € Cy,

> x; ~ N(ug;, Cy,).
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k
a=1

3. Covariance scaling: with C° & ’;:1 %Cﬂ and C2 £ C, — C°, then

2. Mean scaling: with u°® £ Y Rayig and pg £ pe — p°, then ||ud| = O(1)

[Call =0O(1), trCg =0(yp), trCiCy =O0(p)
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Model and Assumptions

Gaussian mixture model:

> z1,...,7n € RP,
» k classes Cq,...,Ck,
> Ti,...,Tny Eclyu-yzn—nk-klv-“:xneck.

> x; ~ N(ug;, Cy,).

Assumption (Growth Rate)
Asn — 0o,
1. Data scaling: % — ¢o € (0,00), "7“ —cq € (0,1),

k
a=1

2. Mean scaling: with u°® £ Y Rayig and pg £ pe — p°, then ||ud| = O(1)

3. Covariance scaling: with C° & ’;:1 %Cﬂ and C2 £ C, — C°, then

[Call =0O(1), trCg =0(yp), trCiCy =O0(p)

For 2 classes, this is

e = p2ll = O(1), tr(C1—C2) =0(Vp), |ICill =0(1), tr([C1—Ca]?)=O(p).

Remark: [Neyman—Pearson optimality]
> z ~ N(£u, Ip) (known p) decidable iif ||u]| > O(1).

> z ~N(0,(1£e)lp) (known ¢) decidable iif ||e]| > O(p*%).
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Model and Assumptions

Kernel Matrix:

» Kernel matrix of interest:

1 . n
K={f (5”%7%”2)},_ 1
0=

for some sufficiently smooth nonnegative f (f(%x;ra:j) simpler).
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Model and Assumptions

Kernel Matrix:

» Kernel matrix of interest:

1 . n
K={f (5||xr:rj||2)},_ 1
0=

for some sufficiently smooth nonnegative f (f(%x;ra:j) simpler).

» We study the normalized Laplacian:

dd’
L=nD"2 (Kf >D’
dri,

(S

with d = K1,,, D = diag(d).
(more stable both theoretically and in practice)
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Random Matrix Equivalent

> Key Remark: Under growth rate assumptions,

1 P a.s.
max {‘7||xifa:]-||27'r}i>0.
1<izi<n || p

where 7 = %trCo.
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Random Matrix Equivalent

> Key Remark: Under growth rate assumptions,

1 2
max — |z —x4l|° =7
1<i#j<n P

where 7 = %trC’o.

= Suggests that (up to diagonal) K ~ f(7)1,1]!

» In fact, information hidden in low order fluctuations! from “matrix-wise” Taylor
expansion of K:

K= f(nlall+ VoK + Ko
N—— N——

~—~
OH'H (n) low rank, O”_”(\/ﬁ) informative terms, OH,“(I)

Clearly not the (small dimension) expected behavior.
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Random Matrix Equivalent

Theorem (Random Matrix Equivalent [Couillet, Benaych’2015])
Asn,p — oo, HL—f,

1 dd’ 1 1
L=nD"2 (K- D™2, avec Ki; = f  =|lzs — ;)
08 (- ) 0 w5 (B )

250, where

i= o0 FPWTWP+ LiBim+ *}
f(r) Lp p

et W= [wi,...,wn] € RPX" (z; = pig +w;), P =1In — 1,17,
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Random Matrix Equivalent

Theorem (Random Matrix Equivalent [Couillet, Benaych’2015])

Asn 250, where
_1 dd’ 1 1
L=nD"2 (K— dTl ) D 2, avec Kij = f (;”fﬂz —CCj”z)
!
j= ol { PWTWP + - JB/T+*}
f(7)

et W =[wi,...,wp] € RPX" (z; = pg +w;), P=1In — %1n11,

Jz[jl:"'»jk}v ]I:(Ooylna70770)
B=M"M+ <5f’<T) @ > - fH(T)T+*.

8f(r)  2f'(7) 1/(7)
Recall M =[5, ..., uf), t = [LotrC, ..., LerCR]T, T = { trCOCO}ab .
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Random Matrix Equivalent

Theorem (Random Matrix Equivalent [Couillet, Benaych’2015])

2% 0, where

3 1
L= nDié (K— C?rdl )Dié7 avec K;j = f (;Hxl —:Cj||2)
/
i = 2f ()
f(r)

et W= [wi,...,wn] € RPX" (z; = pig +w;), P =1In — 1,17,

Asn

{ PWTWP+ LByt + *}

J =[xl da =1(0...0,1n,,0,...,0)

o (D) O e
B‘M””(sf(f) 2f/<7>>“ Fn

Recall M =[5, ..., uf), t = [LotrC, ..., LerCR]T, T = { trCOCO}

Fundamental conclusions:

a,b= 1
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Theorem (Random Matrix Equivalent [Couillet, Benaych’2015])

2% 0, where

3 1
L= nDié (K— C?rdl )Dié7 avec K;j = f (;”Jﬁl —ZC]'||2)
/
i = 2f ()
f(r)

et W = [wi,...,wn] € RPX™ (2, = ug + w;), P:In—flan

Asn

{ PWTWP+ = JB/TJ,-*}

J =11, dk)s da =(0...0,1p,,0,...,0

[ T T N )
B‘M””(sf(f) 2f/(f)>tt Fn

— o o —r_1 o o1T [¥gle}
RecalIM_[ul,..,,uk],t_[\/ﬁtrCI,.,.,ftrC] T= { trCC}ab r
Fundamental conclusions:

> asymptotic kernel impact only through f/(7) and f”/(7), that’s all!
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Theorem (Random Matrix Equivalent [Couillet, Benaych’2015])

2% 0, where

_1 dd’ _1 1

L=nD"2 (K— ar, )D 2, avec Ki]' =f (;”Jﬁl —ZC]'||2)
/

i = 2f ()
f(7)

et W =[wi,...,wp] € RPX" (z; = pg +w;), P=1In — 71n1T,

Asn

{ PWTWP+ = JB/TJ,-*}

J =11, dk)s da =(0...0,1p,,0,...,0

[ T T N )
B‘M””(sf(f) 2f/(f)>tt Fn

Recall M =[5, ..., uf), t = [LotrC, ..., LerCR]T, T = { trCOC"}

’f abl

Fundamental conclusions:
> asymptotic kernel impact only through f/(7) and f”/(7), that’s all!
» spectral clustering reads MM, tt7 and T, that’s all!
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Isolated eigenvalues: Gaussian inputs

T
[N Eigenvalues of L [ Eigenvalues of L

Figure: Eigenvalues of L and L, k=3, p=2048, n =512, ¢c; =co =1/4, c3 =1/2,
(talj =46a;, Ca = (1 +2(a = 1)//P)Ip, f(z) = exp(—2z/2).
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Theoretical Findings

0.2

versus MNIST

5.102

T T T

I Eigenvalues of L

40

50

Figure: Eigenvalues of L (red) and (equivalent Gaussian model) L (white), MNIST data, p = 784,

n = 192.
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Theoretical Findings versus MNIST

0.2 T T T
I Eigenvalues of L
[ Eigenvalues of L as if Gaussian model
0.15 —
0.1 |
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o 117 R S \ \ m

0 10 20 30 40 50

Figure: Eigenvalues of L (red) and (equivalent Gaussian model) L (white), MNIST data, p = 784,
n = 192.
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Theoretical Findings versus MNIST

1 1
Figure: Leading four eigenvectors of D~ 2 KD~ 2 for MNIST data (red) and theoretical findings
(blue).
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Theoretical Findings versus MNIST

1 1
Figure: Leading four eigenvectors of D~ 2 KD~ 2 for MNIST data (red) and theoretical findings

(blue).
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Theoretical Findings versus MNIST
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Figure: 2D representation of eigenvectors of L, for the MNIST dataset. Theoretical means and 1-
and 2-standard deviations in blue. Class 1 in red, Class 2 in black, Class 3 in green.
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Theoretical Findings versus MNIST

Eigenvector 2/Eigenvector 1 Eigenvector 3/Eigenvector 2

Figure: 2D representation of eigenvectors of L, for the MNIST dataset. Theoretical means and 1-
and 2-standard deviations in blue. Class 1 in red, Class 2 in black, Class 3 in green.
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The surprising f'(7) = 0 case

0.5 T T T
C
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Figure: Polynomial kernel with f(7) =4, f"(7) = 2, x; € N(0,Cy), with C1 = I,,,
[Caliy; = 477l cg = 1.
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The surprising f'(7) = 0 case

Classification error

Figure: Polynomial kernel with f(7) =4, f"(7) = 2, z; € N(0,Cy), with C1 = I,,,

[Cali,; = 41171, ¢
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Figure: Polynomial kernel with f(7) =4, f”(7) = 2, z; € N(0,Cy), with C1 = I,,,
[Caliy; = 477l cg = 1.

30/113



The surprising f'(7) = 0 case

0.5

0.4

0.3

0.2

Classification error

0.1

Figure: Polynomial kernel with f(7) =4, f”(7) = 2, z; € N(0,Cy), with C1 = I,,,
[Caliy; = 477l cg = 1.

> Trivial classification when t =0, M =0 and ||T|| = O(1).
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Outline

Applications

Kernel Spectral Clustering: The case f/(7) =0
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Position of the Problem

Problem: Cluster large data z1,...,2z, € RP based on “spanned subspaces”.
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Position of the Problem

Problem: Cluster large data z1,...,2z, € RP based on “spanned subspaces”.
Method:
> Still assume z1,...,z, belong to k classes Cy,...,Cg.

» Zero-mean Gaussian model for the data: for x; € Cy,

x; ~ N(0,Ck).

1,1]
11 D1,

K= {f (”fi N jjnz) }1§i,j§n’ z

in the regime n,p — oco.
(alternatively, we can ask %trCi =1foralll1<i<k)

» Performance of L = nD*% <K — ) Dié, with

T

IRE
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Model and Reminders

Assumption 1 [Classes]. Vectors z1,...,zn € RP i.i.d. from k-class Gaussian mixture,
with z; € Cp, < z; ~ N(0,C},) (sorted by class for simplicity).
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Assumption 2a [Growth Rates]. As n — oo, for each a € {1,...,k},
L. 2 = co € (0,00)
2. B — cq € (0,00)

3. 2trCa = L and trC2Cp = O(p), with CF = Ca — C°, C° = 3¢ _; ¢ Ch.

Theorem (Corollary of Previous Section)
Let f smooth with f'(2) # 0. Then, under Assumptions 2a,

N

B 1,17 1, o -
L=mnD (K— lﬁijD 2, with K = {f (llz: — z;1%)}} ,_, (@ =2/|lz])

exhibits phase transition phenomenon
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Model and Reminders

Assumption 1 [Classes]. Vectors z1,...,zn € RP i.i.d. from k-class Gaussian mixture,
with z; € Cp, < z; ~ N(0,C},) (sorted by class for simplicity).

Assumption 2a [Growth Rates]. As n — oo, for each a € {1,...,k},
L. 2 = co € (0,00)
2. B — cq € (0,00)

3. 2trCa = L and trC2Cp = O(p), with CF = Ca — C°, C° = 3¢ _; ¢ Ch.

Theorem (Corollary of Previous Section)
Let f smooth with f'(2) # 0. Then, under Assumptions 2a,

N

L=nD"

11} 1 - - -
(= ) D74 with K = {1 (b= 2, )}y (o = /)

exhibits phase transition phenomenon, i.e., leading eigenvectors of L asymptotically

contain structural information about C1,...,Cy if and only if
1 k
T= {7 tngCg}
p a,b=1

has sufficiently large eigenvalues (here M =0, t =0).
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The case f/(2) =0

Assumption 2b [Growth Rates]. As n — oo, for each a € {1,...,k},
1. % — ¢o € (0,00)

2. e —cq € (0,00)

3. LtrCy =1 and #6262 — 64}, with CF = Ca — C°, C° = 5, &G
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The case f/(2) =0

Assumption 2b [Growth Rates]. As n — oo, for each a € {1,...,k},

L 2—2c€ (0, 00)

2. "T‘L — ¢ca € (0,00)

3. 2trCa = L and trC3Cp = O(y/p), with CF = Ca — C°, C° = Tp_; 4 C.
(in this regime, previous kernels clearly fail)
Remark: [Neyman—Pearson optimality]

> if C; = I + E with || E|| — 0, detectability iif tr(C1 — C5)? > O(p~2).
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The case f/'(2) =

Assumption 2b [Growth Rates]. As n — oo, for each a € {1,...,k},
L 2—2c€ (0, 00)
2. "T‘L — ¢ca € (0,00)

3. 2trCa = L and trC3Cp = O(y/p), with CF = Ca — C°, C° = Tp_; 4 C.

(in this regime, previous kernels clearly fail)
Remark: [Neyman—Pearson optimality]

> if C; = I + E with || E|| — 0, detectability iif tr(C1 — C5)? > O(p~2).

Theorem (Random Equivalent for f/(2) = 0)
Let f be smooth with f/(2) = 0 and

@) [, f0 - ) L,
c= iy |- gy oF| P bk

Then, under Assumptions 2b,

1 0 10 1"‘1111) *
L =PbP + ﬁtr(CaCb) » +OHAH(1)
a,b=1

where ®;j = 8;2;\/p [(x] x)? — El(z]x;)%]].
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The case f/(2) =0

3

2 [ —

1L i
A1(L)

0 | d

-2 —1.5 —1 —0.5 0

Figure: Eigenvalues of L, p = 1000, n = 2000, k = 3, ¢1 = c2 = 1/4, ¢c3 = 1/2,
5
Ci < I, + (p/8) "4 W, W], W; € RP*(®/®) of iid. N(0,1) entries, f(t) = exp(—(t — 2)?).

= No longer a Marcenko—Pastur like bulk, but rather a semi-circle bulk!
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The case f/(2) =0

Roadmap. We now need to:
» study the spectrum of ®
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The case f/(2) =0

Roadmap. We now need to:
» study the spectrum of ®
> study the isolated eigenvalues of £ (and the phase transition)

> retrieve information from the eigenvectors.

Theorem (Semi-circle law for @)
Let pn, = % > dx,(c)- Then, under Assumption 2b,

Nngﬂ

with p the semi-circle distribution

p(dt)

1
= 71/ (dcow? — 2)Fdt, w = lim V2=t (C°)2.
2meow pP—0o0 p
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The case f/(2) =0

3 T I
[ Eigenvalues of L
Semi-circle law
2 -
1 -
A(L)
0 | -
—2 —1.5 —1 —0.5 0

Figure: Eigenvalues of L, p = 1000, n = 2000, k = 3, ¢c1 = c2 = 1/4, ¢c3 = 1/2,
5
Ci < I, + (p/8) "4 W, W], W; € RP*(P/®) of iid. N(0,1) entries, f(t) = exp(—(t — 2)?).
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The case f/(2) =0

Denote now

p—ro0

k
T = lim {VC“cbtrcgcg} .
\/ﬁ a,b=1
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The case f/(2) =0

Denote now

k
szinéo{ Vc“cbtrc;cg} .
\/ﬁ a,b=1

Theorem (Isolated Eigenvalues)
Let v1 > ... > vy eigenvalues of T. Then, if \/co|vi| > w, L has an isolated
eigenvalue \; satisfying

a.s w?
Ai == pi = covi + —.
7
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The case f/(2) =0

Theorem (Isolated Eigenvectors)
For each isolated eigenpair (\;,u;) of L corresponding to (v;,v;) of T, write

k

Ja
u; = E af + olwd
T a:1 T \/m 7 1
with jo = [0} ..., 1% ..., 0L 1T, (w®)Tja = 0, supp(wf) = supp(ja), [lwf|| = 1.

Then, under Assumptions 1-2b,
a.s. 1 w?
a;loa? 285 <1 - ——2> [Uivﬁ,lb

(O_(‘,,)Q a.s, Ca W
i

and the fluctuations of u;,u;, © # j, are asymptotically uncorrelated.
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The case f/(2) =0

Eigenvector 1

Eigenvector 2

| | | | | | | | |
0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000

Figure: Leading two eigenvectors of £ (or equivalently of L) versus deterministic approximations of
af o7
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Figure: Leading two eigenvectors of £ (or equivalently of L) versus deterministic approximations of
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The case f/(2) =0

1072

Eigenvector 2

| | | | |
—4 -2 0 2 4

-2
Eigenvector 1 -10

Figure: Leading two eigenvectors of L (or equivalently of L) versus deterministic approximations of
a a
aif £of.
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Application to Massive MIMO UE Clustering




Massive MIMO UE Clustering

Setting. Massive MIMO cell with
P> p antenna elements
> n users equipments (UE) with channels z1,...,z, € RP
> UE's belong to solid angle groups, i.e., E[z;] =0, Elz;z]] = Co = C(O,).
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Massive MIMO UE Clustering

Setting. Massive MIMO cell with
P> p antenna elements
> n users equipments (UE) with channels z1,...,z, € RP
> UE's belong to solid angle groups, i.e., E[z;] =0, Elz;z]] = Co = C(O,).
» T independent channel observations 0&(1), R 2T for UE i.

Objective. Clustering users in same solid angle groups (for scheduling reasons, to avoid
pilot contamination).

Algorithm.

1. Build kernel matrix K, then £, based on nT' vectors xgl), - ,acng) (as if nT
values to cluster).

2. Extract dominant isolated eigenvectors w1, ..., Uk
. For each i, create u; = %(In ® 1;)1“, i.e., average eigenvectors along time.

4. Perform k-class clustering on vectors @1, ..., Ux.
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Massive MIMO UE Clustering

10~2
T T
L\ |
5 l/@) ll "
! \eia
2 \ 7
2
2
> 0 N
S
)
i #\
\
| | |
-5 0 5
—2
Eigenvector 1 Eigenvector 1 -10

Figure: Leading two eigenvectors before (left figure) and after (right figure) T-averaging. Setting:
p =400, n =40, T =10, k = 3, ¢c1 = c3 = 1/4, co = 1/2, angular spread model with angles
—7/30 & /20, 0 & /20, and 7/30 #+ 7/20. Kernel function f(t) = exp(—(t — 2)?).
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Massive MIMO UE Clustering

Correct clustering probability

Figure: Overlap for different T', using the k-means or EM starting from actual centroid solutions

(oracle) or randomly.

k-means (oracle)
— — — - k-means
—@— EM (oracle)

- -e--EM
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Massive MIMO UE Clustering

Optimal kernel (k-means)
— — — - Optimal kernel (EM)
—@— Gaussian kernel (k-means)
— -@— - Gaussian kernel (EM)

0.6
Random guess

Correct clustering probability

0.4

Figure: Overlap for optimal kernel f(t) (here f(t) = exp(—(t — 2)?)) and Gaussian kernel
f(t) = exp(—t2), for different T, using the k-means or EM.
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Outline

Applications

Kernel Spectral Clustering: The case f/(7) = %
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Optimal growth rates and optimal kernels

Conclusion of previous analyses:
> kernel f(%Hxl —z;||?) with f/(7) # 0:
> optimal in [|u2]| = O(1), 1trCS = O(p~ 7)
> suboptimal in %tngCg’ =0(1)
— Model type: Maréenko—Pastur + spikes.
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Optimal growth rates and optimal kernels

Conclusion of previous analyses:
> kernel f(%Hxl —z;||?) with f/(7) # 0:
> optimal in [|u2]| = O(1), 1trCS = O(p~ 7)
> suboptimal in %tngCg’ =0(1)
— Model type: Maréenko—Pastur + spikes.

> kernel f(%Ha:z — z4]1?) with f/(7) = 0:
P suboptimal in ||ug || 3> O(1) (kills the means)
> suboptimal in $tr CCp = ()(pié)
— Model type: smaller order semi-circle law + spikes.

Jointly optimal solution:

» evenly weighing Maréenko—Pastur and semi-circle laws
» the “a-f3" kernel:
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New assumption setting

» We consider now a fully optimal growth rate setting

Assumption (Optimal Growth Rate)
Asn — oo,

1. Data scaling: £ — ¢ € (0,00), 22 — ¢4 € (0,1),

2. Mean scaling: with i° 2 S8 R4 iq and pg £ pe — p°, then ||ug| = O(1)
3. Covariance scaling: with C° £ ’;:1 2aCy and CY £ C, — C°, then

[Call = O(1), trCg =0(Vp), trCCy =O0(/p).
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New assumption setting

» We consider now a fully optimal growth rate setting
Assumption (Optimal Growth Rate)
Asn — oo,
1. Data scaling: £ — ¢ € (0,00), 22 — ¢4 € (0,1),
2. Mean scaling: with u°® = k

3. Covariance scaling: with C° £ ';:1 2aCy and CY £ C, — C°, then

[Call = O(1), trCg =0(Vp), trCCy =O0(/p).

Kernel:

» For technical simplicity, we consider

. 1 n 1
K:PKP:P{f (*(:L'O)T(:L’;?))} P| P=1I,— =1,1T.
P i,j=1 n

i.e., 7 replaced by 0.

a1 S pa and pg £ pug — p°, then [|pg|| = O(1)
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Main Results

Theorem
As n — oo,
v (PEP+ (£(0) +7f(0) P) — K
with, for o = \/pf'(0) = O(1) and B = 1 f(0) = O(1),
K=aPWTWP + 8PP + UAUT
A= oaMTM + BT oIy,
alk 0
= [i PWTM}
N/
<I> o n tr(CaCb)
&= praran),, - {0

abO

k

1"a13:b}

a,b=1
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Main Results

Theorem
As n — oo,
|VB (PEP+ (50) + 7/ 0) P) =& 2% 0

with, for o = \/pf'(0) = O(1) and B = 1 f(0) = O(1),

K=aPWTWP+ 8PP + UAUT

A= [aMTM + BT aIk]

alk 0
= [i PWTM}
VP
k3 ) n tr(CaCh) r\F
/P { j #j} =1 B {Tlna lnb a,b=1

Role of «, 3:

» Weighs Mar&enko—Pastur versus semi-circle parts.
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Limiting eigenvalue distribution

Theorem (Eigenvalues Bulk)

As p — o0,

sl
P BUNE

n

with v having Stieltjes transform m(z) solution of

—1 2
R %trCo ( 4 am@) ) =25 (2

m(z) co co

where w = limp 00 %tr(C’o)Q.
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Limiting eigenvalue distribution

Figure: Eigenvalues of K (up to recentering) versus limiting law, p = 2048, n = 4096, k = 2,

2
ny =ng, pi = 38;, f(z) = 38 (ac + ﬁ%) . (Top left): o = 8,3 = 1, (Top right):
o =4, 3 =3, (Bottom left): o = 3, 3 = 4, (Bottom right): = 1,3 = 8.
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Asymptotic performances: MNIST

> MNIST is “means-dominant” but not that much!

DATASETS ‘ lu$ — p3l>  J5TR(C1 — Ca)? H LTR(Cy — C2)?
MNIST (pIGITS 1,7) 612.7 71.1 2.5
MNIST (pIGITS 3, 6) 441.3 39.9 1.4
MNIST (pIGITS 3, 8) 212.3 23.5 0.8
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> MNIST is “means-dominant” but not that much!

DATASETS ‘ lu$ — p3l>  J5TR(C1 — Ca)? H LTR(Cy — C2)?
MNIST (pIGITS 1,7) 612.7 71.1 2.5
MNIST (pIGITS 3, 6) 441.3 39.9 1.4
MNIST (pIGITS 3, 8) 212.3 23.5 0.8

E,' 0.8
@
>
o

—— Digits 1,7

0.6 [-| —— Digits 3,6 .
—— Digits 3,8
- | | |
—15 -10 -5 0 5 10 15

™[R

Figure: Spectral clustering of the MNIST database for varying %
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Asymptotic performances: EEG data

» EEG data are “variance-dominant”

TR(Cl — 02)2
1.1

DATASETS ‘ s — p3ll? Z5TR(Ci — C2)?
EEG (sETs A, E) | 2.4 10.9

H
P
H
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Asymptotic performances: EEG data

» EEG data are “variance-dominant”

=R (C1 — Cs)? H LR (Cy — Cs)?
I

DATASETS ‘ | — pS|?
EEG (sETs A, E) | 2.4 10.9 1.1
1
LQ“- 0.8 - -
o
>
o
0.6 = .
| | | | | |
—60 —40 —20 0 20 40
a
B

Figure: Spectral clustering of the EEG database for varying %
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Outline

Applications

Semi-supervised Learning
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Problem Statement

Context: Similar to clustering:

» Classify z1,...,2n € RP in k classes, with n; labelled and n,, unlabelled data.
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Problem Statement

Context: Similar to clustering:
» Classify z1,...,2n € RP in k classes, with n; labelled and n,, unlabelled data.

> Problem statement: give scores Fj, (d; = [K1n]s)

k
= g e 3 30 Ko (Fuad ™ — Fyadt 2
a=1 4,5

such that F;, = é{zieca}, for all labelled z;.

» Solution: for F(¥) ¢ Rruxk F() ¢ RniXk scores of unlabelled/labelled data,

u - a—1 (1
FO = (1o, - D()K(uu)D(u)) DKy Do FD

(w) ()

where we naturally decompose
K K
% - [ Kan (l,u):|
[K<u,1> K (u,u)

D 0 .
D= [ é” D(“)} = diag {K1,}.
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The finite-dimensional intuition: What we expect

F.

\/ \/ LI

IabeIIed unlabelled labelled unla elled Iabelled unlabelled

Cy Cs

Figure: Typical expected performance output

Y
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The finite-dimensional intuition: What we expect

F., F., F.s

\

M |
J LA AL
T niabeliod  labelied 'uma%eu‘e'd '

Cy Ca Cs

Figure: Typical expected performance output

labelled unlabelled labelled
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MNIST Data Example

T T T
[F(u)]*,l (Zeros)
1.2 —
1 -
=9
i
0.8 —
| | |
0 50 100 150

Index

Figure: Vectors [F(“')],,a, a =1,2,3, for 3-class MNIST data (zeros, ones, twos), n = 192,
p = 784, n;/n = 1/16, Gaussian kernel.
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Figure: Vectors [F(“)],,a, a =1,2,3, for 3-class MNIST data (zeros, ones, twos), n = 192,
p = 784, n;/n = 1/16, Gaussian kernel.
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MNIST Data Example

T T I
[F(u)]*,l (Zeros)
_— [F(u)]-,Q (Ones)
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| | |
0 50 100 150
Index

Figure: Vectors [F(“')],,a, a =1,2,3, for 3-class MNIST data (zeros, ones, twos), n = 192,
p = 784, n;/n = 1/16, Gaussian kernel.
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MNIST Data Example

1072
T T T
[F(O“)]-,l (Zeros)
4 | —
3=
R 2 -
~
ol
W
e
[ o y
s
&,
92| .
-4 I I I .
0 50 100 150

Index

Figure: Centered Vectors [F<°u>].,a = [Fru) — +Fw 1k 17]..a, 3-class MNIST data (zeros, ones,
twos), « = 0, n = 192, p = 784, n;/n = 1/16, Gaussian kernel.
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MNIST Data Example

1072
T
[F(Ou)]':l (Zeros)
—— [F{,)]-,2 (Ones)
s | (u)
3=
R 2 —
ol
W
e
[ 0n I ‘ y
o | ‘ [ .U
2
—2 |
-4 | | | .
0 50 100 150

Index

Figure: Centered Vectors [F(,)].,a = [F(u) — +Fuylk 17]..a, 3-class MNIST data (zeros, ones,
twos), « = 0, n = 192, p = 784, n;/n = 1/16, Gaussian kernel.
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MNIST Data Example

1072

T
[F(Ou) 1.,1 (Zeros)

—— [F? (]. 2 (Ones)
4 (u)'
I~ (FE,). 3 (Twos) ||
3=
R 2 —
f%
e o I e |
I i "“‘
o | l
2
—2 [N -
-4 | | | .
0 50 100 150

Index

Figure: Centered Vectors [F(,)].,a = [F(u) — +Fuylk 17]..a, 3-class MNIST data (zeros, ones,

twos), « = 0, n = 192, p = 784, n;/n = 1/16, Gaussian kernel.
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Theoretical Findings

Method: Assume n;/n — ¢; € (0,1)

» We aim at characterizing

_ 1\ - =10
Flw) — (Inu — DS K (u Df, ) DS KDy ' FO
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Method: Assume n;/n — ¢; € (0,1)

P> We aim at characterizing

_ 1\ - —15(
) — (Inu — DS K (u Df, ) DS KDy ' FO

» Taylor expansion of K as n,p — oo,
T _1
Ky = f(M)1n, 1n, + O (n72)
1
Dy = nf(m)In, +O(n2)

and similarly for K, 1), D).
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Theoretical Findings

Method: Assume n;/n — ¢; € (0,1)

> We aim at characterizing

-1 —1 (1
F(u):([nu D, )K(M)D(u)) DS Ky Dy FO

» Taylor expansion of K as n,p — oo,

_1
Ky = f(M1n, 15, +O)(n~2)
Dy = nf(r)In, +O(n)

and similarly for K, 1), D).
> So that

-1 lrz,u l—yrx,,u _1 -
(Inu = DG K D8 ') = (= 5 40 (n72)

easily Taylor expanded.
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Main Results

Results: Assuming n;/n — ¢; € (0,1), by previous Taylor expansion,
» In the first order,

(u) _ Ni,a ta 171“ -1
Fq —C—[ v +a7\/ﬁ ]Jr O(n™")

n ——
o) ~>——~ Informative terms
1
O(n~ 2)
where v = O(1) random vector (entry-wise) and t, = %tr Cs.
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» In the first order,

(W) _ oM taln, -1
F.,=C [v+a\/ﬁ]+ O(n™")
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Main Results

Results: Assuming n;/n — ¢; € (0,1), by previous Taylor expansion,
» In the first order,

(W) _ oM taln, -1
F.,=C [v+a\/ﬁ]+ O(n™")

n ——
o) ~>——~ Informative terms
1
O(n~ 2)
where v = O(1) random vector (entry-wise) and t, = %tr Cs.

» Consequences:
P Random non-informative bias v

> Strong Impact of n; 4

’ F_(_T,;,) to be scaled by n; 4

> Additional per-class bias atq 1y,
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Main Results

As a consequence of the remarks above, we take

B

o= —

VP

and define

P _ P o)

N,a

63/113



Main Results

As a consequence of the remarks above, we take

_ B
o=
VP
and define
ﬁ-i(lg) _ ﬁFi(;)'
Nni,a
Theorem

For x; € Cp, unlabelled,

Fiﬁ — Gb — 0, Gb NN(TTLb,Eb)

where my, € RF, 5, € RF*F gijven by

2@ O 2@ s P n f'(r)
(mo)a = =gy Mav Ty felo + gy T T e Ty e
_2rC (0?0’ A1 ()2 (T Saip
(Eb)a1a2 - P (f(’l‘)2 - f(T) ) ta1ta2 + f(T)2 ([M CbM]a1a2 + a, Tbal)

with t,T, M as before, Xq = Xq — 25:1 njl—’lng and By, bias independent of a.
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Main Results

Corollary (Asymptotic Classification Error)
For k = 2 classes and a # b,

P(F@a > Fib ‘ x; € Cb) — Q <(7nb)b_(7nb)a> — 0.

[1,—1]Z[1, —1]7
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Main Results

Corollary (Asymptotic Classification Error)
For k = 2 classes and a # b,

P(Fi@ > Fib ‘ x; € Cb) — Q <WI—> — 0.

[1,-1]3[1, -1

Some consequences:
» non obvious choices of appropriate kernels
> non obvious choice of optimal 3 (induces a possibly beneficial bias)

> importance of n; versus n,,.
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MNIST Data Example

Simulations

Probability of correct classification

| | |
-1 —0.5 0 0.5 1

Index

Figure: Performance as a function of «, for 3-class MNIST data (zeros, ones, twos), n = 192,
p = 784, n;/n = 1/16, Gaussian kernel.
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MNIST Data Example

Probability of correct classification

Simulations

Theory as if Gaussian

Figure: Performance as a function of «, for 3-class MNIST data (zeros, ones, twos), n = 192,

p = 784, n;/n = 1/16, Gaussian kernel.
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Index
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MNIST Data Example

1

0.8 - |

0.6 — |

Probability of correct classification

| | |
-1 —0.5 0 0.5

Jun

Index

Figure: Performance as a function of «, for 2-class MNIST data (zeros, ones), n = 1568, p = 784,
n;/n = 1/16, Gaussian kernel.
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MNIST Data Example

0.8 -

0.6 [~

Probability of correct classification

Simulations

Theory as if Gaussian

Figure: Performance as a function of «, for 2-class MNIST data (zeros, ones), n = 1568, p = 784,

ny/n = 1/16, Gaussian kernel.
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Index
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Is semi-supervised learning really semi-supervised?

Reminder:
For x; € Cp unlabelled, ;. — Gy — 0, Gy, ~ N (mp, 2p) with
_2f(r ) i1 (1) - 2" (1) = f’(T)2 n (1)
a = a a Ta — B
(m)e = =gy Man Ty tabo + =gyl = e A
2rCE (F1(1)? () Af'(1)? Sa2p

Yp)ajar = . ( - ) ajlag (MTC Mlayas . Ta1>
(=) p T2~ g ) tete T gy (MO Mlares + P

with t,T, M as before, Xq = X, — 25:1 %Xg and By bias independent of a.
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The problem with unlabelled data:

» Result does not depend on n,,!
— increasing n.,, asymptotically non beneficial.
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Is semi-supervised learning really semi-supervised?

Reminder:
For x; € Cp unlabelled, ;. — Gy — 0, Gy, ~ N (mp, 2p) with
_2f(r ) i1 (1) - 2" (1) = f’(T)2 n (1)
a = a a Ta — B
(m)e = =gy Man Ty tals + =gy s = e A
2rCE [ f1(1)? (1) Af'(1)? Sazp

% ajay — b ( - ) ajlag (MTC Malaz L Ta1>
(=) p T2~ g ) tete T gy (MO Mlares + P

with t,T, M as before, Xq = X, — 25:1 njl’ld X and By bias independent of a.

The problem with unlabelled data:

» Result does not depend on n,,!
— increasing n.,, asymptotically non beneficial.

> Even best Laplacian regularizer brings SSL to be merely supervised learning.
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Outline

Applications

Semi-supervised Learning improved
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Resurrecting SSL by centering
Reminder:

k
F = argminFE]Rnxk Z ZKij(Fiad?_l _ Fjad?_1)2 with Fl(i) = 6{3%'6(:(1}
a=114,j

(u) _ -1 _a a—17(1)
& F® = (In, = D S KwwDL,") DS Ky Dy ' FO.
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Resurrecting SSL by centering
Reminder:
r l
F = argminFe]Rnxk Z ZKij(Fiadia_l - Fjad?_1)2 with Fi(a) = 6{1%6(1@}

a=1 1,5

-1
(u) _ _ —a a—1 —a a—17(1)
& F® = (In, = D S KwwDL,") DS Ky Dy ' FO.

Domination of score flattening:

» Finite-dimensional intuition imposes K;; decreasing with ||z; — x;|| = solutions
F;q tend to “flatten”
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Resurrecting SSL by centering

Reminder:

k
F = argminFE]Rnxk Z ZKij(Fiadia_l - Fjad?_1)2 with Fl(é) = J{JWECQ}
a=1 1,j

-1
(u) _ —a a—17(1)
& F® = (In, = D S KwwDL,") DS Ky Dy ' FO.

Domination of score flattening:
» Finite-dimensional intuition imposes K;; decreasing with ||z; — x;|| = solutions
F;q tend to “flatten”

» Consequence: D(u)K(u u)D(u) o~ %lnu l;rlu and clustering information

vanishes (not so obvious but can be shown).
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Resurrecting SSL by centering

Reminder:
r l
F = argminFE]Rnxk Z ZKij(Fiadia_l - Fjad?_1)2 with Fi(a) = J{JWECQ}
a=1 1,5

-1
(u) _ —a a—17(1)
& F® = (In, = D S KwwDL,") DS Ky Dy ' FO.

Domination of score flattening:
» Finite-dimensional intuition imposes K;; decreasing with ||z; — x;|| = solutions
F;q tend to “flatten”
~ 1 T . N .
» Consequence: D(u)K(u u)D(u) ~ =1p,1,, and clustering information
vanishes (not so obvious but can be shown).

Solution:
» Forgetting finite-dimensional intuition: “recenter” K to kill flattening, i.e., use

1
(K= PEP| P=5- 210,
n
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Theoretical results

Setting
> K =22, ~N(tu,Ip)
> scores [y = (alp, — f(uu)ilkulfl'
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Theoretical results

Setting
> K =22, ~N(tu,Ip)
> scores [y = (alp, — kuu)ilf{ulfl-

Theorem (Asymptotic mean and variance)

As n — oo,
()T
Ji(u) fu —my a8, 0, (fu - mian)T Dgu) (fu - milnu) _ 01_2 as¢
Nui Mg
where, fori = 1,2,
a cucreo||ul®> 6 17"
mi=——s(1— |1+ —————
Cy co 14+9
u 252
5 s2cic?||pl|?6? 1+ %W s2ere; 52
ol =
t T g(140)? — cucod? (1 + ML)Q L—c¢; co(146)2 — cud?
co 1+6

with § defined as

5= 1+cu—co+sign(o¢) (a—a_)(a—ay)
T2 20 ’
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Performance as a function of n,, ny

20 40 60 80 100
cu/cy (blue), ¢;/cy (black)

Figure: Correct classification rate, at optimal «, as a function of (i) n,, for fixed p/n; = 5 (blue)
and (i) n; for fixed p/n. =5 (black); c1 = ¢ = 3; different values for ||1||. Comparison to
optimal Neyman—Pearson performance for known g (in red).
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The spike case or not (1)

Marcenko—Pastur + spike limit
P limiting eigenvalue distribution is Marcenko—Pastur law
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» presence of isolated spike iif

- 1 co
llull® > —— /=
cica \ cu
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The spike case or not (1)

Marcenko—Pastur + spike limit
P limiting eigenvalue distribution is Marcenko—Pastur law

» presence of isolated spike iif

- 1 co
llull® > —— /=
cica \ cu

» determines existence or not of unsupervised spectral clustering solution.
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The spike case or not (1)

Marcenko—Pastur + spike limit
P limiting eigenvalue distribution is Marcenko—Pastur law

» presence of isolated spike iif

- 1 co
llull® > —— /=
cica \ cu

» determines existence or not of unsupervised spectral clustering solution.

T T Y : : ‘
0.6 | - - - Empirical eigenvalues

—— Maréenko—Pastur law

0 0.5 1 15 2 2.5 35

Figure: Eigenvalue distribution of K, versus the (scaled) Margenko—Pastur law with Stieltjes
transform &, for ¢, = 1%, co = 1. The value ||;z]| = 2.5 ensures the presence of a leading isolated
eigenvalue (spike).
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The spike case or not (2)

0.7

I
I
I
+
I
I
0.5 ! |
I
I
|
\\\ :
e I
0.4 Thel — ||p|l = 1.7 (< phase tr.) ||
----||p|]| = 1.8 (> phase tr.)
| | T T
Q4 2.745 2.750 2.755 2.760

Figure: Asymptotic correct classification probability & (?—11) as a function of « for ¢,, =

co = %, c1 = %, two different values of ||;1]|, below and above phase transition.

e
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SSL: the road from supervised to unsupervised

T T T T 0.85 T
0.62
0.8

0.61

0.6

0.75

Figure: Theory (solid) versus practice (dashed; from right to left: n = 400, 1000, 4000): correct
classification probability as a function of « for ¢, = %, co = %, c1 = %, and left: ||u|| = 1.5
(below phase transition); right: ||u|| = 2.5 (above phase transition). Different values of n.
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Experimental evidence: MNIST

Digits (0,8) 2,7) (6,9)

nq, = 100
Centered kernel 89.5+3.6 89.5+3.4 85.3+5.9
Iterated centered kernel 89.5+3.6 89.5+3.4 85.3+5.9
Laplacian 75.51+5.6 74.245.8 70.04+5.5
Iterated Laplacian 87.2+4.7 86.0+5.2 81.4+6.8
Manifold 88.0+4.7 88.4+3.9 82.8+6.5

nq, = 1000
Centered kernel 92.24+0.9 92.540.8 92.6+1.6
Iterated centered kernel  92.3+0.9 92.5+ 0.8 92.9+1.4
Laplacian 65.6+4.1 74.4+4.0 69.5+3.7
Iterated Laplacian 92.24+0.9 92.4+0.9 92.0+1.6
Manifold 91.1+1.7 91.4+1.9 91.4+2.0

Table: Comparison of classification accuracy (%) on MNIST datasets with n; = 10. Computed over

1000 random iterations for n,, = 100 and 100 for n,, = 1000.
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Experimental evidence: Traffic signs (HOG features)

Class ID 2,7) (9,10) (11,18)

Ny = 100
Centered kernel 79.0+10.4 77.5+9.2 78.5+7.1
Iterated centered kernel 85.3+5.9 89.2+5.6 90.1+6.7
Laplacian 73.8+9.8 77.3+£9.5 78.61+7.2
Iterated Laplacian 83.7+7.2 88.0+6.8 87.1+8.8
Manifold 77.6+8.9 81.44+10.4 82.3+10.8

Ny, = 1000
Centered kernel 83.61+2.4 84.61+2.4 88.7+9.4
Iterated centered kernel  84.8+3.8 88.0+5.5 96.4+3.0
Laplacian 72.7+4.2 88.91+5.7 95.84+3.2
Iterated Laplacian 83.0+5.5 88.21+6.0 92.74+6.1
Manifold 77.7+5.8 85.01+9.0 90.6+8.1

Table: Comparison of classification accuracy (%) on German Traffic Sign datasets with n; = 10.

Computed over 1000 random iterations for n,, = 100 and 100 for n, = 1000.
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Outline

Applications

Random Feature Maps, Extreme Learning Machines, and Neural Networks
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Random Feature Maps and Extreme Learning Machines

Context: Random Feature Map

> (large) input x1,...,zp € RP
w]
> random W = |...| € R*XP
B
» non-linear activation function o.

n neurons

0000000

U(W$t)
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Random Feature Maps and Extreme Learning Machines

Context: Random Feature Map

> (large) input x1,...,zp € RP
w]

> random W = |...| € R*XP
wy,

» non-linear activation function o.

Neural Network Model (extreme learning machine): Ridge-regression learning

» small output y1,. ..,y € R?
» ridge-regression output 8§ € R™xd
7. Neurons
O
SN @)
O @)
p O O d
O O
O @,
O 7yT]

U(W$t)
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Random Feature Maps and Extreme Learning Machines

Objectives: evaluate training and testing MSE performance as n,p,T — oo
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Random Feature Maps and Extreme Learning Machines

Objectives: evaluate training and testing MSE performance as n,p,T — oo
> Training MSE:

Etrain = —Zuyz o(Way)||?> = ||Y—5T2||‘f;

with

X= G(WX) = {U(w x])}1<z<n
1<5;<T

1 17 -t
p= 23 (588400 ) Y.
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Random Feature Maps and Extreme Learning Machines

Objectives: evaluate training and testing MSE performance as n,p,T — oo
> Training MSE:

Etrain = —Zuyz o(Way)||?> = ||Y—/3T2||‘f;
with
X= O(WX) = {U(w x])}1<z<n
1<;<T
1 1 -1
=2 (=TS +~I Y.
B T (T + T)
» Testing MSE: upon new pair (X’,Y) of length T,
Etest = l”YAv - BTSHQ .
7 F

where 3 = o(W X).
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Technical Aspects

Preliminary observations:
> Link to resolvent of %ZTE:

FEirain = —trY YQ2 = 772—7trY YQ
train T 9~ T
where Q = Q() is the resolvent

1 -1
= (=TS 441
Q (T + T)

with Eij = a(w;rzj).
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Technical Aspects

Preliminary observations:
> Link to resolvent of %ETE:

’72 T 2 20 1 T
FEirain = ?trY YQ“=—v a?trY YQ

where Q = Q() is the resolvent
171 -1
=(=X'2 I
Q (T + T)

with Eij = a(w;rzj).

Central object: resolvent E[Q)]. ‘

80/113



Main Technical Result

Theorem [Asymptotic Equivalent for E[Q]]

For Lipschitz o, bounded || X |, ||Y]|, W = f(Z) (entry-wise) with Z standard Gaussian,
we have, for all € > 0,

|EIQ] - Q| < Cnez

for some C' > 0, where

~ n ¢ -1

L
@ (T 1157 T)
d=F {O'(XTU))O'(’U)TX)]

with w = f(z2), 2 ~ N(0,Ip), and § > 0 the unique positive solution to

0= %tr Q.
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with w = f(z2), 2 ~ N(0,Ip), and § > 0 the unique positive solution to
1 _
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e
Proof arguments:

» o(WX) has independent rows but dependent columns
> breaks the “trace lemma” argument (i.e., %wTXAXTw ~ %trXAXT)
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Main Technical Result

Theorem [Asymptotic Equivalent for E[Q]]

For Lipschitz o, bounded || X |, ||Y]|, W = f(Z) (entry-wise) with Z standard Gaussian,
we have, for all € > 0,

|EIQ] - Q| < Cnez

for some C' > 0, where

~ n @ -1
= (2 = 1,1
Q (T1+6+7T)

d=F {O'(XTU))O'(’U)TX)]
with w = f(z2), 2 ~ N(0,Ip), and § > 0 the unique positive solution to
1 _
0= —=tr®qQ.
i
Proof arguments:

» o(WX) has independent rows but dependent columns
> breaks the “trace lemma” argument (i.e., %wTXAXTw ~ %trXAXT)

Concentration of measure: P (‘ %O’('UJTX)AO'(XTUI) - %tr @A’ > t) < Ce—enmin(tt?)
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Main Technical Result

> Values of ®(a,b) for w ~ N (0, 1),

o(t) P(a,b)

max(t,0)  5[lal|[b]

S

Z(a,b)acos(—~Z(a,b)) + —Z(a b)2>

It| 2|la| 18] (Z(a, ) asin(Z(a, b)) + \/1 —Z(a,b) )
2., 2a"b
erf(t) g “1( V+2la |\2><1+2an2>>
Lit>o} 5 = %— acos(Z(a, b))
sign(t) 1 — = acos(4(a, b))
cos(t) exp(—%(llaH2 +11b]1?)) cosh(aTb).

T
where Z(a,b) = m.
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Main Technical Result

> Values of ®(a,b) for w ~ N (0, 1),
o(t) P(a,b)
Z(a, b) acos(—Z(a, b)) + /1 = Z(a, b)2>

Z(a,b) asin(Z(a, b)) + /I — Z(a, b)2)

asi 2aTb )
V(+2[lal2) (1+2]b]2)

AN —

max(t,0)  5[lal|[b]

2
It 7 llallll]

erf(t) n
L{i>0) % - % acos(Z(a, b))
sign(t) 1 — = acos(4(a, b))
cos(t) exp(—3 (lal|* + [|b]|?)) cosh(aTb).

where Z(a,b) = m.

> Value of ®(a,b) for w; i.i.d. with E[wF] = my (m1 =0), o(t) = C2t® + &t + Co

®(a,b) = G [m3 (2(a"6)? + llal2[1*) + (ma — 3m3) (a*)T(6?)] + Fmaa”d
+ CaCima [(a2)Tb + aT(bz)] + G2Gomz [|lall® + [1)1*] + ¢3
where (a?) = [a2,.. ., a%}T.
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Main Results

Theorem [Asymptotic Fipain]
For all € > 0,

1 _
n2"°¢ (Etrain - Etrain) —0
almost surely, where
1 2 ~?
Burain = 3 |YT =278 = LeryTYQ?
%tr Q2 _

2
— ’y —
Birain = - trY Y Q L et | @
n

B

with ¥ =

Sz
—
+
e
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Main Results

> Letting X € ]RPXT, vV € RIXT satisfy “similar properties” as (X,Y),

Claim [Asymptotic Eyegt]
For all € > 0,

n%75 (Etest - Etest) —0

almost surely, where

1 N ~ 2

Buost = = ||¥7 - £74|
T F

Brest = = |77 = 9T gy’

test — T XX P
1 TNvVOwo
“trY'YQUQ [1 1 _ _
Jrni_ —trVoo — —<tr(Ip + U, U,

1_%”(\1,6;))2 [T XX 7 (T 'YQ)( XX XXQ)]

with W ap = 2248 @45 = Elo(ATw)o(wT B)).
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Simulations on MNIST: Lipschitz o(-)
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Figure: Neural network performance for Lipschitz continuous o (-), as a function of ~, for 2-class
MNIST data (sevens, nines), n = 512, T = T' = 1024, p = 784.
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Simulations on MNIST: Lipschitz o(-)
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Figure: Neural network performance for Lipschitz continuous o (-), as a function of ~, for 2-class
MNIST data (sevens, nines), n = 512, T'=T = 1024, p = 784.
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Simulations on MNIST: non Lipschitz o(+)
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Figure: Neural network performance for o (-) either discontinuous or non Lipschitz, as a function of
v, for 2-class MNIST data (sevens, nines), n = 512, T'= T = 1024, p = 784.
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Deeper investigation on ®

Statistical Assumptions on X
» Gaussian mixture model
1

1
z; € Cq & i ~ N(—pa, —Ca).
N/

> Growth rate: ||uo]| = O(1), %tng =0(1).
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Deeper investigation on ®

Statistical Assumptions on X
» Gaussian mixture model

1 1
z; € Cq & i ~ N(—pa, —Ca).
NV
> Growth rate: ||uo]| = O(1), %tng =0(1).

Theorem
As p, T — oo, for all o(-) given in next table,

|[PeP - POP| 2% 0
with

_ JT T JT
d=d; (Q+M—> (Q+M—) + doUBUT + dolp
v VP

P
v=[%9)
5= [ttT;erT ﬂ

and do,dy,ds given in next table (¢; = ||w;||? — E[||w;||?] for z; = ﬁua + w;).
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Deeper investigation on ®

Figure: Coefficients d; in ® for different o'(-).

O'(t) do ‘ d1 ‘ d2
t 0 1 0
ReLU(t) (3 - %) T 1 87{%
It] (1-2)r 0 br
LReLU(#) (e + )T 1o =) | (e 452
e 1y L 0
sign(t) <5 w5 0
s2t? + 61t + <o 27'22§2 51 <2
cos(t) 1+ e T e 0 BZT
sin(t) e Lo re T e 7 0
erf(t) 2 (arccos (%) — 2,2%) 4 271+1 0

2 1 1 1
exp(— 5 VI T 0 D3

where

» ReLU(¢) = max(t,0)
» LReLU(t) = ¢4+ max(t, 0) + s— max(—t,0).
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Deeper investigation on ®

Three groups of functions o(-) emerge:
> “means-oriented”: do =0
» ‘“covariance-oriented”: di1 =0
> “balanced”: di,d2 # 0
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Deeper investigation on ®

Three groups of functions o(-) emerge:
> “means-oriented”: do =0
» ‘“covariance-oriented”: di1 =0
> “balanced”: di,d2 # 0

Case of the Leaky—RelLU
» o(t) = ¢+ max(t,0) + ¢— max(—t,0)

Cy Co C3 Cy Cy Co

Cs3 Cy

r=¢-=1

G =¢-=1

¢+ =1,6_=0

Figure: Eigenvectors 1 and 2 of P®P for: N'(u1,C1), N (u1,C2), N(uz2,C1), N(uz2, C2)
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Depper investigation on ®: Simulation results

Table: Clustering accuracies for different o(t) on MNIST dataset (n = 32).

a(t) T=3 T=64 T=128

t 85.31%  88.94%  87.30%

MEAN. 10 86.00%  82.94% 85.56%

ORIENTED sign(t) 81.94%  83.34% 85.22%

) sin(t) 85.31%  87.81%  87.50%

erf(t) 86.50%  87.28% 86.59%

cov [t] 62.81%  60.41% 57.81%

- cos(t) 62.50%  59.56% 57.72%
ORIENTED 2

exp(—%)  64.00%  60.44% 58.67%

BALANCED | (t) 82.87% 85.72% 82.27%
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Depper investigation on ®: Simulation results

Table: Clustering accuracies for different o (t) on epileptic EEG dataset (n = 32).

| a(t) T=3 T=64 T=128

t 71.81%  70.31% 69.58%

MEAN- 1t>0 65.19%  65.87%  63.47%

ORIENTED sign(t) 67.13%  64.63% 63.03%

) sin(t) 71.94%  70.34% 68.22%

erf(t) 69.44%  70.59% 67.70%

cov [t] 99.69%  99.69% 99.50%

- cos(t) 99.00%  99.38% 99.36%
ORIENTED 2

exp(—%) 99.81% 99.81% 99.77%

BALANCED (t) 84.50% 87.91% 90.97%
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Outline

Applications

Community Detection on Graphs
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System Setting

—
Ay -

AN AN
4 Ko l\ Sy, 'Aw—'\%‘- 2
AN DT o oy AL
DR SR Y o

Undirected graph with n nodes, m edges:
P> “intrinsic” average connectivity q1,...,qn ~ p i.i.d.
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System Setting

inter-class C, <> Cp

) nnectivity Cab } class C,
ARSI

< g
"!k""‘"{)ﬁ. ¢ ‘\‘ 7
P, N
T peasd
VAN SP,
Undirected graph with n nodes, m edges:
> “intrinsic” average connectivity qi,...,qn ~ p i.i.d.

» k classes C1, ..., Ci, independent of {g¢;} of (large) sizes nq,..., ng, with
preferential attachment C;, between C, and C

intrinsic node
connectivity ¢;
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System Setting

o_ inter-class C, <> Cp

Vé connectiiity Cap }‘
AN SEZA

"
’ )‘\;S.‘@"‘E" intrinsic node

connectivity ¢;

Undirected graph with n nodes, m edges:
P> “intrinsic” average connectivity q1,...,qn ~ p i.i.d.

> k classes Cy, ..., Ci, independent of {g¢;} of (large) sizes nq
preferential attachment C;, between C, and C
> edge probability for nodes i € Cy,:

P(i~j)=4iqjCq,q,-
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System Setting

inter-class C, <> Cp

'/‘% connectivity Cap

AR AN
'%z'f,g\me,v SN,

ST AR \“",;,r
‘ dA
RN PA

S

intrinsic node
connectivity ¢;

Undirected graph with n nodes, m edges:
P> ‘“intrinsic” average connectivity q1, ..., Qn ~ [ iid.
» k classes C1,...,Ck independent of {g;} of (large) sizes n1,...,
preferential attachment C,; between C, and C
> edge probability for nodes i € Cy,:
P(i~j)=4iq;Cg,g,-

» adjacency matrix A with

Aj;; ~ Bernoulli(g;q; C!Ji!lj)
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Limitations of Classical Methods

> 3 classes with p bi-modal (u = %60,1 + i50_5)
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Limitations of Classical Methods

> 3 classes with p bi-modal (u = %60,1 + i50‘5)

(Modularity A —

dd’
2m

)

(Bethe Hessian D —rA)
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Proposed Regularized Modularity Approach

Recall: P(i ~ j) = ¢iq;Cg, ;-
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Proposed Regularized Modularity Approach

Recall: P(i ~ j) = 4i9;Cg,g; -

Dense Regime Assumptions: Non trivial regime when, Va, b, as n — oo,

Mp
Cop =14+ =2 M, =0(1).
b +\/ﬁ b 1)
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Proposed Regularized Modularity Approach

Recall: P(i ~ j) = 4i9;Cg,g; -

Dense Regime Assumptions: Non trivial regime when, Va, b, as n — oo,

Mp
Cop =14+ =2 M, =0(1).
b +\/ﬁ b 1)

Community information is weak but highly redundant

Considered Matrix:

T
Lo = (2m)®——Do [A - ﬂ} D=,
vn 2m
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Asymptotic Equivalence

Theorem (Limiting Random Matrix Equivalent)
Asn — oo, ||La — EaH 2% 0, where

1 dd"
Lo =(2m)*—D “|A— —| D@
vn 2m
- 1

Lo
Vvn

with Dq = diag({q;}), X zero-mean random matrix with variance profile,

D;“XD;* +UAUT

U= [D},*aﬁ D;“Xln] , rank k+1

A= [k = 1ee) M (I — 1) =1y
17 0

and J = [j1,..., k), ja =[0,...,0,1F 0,...,0]T € R™.

ying
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Asymptotic Equivalence

Theorem (Limiting Random Matrix Equivalent)
Asn — oo, ||La — EaH 2% 0, where

1 dd’
a=(2m)*—D~ —— | D~
L « D@ |A D™ ¢

vn 2m

~ 1
Lo =—
e \/ﬁ

with Dq = diag({q;}), X zero-mean random matrix with variance profile,

D;“XD;* +UAUT

U= [D},*aﬁ D;“Xln] , rank k+1

A= [k = 1ee) M (I — 1) =1y
17 0

and J = [j1,..., k), ja =[0,...,0,1F 0,...,0]T € R™.

ying

Consequences:
> isolated eigenvalues beyond phase transition < A(M) > “spectrum edge”

Optimal choice aopt of a from study of limiting spectrum.
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Asymptotic Equivalence

Theorem (Limiting Random Matrix Equivalent)
Asn — oo, ||La — EaH 2% 0, where

1 dd"
Lo = (2m)*—=D" |A - D~
vn 2m
" 1
Lo = ﬁDQ_"XDq_“ +UAUT

with Dq = diag({q;}), X zero-mean random matrix with variance profile,

U= [D},*aﬁ D;“Xln] , rank k+1

A= [k = 1ee) M (I — 1) =1y
17 0
and J = [j1,- -4k}, da = [0,...,0,1% ,0,...,0]T € R™.

ying

Consequences:
> isolated eigenvalues beyond phase transition < A(M) > “spectrum edge”

Optimal choice aopt of a from study of limiting spectrum.

> eigenvectors correlated to D;fc‘J

’ Necessary regularization by D1, ‘
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Eigenvalue Spectrum

I I I
I Eicenvalues of Ly (n = 2000)

Limiting law

spikes

—Ss« s

3 —1 —1
Figure: 3 classes, ¢c1 = c2 =0.3,¢c3 =04, p = %50,4 + %50_9, M=4]|-1 3 —1
-1 -1 3
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Phase Transition
Theorem (Phase Transition)
Isolated eigenvalue \;(La) if [N;(M)| > 7%, M = (D(c) — ccT)M, where
= lim ————, phase transition threshold
elsy  g%(z)

with [S*, S¢] limiting eigenvalue support of Lo and g®(z) (|z| > S¢ ) solution of

12«

r®= | s e
2—2a

97 = / —z = ql‘Mf(i (z) + qQ‘QC‘ga(w)u(dq)'

In this case, \i(La) &5 (¢%) 1 (=1/Xi(M)).
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Phase Transition
Theorem (Phase Transition)
Isolated eigenvalue \;(La) if [N;(M)| > 7%, M = (D(c) — ccT)M, where
= lim ————, phase transition threshold
elsy  g%(z)

with [S*, S¢] limiting eigenvalue support of Lo and g®(z) (|z| > S¢ ) solution of

12«

[ () = / — ql_QafZ(x) +q2_2aga(x)u(dq)
2—2a

97 = / —z = ql‘mfti (z) + qQ‘QC‘ga(w)u(dq)'

In this case, \i(La) &5 (¢%) 1 (=1/Xi(M)).

Clustering possible when \; (M) > (ming 7o ):

> “Optimal” aopt = argming {7a}.

A d; a.s, ~ =1 R .
» From §; = i == qi, p~ =300 8, and thus:

Consistent estimator Gopt of aopt.
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Simulated Performance Results (2 masses of ¢;)

¥
-
#

(Modularity A — 44

(Bethe Hessian D — rA)
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Simulated Performance Results (2 masses of ¢;)

B xﬁ‘ %, &
4 | 5

(Modularity A — % (Bethe Hessian D — rA)
T T

X

(Proposed, oo = 1)

Figure: 3 classes, u = %60_1 + itso.s, c1 =co = i, c3 = %, M = 1001I3.
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Simulated Performance Results (2 masses of ¢;)

(Modularity A — % (Bethe Hessian D —rA)
T T - T T

|
X

X x
" | X h
x X X %X x;g
KR 0 X
X xx X A %

I+€ﬁé&ﬁ +. t

+ Ii + | %& g |
! i ! L \i ! |
(Proposed, oo = 1) (Proposed, éopt)

Figure: 3 classes, u = %50_1 + iéo_s, cp =co = i, c3 = %, M = 10013.
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Simulated Performance Results (2 masses for ¢;)

0.8 |-

0.6 |-

Overlap

0.4 -

a=1
Phase transition

I
40

50

Figure: Overlap performance for n = 3000, K = 3, ¢; = % n=
g1y = 0.1 and g2y = 0.5, M = Alj, for A € [5,50]. Here aopt = 0.07.

— 3 H
254(1) + %54(2) with
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Simulated Performance Results (2 masses for ¢;)

1 T T T T __-—4
0.8 |-
0.6 |-
a
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>
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Phase transition
T

40 50

Figure: Overlap performance for n = 3000, K = 3, ¢; = % n= %5(1(1) + %54(2) with
g1y = 0.1 and g2y = 0.5, M = Alj, for A € [5,50]. Here aopt = 0.07.
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Simulated Performance Results (2 masses for ¢;)

0.8 |-

Overlap
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Phase transition
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Figure: Overlap performance for n = 3000, K =3, ¢; = %, p = %6(1(1) + %5(1(2) with
g1y = 0.1 and g2y = 0.5, M = Alj, for A € [5,50]. Here aopt = 0.07.
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Simulated Performance Results (2 masses for ¢;)

1
0.8 |-
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o
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Q  Phase transition
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Figure: Overlap performance for n = 3000, K =3, ¢; = %, p = Zéq(l) + %5(1(2) with

g1y = 0.1 and g2y = 0.5, M = Alj, for A € [5,50]. Here aopt = 0.07.
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Simulated Performance Results (2 masses for ¢;)

1 T
a =0
———-a=20.5
............ a=1
0.8*_a:aopt |
— — - Bethe Hessian = -7

Overlap

: s
0.6 0.8

q2 (¢1 = 0.1)

Figure: Overlap performance for n = 3000, K = 3, u = %5q(1) + %6q(2) with g(1) = 0.1 and

42y €[0.1,0.9], M = 10(2I3 — 131}), ¢; = L.
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Real Graph Example: PolBlogs (n = 1490, two classes)

Lo Ly

1 —100 0 100
(Amax ~ 1.75) (Amax ~ 483)

Algorithms ‘ Overlap  Modularity

Qopt (~0) | 0.897 0.4246
a=05 0.035 ~0
a=1 0.040 ~0

BH 0.304 0.2723
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Outline

Basics of Random Matrix Theory
Motivation: Large Sample Covariance Matrices
Spiked Models

Applications
Reminder on Spectral Clustering Methods
Kernel Spectral Clustering
Kernel Spectral Clustering: The case /(1) =0
Kernel Spectral Clustering: The case f/(7) = %
Semi-supervised Learning
Semi-supervised Learning improved
Random Feature Maps, Extreme Learning Machines, and Neural Networks
Community Detection on Graphs

Perspectives
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Summary of Results and Perspectives |

Random Neural Networks.
v Extreme learning machines (one-layer random NN)
v Linear echo-state networks (ESN)
% Logistic regression and classification error in extreme learning machines (ELM)
% Further random feature maps characterization
% Generalized random NN (multiple layers, multiple activations)
% Random convolutional networks for image processing
Q@ Non-linear ESN

Deep Neural Networks (DNN).
% Backpropagation in NN (o(WX) for random X, backprop. on W)

Q Statistical physics-inspired approaches (spin-glass models, Hamiltonian-based
models)

Q Non-linear ESN

DNN performance of physics-realistic models (4th-order Hamiltonian, locality) ‘
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Summary of Results and Perspectives |l

References.

e & WD

H. W. Lin, M. Tegmark, “Why does deep and cheap learning work so well?”,
arXiv:1608.08225v2, 2016.

C. Williams, “Computation with infinite neural networks”, Neural Computation, 10(5),
1203-1216, 1998.

Herbert Jaeger. Short term memory in echo state networks. GMD-Forschungszentrum
Informationstechnik, 2001.

Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew, “Extreme learning machine : theory
and applications”, Neurocomputing, 70(1) :489501, 2006.

N. El Karoui, “Concentration of measure and spectra of random matrices: applications to
correlation matrices, elliptical distributions and beyond”, The Annals of Applied Probability,
19(6), 2362-2405, 2009.

C. Louart, Z. Liao, R. Couillet, "A Random Matrix Approach to Neural Networks”, (submitted
to) Annals of Applied Probability, 2017.

R. Couillet, G. Wainrib, H. Sevi, H. Tiomoko Ali, “The asymptotic performance of linear echo

state neural networks”, Journal of Machine Learning Research, vol. 17, no. 178, pp. 1-35, 2016.

Choromanska, Anna, et al. " The Loss Surfaces of Multilayer Networks.” AISTATS. 2015.

Rahimi, Ali, and Benjamin Recht. "Random Features for Large-Scale Kernel Machines.” NIPS.

Vol. 3. No. 4. 2007.

105 /113



Summary of Results and Perspectives |

Kernel methods.
v/ Spectral clustering
v Subspace spectral clustering (f/(7) = 0)
% Spectral clustering with outer product kernel f(zTy)
v/ Semi-supervised learning, kernel approaches.
v Least square support vector machines (LS-SVM).
% Support vector machines (SVM).

Q@ Kernel matrices based on Kendall 7, Spearman p.

Applications.
v Massive MIMO user subspace clustering (patent proposed)
Q@ Kernel correlation matrices for biostats, heterogeneous datasets.
Q Kernel PCA.
Q@ Kendall 7 in biostats.

References.

N. El Karoui, “The spectrum of kernel random matrices”, The Annals of Statistics, 38(1),
1-50, 2010.
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Summary of Results and Perspectives |l
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Electronic Journal of Statistics, vol. 10, no. 1, pp. 1393-1454, 2016.

@ R. Couillet, A. Kammoun, “Random Matrix Improved Subspace Clustering”, Asilomar
Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 2016.

@ Z. Liao, R. Couillet, " A Large Dimensional Analysis of Least Squares Support Vector
Machines”, (submitted to) Journal of Machine Learning Research, 2017.

@ X. Mai, R. Couillet, “The counterintuitive mechanism of graph-based semi-supervised learning

in the big data regime”, IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP'17), New Orleans, USA, 2017.

107 /113



Summary of Results and Perspectives |

Community detection.
v/ Heterogeneous dense network clustering.
% Semi-supervised clustering.
@ Sparse network extensions.
@ Beyond community detection (hub detection).

Applications.
v Improved methods for community detection.

2 Applications to distributed optimization (network diffusion, graph signal
processing).

References.
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redemption in clustering sparse networks. Proceedings of the National Academy of Sciences”,
110(52), 20935-20940, 2013.
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C. Bordenave, M. Lelarge, L. Massoulié, “Non-backtracking spectrum of random graphs:

community detection and non-regular Ramanujan graphs”, Foundations of Computer Science
(FOCS), 2015 IEEE 56th Annual Symposium on, pp. 1347-1357, 2015

=

A. Saade, F. Krzakala, L. Zdeborova, “Spectral clustering of graphs with the Bethe Hessian",
In Advances in Neural Information Processing Systems, pp. 406-414, 2014.
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Summary of Results and Perspectives |

Robust statistics.
v/ Tyler, Maronna (and regularized) estimators
v/ Elliptical data setting, deterministic outlier setting
v/ Central limit theorem extensions
Q Joint mean and covariance robust estimation

Q Robust regression (preliminary works exist already using strikingly different
approaches)

Applications.
v Statistical finance (portfolio estimation)
v Localisation in array processing (robust GMUSIC)
v/ Detectors in space time array processing

Q@ Correlation matrices in biostatistics, human science datasets, etc.
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Other works and ideas.
v/ Spike random matrix sparse PCA
% Non-linear shrinkage methods
2. Sparse kernel PCA
% Random signal processing on graph methods.

% Random matrix analysis of diffusion networks performance.

Applications.
v/ Spike factor models in portfolio optimization

% Non-linear shrinkage in portfolio optimization, biostats
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