Random Matrices in Machine Learning

Romain COUILLET

CentraleSupélec, University of Paris Saclay, France
GSTATS IDEX DataScience Chair, GIPSA-lab, University Grenoble–Alpes, France.

June 21, 2018
Basics of Random Matrix Theory
 Motivation: Large Sample Covariance Matrices
 Spiked Models

Applications
 Reminder on Spectral Clustering Methods
 Kernel Spectral Clustering
 Kernel Spectral Clustering: The case \(f'(\tau) = 0 \)
 Kernel Spectral Clustering: The case \(f'(\tau) = \frac{\alpha}{\sqrt{p}} \)
 Semi-supervised Learning
 Semi-supervised Learning improved
 Random Feature Maps, Extreme Learning Machines, and Neural Networks
 Community Detection on Graphs

Perspectives
Outline

Basics of Random Matrix Theory
- Motivation: Large Sample Covariance Matrices
- Spiked Models

Applications
- Reminder on Spectral Clustering Methods
- Kernel Spectral Clustering
- Kernel Spectral Clustering: The case $f'(\tau) = 0$
- Kernel Spectral Clustering: The case $f'(\tau) = \frac{\alpha}{\sqrt{p}}$
- Semi-supervised Learning
- Semi-supervised Learning improved
- Random Feature Maps, Extreme Learning Machines, and Neural Networks
- Community Detection on Graphs

Perspectives
Outline

Basics of Random Matrix Theory
 Motivation: Large Sample Covariance Matrices
 Spiked Models

Applications
 Reminder on Spectral Clustering Methods
 Kernel Spectral Clustering
 Kernel Spectral Clustering: The case $f'(\tau) = 0$
 Kernel Spectral Clustering: The case $f'(\tau) = \frac{\alpha}{\sqrt{p}}$
 Semi-supervised Learning
 Semi-supervised Learning improved
 Random Feature Maps, Extreme Learning Machines, and Neural Networks
 Community Detection on Graphs

Perspectives
Baseline scenario: $y_1, \ldots, y_n \in \mathbb{C}^p$ (or \mathbb{R}^p) i.i.d. with $E[y_1] = 0$, $E[y_1 y_1^*] = C_p$:
Context

Baseline scenario: $y_1, \ldots, y_n \in \mathbb{C}^p$ (or \mathbb{R}^p) i.i.d. with $E[y_1] = 0$, $E[y_1 y_1^*] = C_p$:

- If $y_1 \sim \mathcal{N}(0, C_p)$, ML estimator for C_p is the sample covariance matrix (SCM)

$$
\hat{C}_p = \frac{1}{n} Y_p Y_p^* = \frac{1}{n} \sum_{i=1}^{n} y_i y_i^*
$$

($Y_p = [y_1, \ldots, y_n] \in \mathbb{C}^{p \times n}$).
Baseline scenario: \(y_1, \ldots, y_n \in \mathbb{C}^p \) (or \(\mathbb{R}^p \)) i.i.d. with \(E[y_1] = 0, E[y_1 y_1^*] = C_p \):

- If \(y_1 \sim \mathcal{N}(0, C_p) \), ML estimator for \(C_p \) is the sample covariance matrix (SCM)
 \[
 \hat{C}_p = \frac{1}{n} Y_p Y_p^* = \frac{1}{n} \sum_{i=1}^{n} y_i y_i^*
 \]
 \((Y_p = [y_1, \ldots, y_n] \in \mathbb{C}^{p \times n})\).

- If \(n \to \infty \), then, strong law of large numbers
 \[
 \hat{C}_p \xrightarrow{a.s.} C_p.
 \]

 or equivalently, in spectral norm
 \[
 \| \hat{C}_p - C_p \| \xrightarrow{a.s.} 0.
 \]
Context

Baseline scenario: $y_1, \ldots, y_n \in \mathbb{C}^p$ (or \mathbb{R}^p) i.i.d. with $E[y_1] = 0$, $E[y_1y_1^*] = C_p$:

- If $y_1 \sim \mathcal{N}(0, C_p)$, ML estimator for C_p is the sample covariance matrix (SCM)

$$
\hat{C}_p = \frac{1}{n} Y_p Y_p^* = \frac{1}{n} \sum_{i=1}^{n} y_i y_i^*
$$

($Y_p = [y_1, \ldots, y_n] \in \mathbb{C}^{p \times n}$).

- If $n \to \infty$, then, strong law of large numbers

$$
\hat{C}_p \overset{a.s.}{\to} C_p.
$$

or equivalently, in spectral norm

$$
\left\| \hat{C}_p - C_p \right\| \overset{a.s.}{\to} 0.
$$

Random Matrix Regime

- No longer valid if $p, n \to \infty$ with $p/n \to c \in (0, \infty)$,

$$
\left\| \hat{C}_p - C_p \right\| \not\to 0.
$$
Context

Baseline scenario: \(y_1, \ldots, y_n \in \mathbb{C}^p \) (or \(\mathbb{R}^p \)) i.i.d. with \(E[y_1] = 0, E[y_1 y_1^*] = C_p \):

- If \(y_1 \sim \mathcal{N}(0, C_p) \), ML estimator for \(C_p \) is the sample covariance matrix (SCM)

\[
\hat{C}_p = \frac{1}{n} Y_p Y_p^* = \frac{1}{n} \sum_{i=1}^{n} y_i y_i^*
\]

\((Y_p = [y_1, \ldots, y_n] \in \mathbb{C}^{p \times n})\).

- If \(n \to \infty \), then, strong law of large numbers

\[
\hat{C}_p \xrightarrow{a.s.} C_p.
\]

or equivalently, in spectral norm

\[
\|\hat{C}_p - C_p\| \xrightarrow{a.s.} 0.
\]

Random Matrix Regime

- No longer valid if \(p, n \to \infty \) with \(p/n \to c \in (0, \infty) \),

\[
\|\hat{C}_p - C_p\| \not\to 0.
\]

- For practical \(p, n \) with \(p \sim n \), leads to dramatically wrong conclusions
The Marčenko–Pastur law

Figure: Histogram of the eigenvalues of \hat{C}_p for $p = 500$, $n = 2000$, $C_p = I_p$.
The Marčenko–Pastur law

Definition (Empirical Spectral Density)
Empirical spectral density (e.s.d.) μ_p of Hermitian matrix $A_p \in \mathbb{C}^{p \times p}$ is

$$\mu_p = \frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_i(A_p)}.$$
The Marčenko–Pastur law

Definition (Empirical Spectral Density)
Empirical spectral density (e.s.d.) μ_p of Hermitian matrix $A_p \in \mathbb{C}^{p \times p}$ is

$$
\mu_p = \frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_i(A_p)}.
$$

Theorem (Marčenko–Pastur Law [Marčenko,Pastur’67])
$X_p \in \mathbb{C}^{p \times n}$ with i.i.d. zero mean, unit variance entries.
As $p, n \to \infty$ with $p/n \to c \in (0, \infty)$, e.s.d. μ_p of $\frac{1}{n} X_p X_p^*$ satisfies

$$
\mu_p \xrightarrow{a.s.} \mu_c
$$

weakly, where

$\mu_c(\{0\}) = \max\{0, 1 - c^{-1}\}$
Definition (Empirical Spectral Density)

Empirical spectral density (e.s.d.) μ_p of Hermitian matrix $A_p \in \mathbb{C}^{p \times p}$ is

$$\mu_p = \frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_i(A_p)}.$$

Theorem (Marčenko–Pastur Law [Marčenko, Pastur’67])

$X_p \in \mathbb{C}^{p \times n}$ with i.i.d. zero mean, unit variance entries. As $p, n \to \infty$ with $p/n \to c \in (0, \infty)$, e.s.d. μ_p of $\frac{1}{n} X_p X_p^*$ satisfies

$$\mu_p \xrightarrow{a.s.} \mu_c$$

weakly, where

- $\mu_c(\{0\}) = \max\{0, 1 - c^{-1}\}$
- on $(0, \infty)$, μ_c has continuous density f_c supported on $[(1 - \sqrt{c})^2, (1 + \sqrt{c})^2]$

$$f_c(x) = \frac{1}{2\pi cx} \sqrt{(x - (1 - \sqrt{c})^2)((1 + \sqrt{c})^2 - x)}.$$
The Marčenko–Pastur law

Figure: Marčenko–Pastur law for different limit ratios $c = \lim_{p \to \infty} p/n$.
The Marčenko–Pastur law

Figure: Marčenko–Pastur law for different limit ratios $c = \lim_{p \to \infty} p/n$.
The Marčenko–Pastur law

Figure: Marčenko-Pastur law for different limit ratios $c = \lim_{p \to \infty} p/n$.
Outline

Basics of Random Matrix Theory
- Motivation: Large Sample Covariance Matrices
- Spiked Models

Applications
- Reminder on Spectral Clustering Methods
- Kernel Spectral Clustering
- Kernel Spectral Clustering: The case $f'(\tau) = 0$
- Kernel Spectral Clustering: The case $f'(\tau) = \frac{\alpha}{\sqrt{p}}$
- Semi-supervised Learning
- Semi-supervised Learning improved
- Random Feature Maps, Extreme Learning Machines, and Neural Networks
- Community Detection on Graphs

Perspectives
Spiked Models

Small rank perturbation: $C_p = I_p + P$, P of low rank.

Figure: Eigenvalues of $\frac{1}{n} Y_p Y_p^*$, $C_p = \text{diag}(1, \ldots, 1, 2, 2, 3, 3)$, $p = 500$, $n = 1500$.
Spiked Models

Theorem (Eigenvalues [Baik, Silverstein’06])

Let $Y_p = C_p^{\frac{1}{2}} X_p$, with

- X_p with i.i.d. zero mean, unit variance, $E[|X_p|_{ij}^4] < \infty$.
- $C_p = I_p + P$, $P = U\Omega U^*$, where, for K fixed,

$$\Omega = \text{diag} (\omega_1, \ldots, \omega_K) \in \mathbb{R}^{K \times K}, \text{ with } \omega_1 \geq \ldots \geq \omega_K > 0.$$
Theorem (Eigenvalues [Baik,Silverstein’06])

Let $Y_p = C_p^{\frac{1}{2}} X_p$, with

- X_p with i.i.d. zero mean, unit variance, $E[|X_p|_i^4] < \infty$.
- $C_p = I_p + P$, $P = U\Omega U^*$, where, for K fixed,

$$
\Omega = \text{diag} (\omega_1, \ldots, \omega_K) \in \mathbb{R}^{K \times K}, \text{ with } \omega_1 \geq \ldots \geq \omega_K > 0.
$$

Then, as $p, n \to \infty$, $p/n \to c \in (0, \infty)$, denoting $\lambda_m = \lambda_m(\frac{1}{n}Y_pY_p^*)$ ($\lambda_m > \lambda_{m+1}$),

$$
\lambda_m \overset{\text{a.s.}}{\to} \begin{cases}
1 + \omega_m + c \frac{1 + \omega_m}{\omega_m} > (1 + \sqrt{c})^2 & \text{, } \omega_m > \sqrt{c} \\
(1 + \sqrt{c})^2 & \text{, } \omega_m \in (0, \sqrt{c}].
\end{cases}
$$
Theorem (Eigenvectors [Paul’07])

Let $Y_p = C_p^{1/2} X_p$, with

- X_p with i.i.d. zero mean, unit variance, $E[|X_p|_{i,j}^4] < \infty$.
- $C_p = I_p + P$, $P = U\Omega U^* = \sum_{i=1}^{K} \omega_i u_i u_i^*$, $\omega_1 > \ldots > \omega_M > 0$.
Theorem (Eigenvectors [Paul’07])

Let $Y_p = C_p^{\frac{1}{2}} X_p$, with

- X_p with i.i.d. zero mean, unit variance, $E[|X_p|_4^4] < \infty$.

- $C_p = I_p + P$, $P = U\Omega U^* = \sum_{i=1}^K \omega_i u_i u_i^*$, $\omega_1 > \ldots > \omega_M > 0$.

Then, as $p, n \to \infty$, $p/n \to c \in (0, \infty)$, for $a, b \in \mathbb{C}^p$ deterministic and \hat{u}_i eigenvector of $\lambda_i(\frac{1}{n} Y_p Y_p^*)$,

$$a^* \hat{u}_i \hat{u}_i^* b - \frac{1 - c \omega_i^{-2}}{1 + c \omega_i^{-1}} a^* u_i u_i^* b \cdot 1_{\omega_i > \sqrt{c}} \xrightarrow{a.s.} 0$$

In particular,

$$|\hat{u}_i^* u_i|^2 \xrightarrow{a.s.} \frac{1 - c \omega_i^{-2}}{1 + c \omega_i^{-1}} \cdot 1_{\omega_i > \sqrt{c}}.$$
Spiked Models

Figure: Simulated versus limiting $|\hat{u}_1^*u_1|^2$ for $Y_p = C_p^{\frac{1}{2}}X_p$, $C_p = I_p + \omega_1u_1u_1^*$, $p/n = 1/3$, varying ω_1.
Other Spiked Models

Similar results for multiple matrix models:

\[Y_p = \frac{1}{n} (I + P)^{\frac{1}{2}} X_p X_p^* (I + P)^{\frac{1}{2}} \]
\[Y_p = \frac{1}{n} X_p X_p^* + P \]
\[Y_p = \frac{1}{n} X_p^* (I + P) X \]
\[Y_p = \frac{1}{n} (X_p + P)^* (X_p + P) \]
\[\text{etc.} \]
Outline

Basics of Random Matrix Theory
 Motivation: Large Sample Covariance Matrices
 Spiked Models

Applications
 Reminder on Spectral Clustering Methods
 Kernel Spectral Clustering
 Kernel Spectral Clustering: The case $f'(\tau) = 0$
 Kernel Spectral Clustering: The case $f'(\tau) = \frac{\alpha}{\sqrt{p}}$
 Semi-supervised Learning
 Semi-supervised Learning improved
 Random Feature Maps, Extreme Learning Machines, and Neural Networks
 Community Detection on Graphs

Perspectives
Outline

Basics of Random Matrix Theory
 Motivation: Large Sample Covariance Matrices
 Spiked Models

Applications
 Reminder on Spectral Clustering Methods
 Kernel Spectral Clustering
 Kernel Spectral Clustering: The case $f'(\tau) = 0$
 Kernel Spectral Clustering: The case $f'(\tau) = \frac{\alpha}{\sqrt{p}}$
 Semi-supervised Learning
 Semi-supervised Learning improved
 Random Feature Maps, Extreme Learning Machines, and Neural Networks
 Community Detection on Graphs

Perspectives
Reminder on Spectral Clustering Methods

Context: Two-step classification of n objects based on similarity $A \in \mathbb{R}^{n \times n}$.
Reminder on Spectral Clustering Methods

Context: Two-step classification of n objects based on similarity $A \in \mathbb{R}^{n \times n}$.

\[\Downarrow \text{Eigenvectors} \Downarrow \]

(in practice, shuffled)
Reminder on Spectral Clustering Methods

1. Eigenvector 1
2. Eigenvector 2
Reminder on Spectral Clustering Methods

\[\text{Eigenv. 1} \quad \text{Eigenv. 2} \]

\[\Downarrow \ell \text{-dimensional representation} \Downarrow \]

(shuffling no longer matters)

\[\quad \text{Eigenvector 1} \quad \text{Eigenvector 2} \]
Reminder on Spectral Clustering Methods

\[\text{Eigenv. 1} \quad \text{Eigenv. 2} \]

\[\Downarrow \ell \text{-dimensional representation} \Downarrow \]

(shuffling no longer matters)

\[\text{Eigenvector 1} \quad \text{Eigenvector 2} \]

\[\Downarrow \quad \text{EM or k-means clustering.} \]
Outline

Basics of Random Matrix Theory
 Motivation: Large Sample Covariance Matrices
 Spiked Models

Applications
 Reminder on Spectral Clustering Methods
 Kernel Spectral Clustering
 Kernel Spectral Clustering: The case $f'(\tau) = 0$
 Kernel Spectral Clustering: The case $f'(\tau) = \frac{\alpha}{\sqrt{p}}$
 Semi-supervised Learning
 Semi-supervised Learning improved
 Random Feature Maps, Extreme Learning Machines, and Neural Networks
 Community Detection on Graphs

Perspectives
Kernel Spectral Clustering

Problem Statement

- Dataset $x_1, \ldots, x_n \in \mathbb{R}^p$
- Objective: “cluster” data in k similarity classes C_1, \ldots, C_k.

Kernel spectral clustering based on kernel matrix $K = \{\kappa(x_i, x_j)\}_{i,j=1}^n$.

- Usually, $\kappa(x, y) = f(x^T y)$ or $\kappa(x, y) = f(\|x - y\|_2)$.

- Refinements:
 - instead of K, use $D^{-1/2}KD^{-1/2}$, $I_n - D^{-1}$, $I_n - D^{-1}K$, etc.
 - several steps algorithms: Ng–Jordan–Weiss, Shi–Malik, etc.

Intuition (from small dimensions)

- K essentially low rank with class structure in eigenvectors.
- Ng–Weiss–Jordan key remark:
 $D^{-1/2}K D^{-1/2} (D^{-1})^a \approx D^{-1/2} (D^{-1})^a$ (canonical vector of C_a).
Kernel Spectral Clustering

Problem Statement

- Dataset \(x_1, \ldots, x_n \in \mathbb{R}^p \)
- Objective: “cluster” data in \(k \) similarity classes \(C_1, \ldots, C_k \).

Kernel spectral clustering based on kernel matrix

\[
K = \{\kappa(x_i, x_j)\}_{i,j=1}^n
\]
Kernel Spectral Clustering

Problem Statement

- Dataset $x_1, \ldots, x_n \in \mathbb{R}^p$
- Objective: “cluster” data in k similarity classes C_1, \ldots, C_k.

- Kernel spectral clustering based on kernel matrix

\[
K = \{\kappa(x_i, x_j)\}_{i,j=1}^{n}
\]

- Usually, $\kappa(x, y) = f(x^T y)$ or $\kappa(x, y) = f(||x - y||^2)$

Refinements:

- instead of K, use $D^{-1/2}K D^{-1/2}$, $I_n - D^{-1}K D^{-1}$, etc.
- several steps algorithms: Ng–Jordan–Weiss, Shi–Malik, etc.

Intuition (from small dimensions)

- K essentially low rank with class structure in eigenvectors.
- Ng–Weiss–Jordan key remark:

\[
D^{-1/2}K D^{-1/2}(D_j a) \approx D_j a (j a \text{ canonical vector of } C_a)
\]
Kernel Spectral Clustering

Problem Statement

▶ Dataset $x_1, \ldots, x_n \in \mathbb{R}^p$

▶ Objective: “cluster” data in k similarity classes C_1, \ldots, C_k.

▶ Kernel spectral clustering based on kernel matrix

$$K = \{\kappa(x_i, x_j)\}_{i,j=1}^n$$

▶ Usually, $\kappa(x, y) = f(x^T y)$ or $\kappa(x, y) = f(\|x - y\|^2)$

▶ Refinements:
 ▶ instead of K, use $D - K$, $I_n - D^{-1} K$, $I_n - D^{-\frac{1}{2}} K D^{-\frac{1}{2}}$, etc.
 ▶ several steps algorithms: Ng–Jordan–Weiss, Shi–Malik, etc.
Problem Statement

- Dataset $x_1, \ldots, x_n \in \mathbb{R}^p$
- Objective: "cluster" data in k similarity classes C_1, \ldots, C_k.

- **Kernel spectral clustering** based on kernel matrix

\[
K = \{\kappa(x_i, x_j)\}_{i,j=1}^n
\]

- Usually, $\kappa(x, y) = f(x^T y)$ or $\kappa(x, y) = f(\|x - y\|^2)$
- Refinements:
 - instead of K, use $D - K$, $I_n - D^{-1}K$, $I_n - D^{-\frac{1}{2}}KD^{-\frac{1}{2}}$, etc.
 - several steps algorithms: Ng–Jordan–Weiss, Shi–Malik, etc.

Intuition (from small dimensions)

- K essentially low rank with class structure in eigenvectors.
Kernel Spectral Clustering

Problem Statement

- Dataset $x_1, \ldots, x_n \in \mathbb{R}^p$
- Objective: “cluster” data in k similarity classes C_1, \ldots, C_k.

- Kernel spectral clustering based on kernel matrix

$$K = \{\kappa(x_i, x_j)\}_{i,j=1}^n$$

- Usually, $\kappa(x, y) = f(x^T y)$ or $\kappa(x, y) = f(\|x - y\|^2)$
- Refinements:
 - instead of K, use $D - K$, $I_n - D^{-1} K$, $I_n - D^{-\frac{1}{2}} K D^{-\frac{1}{2}}$, etc.
 - several steps algorithms: Ng–Jordan–Weiss, Shi–Malik, etc.

Intuition (from small dimensions)

$$K = \begin{pmatrix}
\kappa(x_i, x_j) & \kappa(x_i, x_j) & \kappa(x_i, x_j) \\
\gg 1 & \ll 1 & \ll 1 \\
\kappa(x_i, x_j) & \kappa(x_i, x_j) & \kappa(x_i, x_j) \\
\ll 1 & \gg 1 & \ll 1 \\
\kappa(x_i, x_j) & \kappa(x_i, x_j) & \kappa(x_i, x_j) \\
\ll 1 & \ll 1 & \gg 1 \\
\end{pmatrix}$$

- K essentially low rank with class structure in eigenvectors.
- Ng–Weiss–Jordan key remark: $D^{-\frac{1}{2}} K D^{-\frac{1}{2}} (D^{\frac{1}{2}} j_a) \simeq D^{\frac{1}{2}} j_a$ (j_a canonical vector of C_a)
Figure: Leading four eigenvectors of $D^{-1/2} K D^{-1/2}$ for MNIST data, RBF kernel ($f(t) = \exp(-t^2/2)$).

▶ Important Remark: Eigenvectors informative but far from $D^{1/2}$.

-0.06
-0.07
-0.08
Kernel Spectral Clustering

Figure: Leading four eigenvectors of $D^{-1/2}K D^{-1/2}$ for MNIST data, RBF kernel ($f(t) = \exp(-t^2/2)$).

- Important Remark: eigenvectors informative but far from $D^{1/2}$.

0
1
2
Important Remark: eigenvectors informative but far from $D^{1/2}j^a$!
Kernel Spectral Clustering

Figure: Leading four eigenvectors of $D^{-\frac{1}{2}} K D^{-\frac{1}{2}}$ for MNIST data, RBF kernel ($f(t) = \exp(-t^2/2)$).
Kernel Spectral Clustering

Figure: Leading four eigenvectors of $D^{-\frac{1}{2}} K D^{-\frac{1}{2}}$ for MNIST data, RBF kernel $(f(t) = \exp(-t^2/2))$.

▶ **Important Remark:** eigenvectors informative **BUT** far from $D^{\frac{1}{2}} j_a$!
Model and Assumptions

Gaussian mixture model:

- \(x_1, \ldots, x_n \in \mathbb{R}^p \),
- \(k \) classes \(C_1, \ldots, C_k \),
- \(x_1, \ldots, x_{n_1} \in C_1, \ldots, x_{n-n_k+1}, \ldots, x_n \in C_k \),
- \(x_i \sim \mathcal{N}(\mu_i, C_i) \).
Model and Assumptions

Gaussian mixture model:

- $x_1, \ldots, x_n \in \mathbb{R}^p$,
- k classes C_1, \ldots, C_k,
- $x_1, \ldots, x_{n_1} \in C_1, \ldots, x_{n-n_k+1}, \ldots, x_n \in C_k$,
- $x_i \sim \mathcal{N}(\mu_{g_i}, C_{g_i})$.

Assumption (Growth Rate)

As $n \to \infty$,

1. **Data scaling**: $\frac{p}{n} \to c_0 \in (0, \infty)$, $\frac{n_a}{n} \to c_a \in (0, 1)$,

2. **Mean scaling**: with $\mu^\diamond \triangleq \sum_{a=1}^k \frac{n_a}{n} \mu_a$ and $\mu_a^\diamond \triangleq \mu_a - \mu^\diamond$, then $\|\mu_a^\diamond\| = O(1)$

3. **Covariance scaling**: with $C^\diamond \triangleq \sum_{a=1}^k \frac{n_a}{n} C_a$ and $C_a^\diamond \triangleq C_a - C^\diamond$, then

$$\|C_a\| = O(1), \quad tr C_a^\diamond = O(\sqrt{p}), \quad tr C_a^\diamond C_b^\diamond = O(p)$$
Model and Assumptions

Gaussian mixture model:

- \(x_1, \ldots, x_n \in \mathbb{R}^p \),
- \(k \) classes \(C_1, \ldots, C_k \),
- \(x_1, \ldots, x_{n_1} \in C_1, \ldots, x_{n-n_k+1}, \ldots, x_n \in C_k \),
- \(x_i \sim \mathcal{N}(\mu_{g_i}, C_{g_i}) \).

Assumption (Growth Rate)

As \(n \to \infty \),

1. **Data scaling**: \(\frac{p}{n} \to c_0 \in (0, \infty) \), \(\frac{n_a}{n} \to c_a \in (0, 1) \),
2. **Mean scaling**: with \(\mu^o \triangleq \sum_{a=1}^k \frac{n_a}{n} \mu_a \) and \(\mu^a \triangleq \mu_a - \mu^o \), then \(\| \mu^a \| = O(1) \)
3. **Covariance scaling**: with \(C^o \triangleq \sum_{a=1}^k \frac{n_a}{n} C_a \) and \(C^o_a \triangleq C_a - C^o \), then

\[
\| C_a \| = O(1), \quad tr C^o_a = O(\sqrt{p}), \quad tr C^o_a C^o_b = O(p)
\]

For 2 classes, this is

\[
\| \mu_1 - \mu_2 \| = O(1), \quad tr (C_1 - C_2) = O(\sqrt{p}), \quad \| C_i \| = O(1), \quad tr ([C_1 - C_2]^2) = O(p).
\]
Model and Assumptions

Gaussian mixture model:
- \(x_1, \ldots, x_n \in \mathbb{R}^p \),
- \(k \) classes \(C_1, \ldots, C_k \),
- \(x_1, \ldots, x_{n_1} \in C_1, \ldots, x_{n-n_k+1}, \ldots, x_n \in C_k \),
- \(x_i \sim \mathcal{N}(\mu_{g_i}, C_{g_i}) \).

Assumption (Growth Rate)
As \(n \to \infty \),
1. Data scaling: \(\frac{p}{n} \to c_0 \in (0, \infty), \frac{n_a}{n} \to c_a \in (0, 1) \),
2. Mean scaling: with \(\mu^o \triangleq \sum_{a=1}^{k} \frac{n_a}{n} \mu_a \) and \(\mu_a^o \triangleq \mu_a - \mu^o \), then \(\|\mu_a^o\| = O(1) \)
3. Covariance scaling: with \(C^o \triangleq \sum_{a=1}^{k} \frac{n_a}{n} C_a \) and \(C_a^o \triangleq C_a - C^o \), then
 \[\|C_a\| = O(1), \quad trC_a^o = O(\sqrt{p}), \quad trC_a^o C_b^o = O(p) \]

For 2 classes, this is
\[\|\mu_1 - \mu_2\| = O(1), \quad tr(C_1 - C_2) = O(\sqrt{p}), \quad \|C_i\| = O(1), \quad tr([C_1 - C_2]^2) = O(p). \]

Remark: [Neyman–Pearson optimality]
- \(x \sim \mathcal{N}(\pm \mu, I_p) \) (known \(\mu \)) decidable if\(f \|\mu\| \geq O(1) \).
- \(x \sim \mathcal{N}(0, (1 \pm \varepsilon) I_p) \) (known \(\varepsilon \)) decidable if \(\|\varepsilon\| \geq O(p^{-\frac{1}{2}}) \).
Kernel Matrix:

- Kernel matrix of interest:

\[
K = \left\{ f \left(\frac{1}{p} ||x_i - x_j||^2 \right) \right\}^{n}_{i,j=1}
\]

for some sufficiently smooth nonnegative \(f \) (\(f(\frac{1}{p} x_i^T x_j) \) simpler).
Model and Assumptions

Kernel Matrix:

- Kernel matrix of interest:

\[K = \left\{ f \left(\frac{1}{p} \| x_i - x_j \|^2 \right) \right\}_{i,j=1}^{n} \]

for some sufficiently smooth nonnegative \(f \) (\(f(\frac{1}{p} x_i^T x_j) \) simpler).

- We study the normalized Laplacian:

\[L = n D^{-\frac{1}{2}} \left(K - \frac{d d^T}{d^T 1_n} \right) D^{-\frac{1}{2}} \]

with \(d = K 1_n \), \(D = \text{diag}(d) \).

(more stable both theoretically and in practice)
Key Remark: Under growth rate assumptions,

\[
\max_{1 \leq i \neq j \leq n} \left\{ \left| \frac{1}{p} \| x_i - x_j \| - \tau \right| \right\} \xrightarrow{a.s.} 0.
\]

where \(\tau = \frac{1}{p} \text{tr} C^0 \).
Key Remark: Under growth rate assumptions,

\[
\max_{1 \leq i \neq j \leq n} \left\{ \left| \frac{1}{p} \| x_i - x_j \|_2^2 - \tau \right| \right\} \xrightarrow{\text{a.s.}} 0.
\]

where \(\tau = \frac{1}{p} \text{tr} C^\circ. \)

\[\Rightarrow\] Suggests that (up to diagonal) \(K \simeq f(\tau)1_n 1_n^T! \)
Random Matrix Equivalent

Key Remark: Under growth rate assumptions,

\[
\max_{1 \leq i \neq j \leq n} \left\{ \frac{1}{p} \| x_i - x_j \|_2^2 - \tau \right\} \xrightarrow{\text{a.s.}} 0.
\]

where \(\tau = \frac{1}{p} \text{tr } C^\circ \).

\(\Rightarrow \) Suggests that (up to diagonal) \(K \simeq f(\tau) 1_n 1_n^T \!\).

In fact, information hidden in low order fluctuations! from “matrix-wise” Taylor expansion of \(K \):

\[
K = f(\tau) 1_n 1_n^T + \sqrt{n} K_1 + K_2
\]

\(O_{\| \cdot \|}(n) \) \quad \text{low rank, } \(O_{\| \cdot \|}(\sqrt{n}) \) \quad \text{informative terms, } \(O_{\| \cdot \|}(1) \)
Key Remark: Under growth rate assumptions,

\[
\max_{1 \leq i \neq j \leq n} \left\{ \left| \frac{1}{p} \| x_i - x_j \|_2^2 - \tau \right| \right\} \xrightarrow{a.s.} 0.
\]

where \(\tau = \frac{1}{p} \text{tr} C^\circ \).

\[\Rightarrow \text{Suggests that (up to diagonal) } K \simeq f(\tau)1_n 1_n^T ! \]

In fact, information hidden in low order fluctuations! from “matrix-wise” Taylor expansion of \(K \):

\[
K = f(\tau)1_n 1_n^T + \sqrt{n}K_1 + K_2
\]

\[O\|\cdot\|_2(n) \quad \text{low rank, } O\|\cdot\|_2(\sqrt{n}) \quad \text{informative terms, } O\|\cdot\|_2(1) \]

Clearly not the (small dimension) expected behavior.
Theorem (Random Matrix Equivalent [Couillet, Benaych’2015])

As \(n, p \to \infty \), \(\| L - \hat{L} \| \xrightarrow{a.s.} 0 \), where

\[
L = n D^{-\frac{1}{2}} \left(K - \frac{d d^T}{d^T 1_n} \right) D^{-\frac{1}{2}}, \text{ avec } K_{ij} = f\left(\frac{1}{p} \| x_i - x_j \|^2 \right)
\]

\[
\hat{L} = -2 \frac{f'(\tau)}{f(\tau)} \left[\frac{1}{p} PW^T WP + \frac{1}{p} JB J^T + * \right]
\]

et \(W = [w_1, \ldots, w_n] \in \mathbb{R}^{p \times n} \) (\(x_i = \mu_a + w_i \)), \(P = I_n - \frac{1}{n} 1_n 1_n^T \),
Random Matrix Equivalent

Theorem (Random Matrix Equivalent [Couillet, Benaych’2015])

As \(n, p \to \infty, \|L - \hat{L}\| \xrightarrow{a.s.} 0, \) where

\[
L = nD^{-\frac{1}{2}} \left(K - \frac{dd^T}{d^T1_n} \right) D^{-\frac{1}{2}}, \quad \text{avec } K_{ij} = f \left(\frac{1}{p} \|x_i - x_j\|^2 \right)
\]

\[
\hat{L} = -2f'(\tau) \left[\frac{1}{p} PW^T WP + \frac{1}{p} JB J^T + * \right]
\]

et \(W = [w_1, \ldots, w_n] \in \mathbb{R}^{p \times n} \) \((x_i = \mu_a + w_i), \) \(P = I_n - \frac{1}{n} 1_n 1_n^T, \)

\[
J = [j_1, \ldots, j_k], \quad j_a = (0 \ldots 0, 1_{n_a}, 0, \ldots, 0)
\]

\[
B = M^T M + \left(\frac{5f'(\tau)}{8f(\tau)} - \frac{f'''(\tau)}{2f'(\tau)} \right) tt^T - \frac{f'''(\tau)}{f'(\tau)} T + *
\]

Recall \(M = [\mu_1^\circ, \ldots, \mu_k^\circ], \) \(t = \left[\frac{1}{\sqrt{p}} \text{tr} C_1^\circ, \ldots, \frac{1}{\sqrt{p}} \text{tr} C_k^\circ \right]^T, \) \(T = \left\{ \frac{1}{p} \text{tr} C_a^\circ C_b^\circ \right\}_{a, b = 1}^k. \)
Random Matrix Equivalent

Theorem (Random Matrix Equivalent [Couillet, Benaych’2015])
As \(n, p \to \infty \), \(\| L - \hat{L} \| \xrightarrow{a.s.} 0 \), where

\[
L = nD^{-\frac{1}{2}} \left(K - \frac{dd^T}{d^T 1_n} \right) D^{-\frac{1}{2}}, \text{ avec } K_{ij} = f \left(\frac{1}{p} \| x_i - x_j \|^2 \right)
\]

\[
\hat{L} = -2 \frac{f'(\tau)}{f(\tau)} \left[\frac{1}{p} PW^T WP + \frac{1}{p} JB J^T + * \right]
\]

et \(W = [w_1, \ldots, w_n] \in \mathbb{R}^{p \times n} \ (x_i = \mu_a + w_i) \), \(P = I_n - \frac{1}{n} 1_n 1_n^T \),

\[
J = [j_1, \ldots, j_k], \quad j_a^T = (0 \ldots 0, 1_{na}, 0, \ldots, 0)
\]

\[
B = M^T M + \left(\frac{5f'(\tau)}{8f(\tau)} - \frac{f'''(\tau)}{2f'(\tau)} \right) tt^T - \frac{f'''(\tau)}{f'(\tau)} T + *
\]

Recall \(M = [\mu_1^\circ, \ldots, \mu_k^\circ] \), \(t = \left[\frac{1}{\sqrt{p}} tr C_1^\circ, \ldots, \frac{1}{\sqrt{p}} tr C_k^\circ \right]^T \), \(T = \left\{ \frac{1}{p} tr C_a^\circ C_b^\circ \right\}_{a,b=1}^k \).

Fundamental conclusions:
Random Matrix Equivalent

Theorem (Random Matrix Equivalent [Couillet, Benaych’2015])
As \(n, p \to \infty \), \(\|L - \hat{L}\| \xrightarrow{a.s.} 0 \), where

\[
L = nD^{-\frac{1}{2}} \left(K - \frac{dd^T}{d^T 1_n} \right) D^{-\frac{1}{2}}, \text{ avec } K_{ij} = f \left(\frac{1}{p} \|x_i - x_j\|^2 \right)
\]

\[
\hat{L} = -2 \frac{f'(\tau)}{f(\tau)} \left[\frac{1}{p} PW^TWP + \frac{1}{p} JBJ^T + * \right]
\]

et \(W = [w_1, \ldots, w_n] \in \mathbb{R}^{p \times n} \) \((x_i = \mu_a + w_i)\), \(P = I_n - \frac{1}{n} 1_n 1_n^T \),

\[
J = [j_1, \ldots, j_k], \quad j_a = (0 \ldots 0, 1_{n_a}, 0, \ldots, 0)
\]

\[
B = M^T M + \left(\frac{5f'(\tau)}{8f(\tau)} - \frac{f'''(\tau)}{2f'(\tau)} \right) tt^T - \frac{f'''(\tau)}{f'(\tau)} T + *.
\]

Recall \(M = [\mu_1^\circ, \ldots, \mu_k^\circ], \)
\(t = \left[\frac{1}{\sqrt{p}} tr C_1^\circ, \ldots, \frac{1}{\sqrt{p}} tr C_k^\circ \right]^T, \)
\(T = \left\{ \frac{1}{p} tr C_a^\circ C_b^\circ \right\}_{a,b=1}^k \).

Fundamental conclusions:

- asymptotic kernel impact only through \(f'(\tau) \) and \(f'''(\tau) \), that’s all!
Random Matrix Equivalent

Theorem (Random Matrix Equivalent [Couillet, Benaych’2015])

As \(n, p \to \infty \), \(\|L - \hat{L}\| \xrightarrow{a.s.} 0 \), where

\[
L = nD^{-\frac{1}{2}} \left(K - \frac{dd^T}{d^T1_n} \right) D^{-\frac{1}{2}}, \text{ avec } K_{ij} = f \left(\frac{1}{p} \|x_i - x_j\|^2 \right)
\]

\[
\hat{L} = -2 \frac{f'(\tau)}{f(\tau)} \left[\frac{1}{p} PW^T WP + \frac{1}{p} JB J^T + * \right]
\]

et \(W = [w_1, \ldots, w_n] \in \mathbb{R}^{p \times n} \) (\(x_i = \mu_a + w_i \)), \(P = I_n - \frac{1}{n} 1_n 1_n^T \),

\[
J = [j_1, \ldots, j_k], \ j_a^T = (0 \ldots 0, 1_{n_a}, 0, \ldots, 0)
\]

\[
B = M^T M + \left(\frac{5f'(\tau)}{8f(\tau)} - \frac{f''(\tau)}{2f'(\tau)} \right) tt^T - \frac{f''(\tau)}{f'(\tau)} T + *.
\]

Recall \(M = [\mu_1^\circ, \ldots, \mu_k^\circ] \), \(t = \left[\frac{1}{\sqrt{p}} \text{tr} C_1^\circ, \ldots, \frac{1}{\sqrt{p}} \text{tr} C_k^\circ \right]^T \), \(T = \left\{ \frac{1}{p} \text{tr} C_a^\circ C_b^\circ \right\}_{a,b=1}^k \).

Fundamental conclusions:

- asymptotic **kernel impact** only through \(f'(\tau) \) and \(f''(\tau) \), that’s all!
- spectral clustering reads \(M^T M, tt^T \) and \(T \), that’s all!
Isolated eigenvalues: Gaussian inputs

Figure: Eigenvalues of L and \hat{L}, $k = 3$, $p = 2048$, $n = 512$, $c_1 = c_2 = 1/4$, $c_3 = 1/2$, $[\mu_a]_j = 4\delta_{aj}$, $C_a = (1 + 2(a - 1)/\sqrt{p})I_p$, $f(x) = \exp(-x/2)$.
Figure: Eigenvalues of L (red) and (equivalent Gaussian model) \hat{L} (white), MNIST data, $p = 784$, $n = 192$.
Theoretical Findings versus MNIST

Figure: Eigenvalues of L (red) and (equivalent Gaussian model) \hat{L} (white), MNIST data, $p = 784$, $n = 192$.
Figure: Leading four eigenvectors of $D^{-\frac{1}{2}} K D^{-\frac{1}{2}}$ for MNIST data (red) and theoretical findings (blue).
Theoretical Findings versus MNIST

Figure: Leading four eigenvectors of $D^{-\frac{1}{2}} K D^{-\frac{1}{2}}$ for MNIST data (red) and theoretical findings (blue).
Theoretical Findings versus MNIST

Figure: 2D representation of eigenvectors of L, for the MNIST dataset. Theoretical means and 1- and 2-standard deviations in blue. Class 1 in red, Class 2 in black, Class 3 in green.
Theoretical Findings versus MNIST

Figure: 2D representation of eigenvectors of L, for the MNIST dataset. Theoretical means and 1- and 2-standard deviations in blue. Class 1 in red, Class 2 in black, Class 3 in green.
The surprising $f'(\tau) = 0$ case

Figure: Polynomial kernel with $f(\tau) = 4$, $f''(\tau) = 2$, $x_i \in \mathcal{N}(0, C_\alpha)$, with $C_1 = I_p$, $[C_2]_{i,j} = 0.4|i-j|$, $c_0 = \frac{1}{4}$.
The surprising $f'(\tau) = 0$ case

Figure: Polynomial kernel with $f(\tau) = 4$, $f''(\tau) = 2$, $x_i \in \mathcal{N}(0, C_\alpha)$, with $C_1 = I_p$, $[C_2]_{i,j} = .4^{|i-j|}$, $c_0 = \frac{1}{4}$.
The surprising $f'(\tau) = 0$ case

Figure: Polynomial kernel with $f(\tau) = 4$, $f''(\tau) = 2$, $x_i \in \mathcal{N}(0, C_\alpha)$, with $C_1 = I_p$, $[C_2]_{i,j} = 4|i-j|$, $c_0 = \frac{1}{4}$.
The surprising $f'(\tau) = 0$ case

Figure: Polynomial kernel with $f(\tau) = 4$, $f''(\tau) = 2$, $x_i \in \mathcal{N}(0, C_a)$, with $C_1 = I_p$, $[C_2]_{i,j} = 0.4|i-j|$, $c_0 = \frac{1}{4}$.

▶ **Trivial classification** when $t = 0$, $M = 0$ and $\|T\| = O(1)$.
Outline

Basics of Random Matrix Theory
 Motivation: Large Sample Covariance Matrices
 Spiked Models

Applications
 Reminder on Spectral Clustering Methods
 Kernel Spectral Clustering
 Kernel Spectral Clustering: The case $f'_{\tau} = 0$
 Kernel Spectral Clustering: The case $f'_{\tau} = \frac{\alpha}{\sqrt{p}}$
 Semi-supervised Learning
 Semi-supervised Learning improved
 Random Feature Maps, Extreme Learning Machines, and Neural Networks
 Community Detection on Graphs

Perspectives
Problem: Cluster large data $x_1, \ldots, x_n \in \mathbb{R}^p$ based on “spanned subspaces”.

Position of the Problem
Position of the Problem

Problem: Cluster large data $x_1, \ldots, x_n \in \mathbb{R}^p$ based on “spanned subspaces”.

Method:

- Still assume x_1, \ldots, x_n belong to k classes C_1, \ldots, C_k.
- Zero-mean Gaussian model for the data: for $x_i \in C_k$,

$$x_i \sim \mathcal{N}(0, C_k).$$
Position of the Problem

Problem: Cluster large data $x_1, \ldots, x_n \in \mathbb{R}^p$ based on “spanned subspaces”.

Method:

- Still assume x_1, \ldots, x_n belong to k classes C_1, \ldots, C_k.
- Zero-mean Gaussian model for the data: for $x_i \in C_k$,

$$x_i \sim \mathcal{N}(0, C_k).$$

- Performance of $L = nD^{-\frac{1}{2}} \left(K - \frac{1}{n} \frac{1^T}{1n}D1_n\right)D^{-\frac{1}{2}}$, with

$$K = \left\{ f \left(\|\bar{x}_i - \bar{x}_j\|^2\right)\right\}_{1 \leq i, j \leq n}, \quad \bar{x} = \frac{x}{\|x\|}$$

in the regime $n, p \to \infty$.

(alternatively, we can ask $\frac{1}{p} \text{tr} C_i = 1$ for all $1 \leq i \leq k$)
Assumption 1 [Classes]. Vectors $x_1, \ldots, x_n \in \mathbb{R}^p$ i.i.d. from k-class Gaussian mixture, with $x_i \in C_k \iff x_i \sim \mathcal{N}(0, C_k)$ (sorted by class for simplicity).
Assumption 1 [Classes]. Vectors $x_1, \ldots, x_n \in \mathbb{R}^p$ i.i.d. from k-class Gaussian mixture, with $x_i \in C_k \Leftrightarrow x_i \sim \mathcal{N}(0, C_k)$ (sorted by class for simplicity).

Assumption 2a [Growth Rates]. As $n \to \infty$, for each $a \in \{1, \ldots, k\}$,

1. $\frac{n}{p} \to c_0 \in (0, \infty)$
2. $\frac{n_a}{n} \to c_a \in (0, \infty)$
3. $\frac{1}{p} \text{tr } C_a = 1$ and $\text{tr } C_a^o C_b^o = O(p)$, with $C_a^o = C_a - C^o$, $C^o = \sum_{b=1}^{k} c_b C_b$.

Theorem (Corollary of Previous Section)

Let f smooth with $f' \neq 0$. Then, under Assumptions 2a, $L = nD - \frac{1}{2} \left(K - \frac{1}{n} T \right) n D^{- \frac{1}{2}}$, with $K = \{ f(\|\bar{x}_i - \bar{x}_j\|_2) \}_{i,j=1}^n (\bar{x} = x/\|x\|)$ exhibits phase transition phenomenon, i.e., leading eigenvectors of L asymptotically contain structural information about C_1, \ldots, C_k if and only if $T = \{ \frac{1}{p} \text{tr } C_a^o C_b^o \}_{a,b=1}^k$ has sufficiently large eigenvalues (here $M = 0$, $t = 0$).
Assumption 1 [Classes]. Vectors $x_1, \ldots, x_n \in \mathbb{R}^p$ i.i.d. from k-class Gaussian mixture, with $x_i \in C_k \iff x_i \sim \mathcal{N}(0, C_k)$ (sorted by class for simplicity).

Assumption 2a [Growth Rates]. As $n \to \infty$, for each $a \in \{1, \ldots, k\}$,
1. $\frac{n}{p} \to c_0 \in (0, \infty)$
2. $\frac{n_a}{n} \to c_a \in (0, \infty)$
3. $\frac{1}{p} \text{tr } C_a = 1$ and $\text{tr } C^o_a C^o_b = O(p)$, with $C^o_a = C_a - C^o$, $C^o = \sum_{b=1}^{k} c_b C_b$.

Theorem (Corollary of Previous Section)

Let f smooth with $f'(2) \neq 0$. Then, under Assumptions 2a,

$$L = n D^{-\frac{1}{2}} \left(K - \frac{1_n 1_n^T}{1_n^T D 1_n} \right) D^{-\frac{1}{2}}, \text{ with } K = \left\{ f \left(\| \bar{x}_i - \bar{x}_j \| \right) \right\}_{i,j=1}^n \left(\bar{x} = x/\|x\| \right)$$

exhibits phase transition phenomenon.
Model and Reminders

Assumption 1 [Classes]. Vectors $x_1, \ldots, x_n \in \mathbb{R}^p$ i.i.d. from k-class Gaussian mixture, with $x_i \in \mathcal{C}_k \iff x_i \sim \mathcal{N}(0, C_k)$ (sorted by class for simplicity).

Assumption 2a [Growth Rates]. As $n \to \infty$, for each $a \in \{1, \ldots, k\}$,

1. $\frac{n}{p} \to c_0 \in (0, \infty)$
2. $\frac{n_a}{n} \to c_a \in (0, \infty)$
3. $\frac{1}{p} \text{tr} C_a = 1$ and $\text{tr} C^\circ_a C^\circ_b = O(p)$, with $C^\circ_a = C_a - C^\circ$, $C^\circ = \sum_{b=1}^k c_b C_b$.

Theorem (Corollary of Previous Section)

Let f smooth with $f'(2) \neq 0$. Then, under Assumptions 2a,

$$L = n D^{-\frac{1}{2}} \left(K - \frac{1_n 1_n^T}{1_n^T D 1_n} \right) D^{-\frac{1}{2}}, \text{ with } K = \left\{ f \left(\|\bar{x}_i - \bar{x}_j\|^2 \right) \right\}_{i,j=1}^n (\bar{x} = x/\|x\|)$$

exhibits phase transition phenomenon, i.e., leading eigenvectors of L asymptotically contain structural information about $\mathcal{C}_1, \ldots, \mathcal{C}_k$ if and only if

$$T = \left\{ \frac{1}{p} \text{tr} C^\circ_a C^\circ_b \right\}_{a,b=1}^k$$

has sufficiently large eigenvalues (here $M = 0, t = 0$).
The case $f'(2) = 0$

Assumption 2b [Growth Rates]. As $n \to \infty$, for each $a \in \{1, \ldots, k\}$,

1. $\frac{n}{p} \to c_0 \in (0, \infty)$
2. $\frac{n_a}{n} \to c_a \in (0, \infty)$
3. $\frac{1}{p} \text{tr} C_a = 1$ and $\text{tr} C_a^\circ C_b^\circ = O(p)$, with $C_a^\circ = C_a - C^\circ$, $C^\circ = \sum_{b=1}^{k} c_b C_b$.

Remark: [Neyman–Pearson optimality]

if $C_i = I_p \pm E$ with $\|E\| \to 0$, detectability if $\frac{1}{p} \text{tr} (C_1 - C_2) \geq O(p)$.
The case $f'(2) = 0$

Assumption 2b [Growth Rates]. As $n \to \infty$, for each $a \in \{1, \ldots, k\}$,

1. $\frac{n}{p} \to c_0 \in (0, \infty)$
2. $\frac{n_a}{n} \to c_a \in (0, \infty)$
3. $\frac{1}{p} \text{tr} C_a = 1$ and $\text{tr} C_a^\circ C_b^\circ = O(\sqrt{p})$, with $C_a^\circ = C_a - C^\circ$, $C^\circ = \sum_{b=1}^{k} c_b C_b$.

(in this regime, previous kernels clearly fail)

Remark: [Neyman–Pearson optimality]

- if $C_i = I_p \pm E$ with $\|E\| \to 0$, **detectability** *iff* $\frac{1}{p} \text{tr} (C_1 - C_2)^2 \geq O(p^{-\frac{1}{2}})$.
The case $f'(2) = 0$

Assumption 2b [Growth Rates]. As $n \to \infty$, for each $a \in \{1, \ldots, k\}$,

1. $\frac{n}{p} \to c_0 \in (0, \infty)$
2. $\frac{n_a}{n} \to c_a \in (0, \infty)$
3. $\frac{1}{p} \text{tr} C_a = 1$ and $\text{tr} C_a C_b^\circ = O(\sqrt{p})$, with $C_a^\circ = C_a - C^\circ$, $C^\circ = \sum_{b=1}^{k} c_b C_b$.

(in this regime, previous kernels clearly fail)

Remark: [Neyman–Pearson optimality]

\blacktriangleright if $C_i = I_p \pm E$ with $\|E\| \to 0$, detectability iif $\frac{1}{p} \text{tr} (C_1 - C_2)^2 \geq O(p^{-\frac{1}{2}})$.

Theorem (Random Equivalent for $f'(2) = 0$)

Let f be smooth with $f'(2) = 0$ and

$$
\mathcal{L} \equiv \sqrt{p} \frac{f(2)}{2f''(2)} \left[L - \frac{f(0) - f(2)}{f(2)} P \right], \quad P = I_n - \frac{1}{n} 1_n 1_n^T.
$$

Then, under Assumptions 2b,

$$
\mathcal{L} = P \Phi P + \left\{ \frac{1}{\sqrt{p}} \text{tr} (C_a^\circ C_b^\circ) \frac{1}{n_a} 1_{n_b}^T \right\}_{a, b=1}^{k} + o_{\|\cdot\|}(1)
$$

where $\Phi_{ij} = \delta_{i \neq j} \sqrt{p} \left[(x_i^T x_j)^2 - E[(x_i^T x_j)^2] \right]$.

The case $f'(2) = 0$

Figure: Eigenvalues of L, $p = 1000$, $n = 2000$, $k = 3$, $c_1 = c_2 = 1/4$, $c_3 = 1/2$,
$C_i \propto I_p + (p/8)^{-5/4} W_i W_i^T$, $W_i \in \mathbb{R}^{p \times (p/8)}$ of i.i.d. $\mathcal{N}(0, 1)$ entries, $f(t) = \exp(-(t - 2)^2)$.

⇒ No longer a Marcenko–Pastur like bulk, but rather a semi-circle bulk!
The case $f'(2) = 0$
The case $f'(2) = 0$

Roadmap. We now need to:

- study the spectrum of Φ

\[\mu_n = \frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_i}(L)\]

Then, under Assumption 2b, $\mu_n \rightarrow \mu$ with μ the semi-circle distribution

\[\mu(dt) = \frac{1}{2\pi c_0} \sqrt{4c_0^2 - t^2} + dt, \quad \omega = \lim_{p \to \infty} \sqrt{\frac{1}{2p} \text{tr}(C \circ C)}^2.\]
The case $f'(2) = 0$

Roadmap. We now need to:

- study the spectrum of Φ
- study the isolated eigenvalues of \mathcal{L} (and the phase transition)
The case \(f'(2) = 0 \)

Roadmap. We now need to:

- study the spectrum of \(\Phi \)
- study the isolated eigenvalues of \(\mathcal{L} \) (and the phase transition)
- retrieve information from the eigenvectors.
The case $f'(2) = 0$

Roadmap. We now need to:

- study the spectrum of Φ
- study the isolated eigenvalues of \mathcal{L} (and the phase transition)
- retrieve information from the eigenvectors.

Theorem (Semi-circle law for Φ)

Let $\mu_n = \frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_i(\mathcal{L})}$. Then, under Assumption 2b,

$$\mu_n \xrightarrow{a.s.} \mu$$

with μ the semi-circle distribution

$$\mu(dt) = \frac{1}{2\pi c_0 \omega^2} \sqrt{(4c_0 \omega^2 - t^2)^+} dt, \quad \omega = \lim_{p \to \infty} \sqrt{2p} \frac{1}{p} tr(C^{\circ})^2.$$
The case $f'(2) = 0$

Figure: Eigenvalues of L, $p = 1000$, $n = 2000$, $k = 3$, $c_1 = c_2 = 1/4$, $c_3 = 1/2$,

$C_i \propto I_p + (p/8)^{-\frac{5}{4}} W_i W_i^T$, $W_i \in \mathbb{R}^{p \times (p/8)}$ of i.i.d. $\mathcal{N}(0, 1)$ entries, $f(t) = \exp(-(t - 2)^2)$.

$\lambda_1(L)$

$\lambda_2(L)$
The case $f'(2) = 0$

Denote now

$$\mathcal{T} \equiv \lim_{p \to \infty} \left\{ \frac{\sqrt{c_a c_b}}{\sqrt{p}} \text{tr} C_a^\circ C_b^\circ \right\}_{a,b=1}^k.$$
The case $f'(2) = 0$

Denote now

$$
\mathcal{T} \equiv \lim_{p \to \infty} \left\{ \frac{\sqrt{c_ac_b}}{\sqrt{p}} \text{tr} C_a^0 C_b^0 \right\}_{a,b=1}^k.
$$

Theorem (Isolated Eigenvalues)

Let $\nu_1 \geq \ldots \geq \nu_k$ eigenvalues of \mathcal{T}. Then, if $\sqrt{c_0}|\nu_i| > \omega$, \mathcal{L} has an isolated eigenvalue λ_i satisfying

$$
\lambda_i \xrightarrow{\text{a.s.}} \rho_i \equiv c_0 \nu_i + \frac{\omega^2}{\nu_i}.
$$
The case $f'(2) = 0$

Theorem (Isolated Eigenvectors)

For each isolated eigenpair (λ_i, u_i) of L corresponding to (ν_i, v_i) of T, write

$$u_i = \sum_{a=1}^{k} \alpha_i^a \frac{j_a}{\sqrt{n_a}} + \sigma_i^a w_i^a$$

with $j_a = [0^T_{n_1}, \ldots, 1^T_{n_a}, \ldots, 0^T_{n_k}]^T$, $(w_i^a)^T j_a = 0$, $\text{supp}(w_i^a) = \text{supp}(j_a)$, $\|w_i^a\| = 1$.

Then, under Assumptions 1–2b,

$$\alpha_i^a \alpha_i^b \xrightarrow{a.s.} \left(1 - \frac{1}{c_0} \frac{\omega^2}{\nu_i^2}\right) [v_i v_i^T]_{ab}$$

$$(\sigma_i^a)^2 \xrightarrow{a.s.} \frac{c_a \omega^2}{c_0 \nu_i^2}$$

and the fluctuations of u_i, u_j, $i \neq j$, are asymptotically uncorrelated.
The case $f'(2) = 0$

Figure: Leading two eigenvectors of \mathcal{L} (or equivalently of L) versus deterministic approximations of $\alpha_i^a \pm \sigma_i^a$.
The case $f'(2) = 0$

Figure: Leading two eigenvectors of \mathcal{L} (or equivalently of L) versus deterministic approximations of $\alpha_i^a \pm \sigma_i^a$.
The case $f'(2) = 0$

Figure: Leading two eigenvectors of \mathcal{L} (or equivalently of L) versus deterministic approximations of $\alpha_i^a \pm \sigma_i^a$.
Application to Massive MIMO UE Clustering
Massive MIMO UE Clustering

Setting. Massive MIMO cell with

- p antenna elements
- n users equipments (UE) with channels $x_1, \ldots, x_n \in \mathbb{R}^p$
- UE’s belong to solid angle groups, i.e., $E[x_i] = 0$, $E[x_i x_i^T] = C_a \equiv C(\Theta_a)$.
Massive MIMO UE Clustering

Setting. Massive MIMO cell with

- p antenna elements
- n users equipments (UE) with channels $x_1, \ldots, x_n \in \mathbb{R}^p$
- UE’s belong to solid angle groups, i.e., $E[x_i] = 0$, $E[x_i x_i^T] = C_a \equiv C(\Theta_a)$.
- T independent channel observations $x_i^{(1)}, \ldots, x_i^{(T)}$ for UE i.

Algorithm.

1. Build kernel matrix K, then L, based on nT vectors $x_{i}^{(1)}, \ldots, x_{i}^{(T)}$ as if nT values to cluster.
2. Extract dominant isolated eigenvectors u_1, \ldots, u_κ
3. For each i, create $\tilde{u}_i = 1^T (I_n \otimes 1^T) u_i$, i.e., average eigenvectors along time.
4. Perform k-class clustering on vectors $\tilde{u}_1, \ldots, \tilde{u}_\kappa$.

Massive MIMO UE Clustering

Setting. Massive MIMO cell with

- \(p \) antenna elements
- \(n \) users equipments (UE) with channels \(x_1, \ldots, x_n \in \mathbb{R}^p \)
- UE’s belong to solid angle groups, i.e., \(E[x_i] = 0, E[x_i x_i^T] = C_a \equiv C(\Theta_a) \).
- \(T \) independent channel observations \(x_i^{(1)}, \ldots, x_i^{(T)} \) for UE \(i \).

Objective. Clustering users in same solid angle groups *(for scheduling reasons, to avoid pilot contamination).*
Massive MIMO UE Clustering

Setting. Massive MIMO cell with
- p antenna elements
- n users equipments (UE) with channels $x_1, \ldots, x_n \in \mathbb{R}^p$
- UE’s belong to solid angle groups, i.e., $E[x_i] = 0$, $E[x_i x_i^T] = C_a \equiv C(\Theta_a)$.
- T independent channel observations $x_i^{(1)}, \ldots, x_i^{(T)}$ for UE i.

Objective. Clustering users in same solid angle groups (*for scheduling reasons, to avoid pilot contamination*).

Algorithm.

1. Build kernel matrix K, then L, based on nT vectors $x_1^{(1)}, \ldots, x_n^{(T)}$ (as if nT values to cluster).
Massive MIMO UE Clustering

Setting. Massive MIMO cell with

- \(p \) antenna elements
- \(n \) users equipments (UE) with channels \(x_1, \ldots, x_n \in \mathbb{R}^p \)
- UE’s belong to solid angle groups, i.e., \(E[x_i] = 0, E[x_i x_i^T] = C_a \equiv C(\Theta_a) \)
- \(T \) independent channel observations \(x_i^{(1)}, \ldots, x_i^{(T)} \) for UE \(i \).

Objective. Clustering users in same solid angle groups (for scheduling reasons, to avoid pilot contamination).

Algorithm.

1. Build kernel matrix \(K \), then \(L \), based on \(nT \) vectors \(x_1^{(1)}, \ldots, x_n^{(T)} \) (as if \(nT \) values to cluster).
2. Extract dominant isolated eigenvectors \(u_1, \ldots, u_{\kappa} \)
Setting. Massive MIMO cell with

- p antenna elements
- n users equipments (UE) with channels $x_1, \ldots, x_n \in \mathbb{R}^p$
- UE’s belong to solid angle groups, i.e., $E[x_i] = 0$, $E[x_i x_i^T] = C_a \equiv C(\Theta_a)$.
- T independent channel observations $x_i^{(1)}, \ldots, x_i^{(T)}$ for UE i.

Objective. Clustering users in same solid angle groups (for scheduling reasons, to avoid pilot contamination).

Algorithm.

1. Build kernel matrix K, then L, based on nT vectors $x_1^{(1)}, \ldots, x_n^{(T)}$ (as if nT values to cluster).
2. Extract dominant isolated eigenvectors u_1, \ldots, u_κ
3. For each i, create $\bar{u}_i = \frac{1}{T} (I_n \otimes 1_T^T) u_i$, i.e., average eigenvectors along time.
Massive MIMO UE Clustering

Setting. Massive MIMO cell with

- p antenna elements
- n users equipments (UE) with channels $x_1, \ldots, x_n \in \mathbb{R}^p$
- UE’s belong to solid angle groups, i.e., $E[x_i] = 0$, $E[x_i x_i^T] = C_a \equiv C(\Theta_a)$.
- T independent channel observations $x_i^{(1)}, \ldots, x_i^{(T)}$ for UE i.

Objective. Clustering users in same solid angle groups (*for scheduling reasons, to avoid pilot contamination*).

Algorithm.

1. Build kernel matrix K, then L, based on nT vectors $x_1^{(1)}, \ldots, x_n^{(T)}$ (as if nT values to cluster).
2. Extract dominant isolated eigenvectors u_1, \ldots, u_κ
3. For each i, create $\tilde{u}_i = \frac{1}{T}(I_n \otimes 1_T)u_i$, i.e., average eigenvectors along time.
4. Perform k-class clustering on vectors $\tilde{u}_1, \ldots, \tilde{u}_\kappa$.
Massive MIMO UE Clustering

Figure: Leading two eigenvectors before (left figure) and after (right figure) T-averaging. Setting: $p = 400$, $n = 40$, $T = 10$, $k = 3$, $c_1 = c_3 = 1/4$, $c_2 = 1/2$, angular spread model with angles $-\pi/30 \pm \pi/20$, $0 \pm \pi/20$, and $\pi/30 \pm \pi/20$. Kernel function $f(t) = \exp(-(t - 2)^2)$.
Massive MIMO UE Clustering

Figure: Overlap for different T, using the k-means or EM starting from actual centroid solutions (oracle) or randomly.
Massive MIMO UE Clustering

Figure: Overlap for optimal kernel $f(t)$ (here $f(t) = \exp(-(t-2)^2)$) and Gaussian kernel $f(t) = \exp(-t^2)$, for different T, using the k-means or EM.
Outline

Basics of Random Matrix Theory
 Motivation: Large Sample Covariance Matrices
 Spiked Models

Applications
 Reminder on Spectral Clustering Methods
 Kernel Spectral Clustering
 Kernel Spectral Clustering: The case $f'(\tau) = 0$
 Kernel Spectral Clustering: The case $f'(\tau) = \frac{\alpha}{\sqrt{p}}$
 Semi-supervised Learning
 Semi-supervised Learning improved
 Random Feature Maps, Extreme Learning Machines, and Neural Networks
 Community Detection on Graphs

Perspectives
Optimal growth rates and optimal kernels

Conclusion of previous analyses:

- kernel \(f(\frac{1}{p}\|x_i - x_j\|^2) \) with \(f'(\tau) \neq 0 \):
 - optimal in \(\|\mu^\circ_a\| = O(1), \frac{1}{p}\text{tr} C^\circ_a = O(p^{-\frac{1}{2}}) \)
 - suboptimal in \(\frac{1}{p}\text{tr} C^\circ_a C^\circ_b = O(1) \)

\[\rightarrow \textbf{Model type: Marčenko–Pastur + spikes.} \]
Optimal growth rates and optimal kernels

Conclusion of previous analyses:

- kernel $f\left(\frac{1}{p} \|x_i - x_j\|^2\right)$ with $f'(\tau) \neq 0$:
 - optimal in $\|\mu^o\| = O(1)$, $\frac{1}{p} \text{tr} C^o_a = O(p^{-\frac{1}{2}})$
 - suboptimal in $\frac{1}{p} \text{tr} C^o_a C^o_b = O(1)$
 \rightarrow **Model type:** Marčenko–Pastur + spikes.

- kernel $f\left(\frac{1}{p} \|x_i - x_j\|^2\right)$ with $f'(\tau) = 0$:
 - suboptimal in $\|\mu^o\| \gg O(1)$ (**kills the means**)
 - suboptimal in $\frac{1}{p} \text{tr} C^o_a C^o_b = O(p^{-\frac{1}{2}})$
 \rightarrow **Model type:** smaller order semi-circle law + spikes.
Optimal growth rates and optimal kernels

Conclusion of previous analyses:

- kernel \(f(\frac{1}{p} \|x_i - x_j\|^2) \) with \(f'(\tau) \neq 0 \):
 - optimal in \(\|\mu_a^o\| = O(1) \), \(\frac{1}{p} \text{tr} \, C_a^o = O(p^{-\frac{1}{2}}) \)
 - suboptimal in \(\frac{1}{p} \text{tr} \, C_a^o C_b^o = O(1) \)
 \(\rightarrow \textbf{Model type}: \) Marčenko–Pastur + spikes.

- kernel \(f(\frac{1}{p} \|x_i - x_j\|^2) \) with \(f'(\tau) = 0 \):
 - suboptimal in \(\|\mu_a^o\| \gg O(1) \) (kills the means)
 - suboptimal in \(\frac{1}{p} \text{tr} \, C_a^o C_b^o = O(p^{-\frac{1}{2}}) \)
 \(\rightarrow \textbf{Model type}: \) smaller order semi-circle law + spikes.

Jointly optimal solution:

- evenly weighing Marčenko–Pastur and semi-circle laws
Optimal growth rates and optimal kernels

Conclusion of previous analyses:

- kernel \(f\left(\frac{1}{p} \| x_i - x_j \|^2 \right) \) with \(f'(\tau) \neq 0 \):
 - optimal in \(\| \mu_a^o \| = O(1), \frac{1}{p} \text{tr} C_a^o = O(p^{-\frac{1}{2}}) \)
 - suboptimal in \(\frac{1}{p} \text{tr} C_a^o C_b^o = O(1) \)
 \(\rightarrow \) **Model type:** Marčenko–Pastur + spikes.

- kernel \(f\left(\frac{1}{p} \| x_i - x_j \|^2 \right) \) with \(f'(\tau) = 0 \):
 - suboptimal in \(\| \mu_a^o \| \gg O(1) \) (**kills the means**)
 - suboptimal in \(\frac{1}{p} \text{tr} C_a^o C_b^o = O(p^{-\frac{1}{2}}) \)
 \(\rightarrow \) **Model type:** smaller order semi-circle law + spikes.

Jointly optimal solution:

- evenly weighing Marčenko–Pastur and semi-circle laws
- the “\(\alpha-\beta \)” kernel:
 \[
 f'(\tau) = \frac{\alpha}{\sqrt{p}}, \quad \frac{1}{2} f''(\tau) = \beta.
 \]
We consider now a **fully optimal growth rate setting**

Assumption (Optimal Growth Rate)

As \(n \to \infty \),

1. **Data scaling:** \(\frac{p}{n} \to c_0 \in (0, \infty) \), \(\frac{n_a}{n} \to c_a \in (0, 1) \),

2. **Mean scaling:** with \(\mu^o \triangleq \sum_{a=1}^{k} \frac{n_a}{n} \mu_a \) and \(\mu_a^o \triangleq \mu_a - \mu^o \), then \(\| \mu_a^o \| = O(1) \)

3. **Covariance scaling:** with \(C^o \triangleq \sum_{a=1}^{k} \frac{n_a}{n} C_a \) and \(C_a^o \triangleq C_a - C^o \), then

\[
\| C_a \| = O(1), \quad tr C_a^o = O(\sqrt{p}), \quad tr C_a^o C_b^o = O(\sqrt{p}).
\]
New assumption setting

- We consider now a fully optimal growth rate setting

Assumption (Optimal Growth Rate)

As \(n \to \infty \),

1. **Data scaling**: \(\frac{p}{n} \to c_0 \in (0, \infty), \frac{n_a}{n} \to c_a \in (0, 1), \)
2. **Mean scaling**: with \(\mu^0 \triangleq \sum_{a=1}^{k} n_n \mu_a \) and \(\mu^0_a \triangleq \mu_a - \mu^0 \), then \(\|\mu^0_a\| = O(1) \)
3. **Covariance scaling**: with \(C^0 \triangleq \sum_{a=1}^{k} n_n C_a \) and \(C^0_a \triangleq C_a - C^0 \), then

 \[
 \|C_a\| = O(1), \quad tr C^0_a = O(\sqrt{p}), \quad tr C^0_a C^0_b = O(\sqrt{p}).
 \]

Kernel:

- For technical simplicity, we consider

\[
\tilde{K} = P K P = P \left\{ f \left(\frac{1}{p} (x^\circ)^T (x^\circ_j) \right) \right\}_{i,j=1}^n P
\]

\[P = I_n - \frac{1}{n} 1_n 1_n^T.\]

i.e., \(\tau \) replaced by 0.
Main Results

Theorem

As $n \to \infty$,

$$
\left\| \sqrt{p} \left(PKP + (f(0) + \tau f'(0)) P \right) - \hat{K} \right\| \xrightarrow{a.s.} 0
$$

with, for $\alpha = \sqrt{p} f'(0) = O(1)$ and $\beta = \frac{1}{2} f''(0) = O(1)$,

$$
\hat{K} = \alpha PW^T WP + \beta P\Phi P + UAU^T
$$

$$
A = \begin{bmatrix}
\alpha M^T M + \beta T & \alpha I_k \\
\alpha I_k & 0
\end{bmatrix}
$$

$$
U = \begin{bmatrix}
\frac{J}{\sqrt{p}}, PW^T M
\end{bmatrix}
$$

$$
\frac{\Phi}{\sqrt{p}} = \left\{ \left((\omega_i^o)^T \omega_j^o \right)^2 \delta_{i \neq j} \right\}_{i,j=1}^{n} - \left\{ \frac{\text{tr}(C_a C_b)}{p^2} 1_{n_a} 1_{n_b}^T \right\}_{a,b=1}^{k}.
$$
Main Results

Theorem

As $n \to \infty$,

$$\left\| \sqrt{p} \left(PKP + (f(0) + \tau f'(0)) P \right) - \hat{K} \right\| \xrightarrow{a.s.} 0$$

with, for $\alpha = \sqrt{p} f'(0) = O(1)$ and $\beta = \frac{1}{2} f''(0) = O(1)$,

$$\hat{K} = \alpha PW^T WP + \beta P \Phi P + UAU^T$$

$$A = \begin{bmatrix} \alpha M^T M + \beta T & \alpha I_k \\ \alpha I_k & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} J \\ \sqrt{p} \end{bmatrix}, PW^T M$$

$$\Phi = \left\{ \left((\omega_i^\circ)^T \omega_j^\circ \right)^2 \delta_{i \neq j} \right\}_{i,j=1}^n - \left\{ \frac{tr(C_a C_b)}{p^2} 1_{n_a} 1_{n_b}^T \right\}_{a,b=1}^k.$$

Role of α, β:

- Weighs Marčenko–Pastur versus semi-circle parts.
Limiting eigenvalue distribution

Theorem (Eigenvalues Bulk)
As \(p \to \infty \),

\[
\nu_n \triangleq \frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_i(\hat{K})} \xrightarrow{a.s.} \nu
\]

with \(\nu \) having Stieltjes transform \(m(z) \) solution of

\[
\frac{1}{m(z)} = -z + \frac{\alpha}{p} \text{tr} C^o \left(I_k + \frac{\alpha m(z)}{c_0} C^o \right)^{-1} - \frac{2\beta^2}{c_0} \omega^2 m(z)
\]

where \(\omega = \lim_{p \to \infty} \frac{1}{p} \text{tr} (C^o)^2 \).
Limiting eigenvalue distribution

Figure: Eigenvalues of K (up to recentering) versus limiting law, $p = 2048$, $n = 4096$, $k = 2$, $n_1 = n_2$, $\mu_i = 3\delta_i$, $f(x) = \frac{1}{2} \beta \left(x + \frac{1}{\sqrt{p}} \frac{\alpha}{\beta} \right)^2$. (Top left): $\alpha = 8$, $\beta = 1$, (Top right): $\alpha = 4$, $\beta = 3$, (Bottom left): $\alpha = 3$, $\beta = 4$, (Bottom right): $\alpha = 1$, $\beta = 8$.
Asymptotic performances: MNIST

▶ MNIST is “means-dominant” but not that much!

<table>
<thead>
<tr>
<th>Datasets</th>
<th>$|\mu^1_\circ - \mu^2_\circ|^2$</th>
<th>$\frac{1}{\sqrt{p}} \text{TR} \left(C_1 - C_2 \right)^2$</th>
<th>$\frac{1}{p} \text{TR} \left(C_1 - C_2 \right)^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNIST (digits 1, 7)</td>
<td>612.7</td>
<td>71.1</td>
<td>2.5</td>
</tr>
<tr>
<td>MNIST (digits 3, 6)</td>
<td>441.3</td>
<td>39.9</td>
<td>1.4</td>
</tr>
<tr>
<td>MNIST (digits 3, 8)</td>
<td>212.3</td>
<td>23.5</td>
<td>0.8</td>
</tr>
</tbody>
</table>
Asymptotic performances: MNIST

MNIST is “means-dominant” but not that much!

| Datasets | $||\mu_1^0 - \mu_2^0||^2$ | $\frac{1}{\sqrt{p}} \text{tr} (C_1 - C_2)^2$ | $\frac{1}{p} \text{tr} (C_1 - C_2)^2$ |
|-------------------|---------------------------|---|--|
| MNIST (digits 1, 7) | 612.7 | 71.1 | 2.5 |
| MNIST (digits 3, 6) | 441.3 | 39.9 | 1.4 |
| MNIST (digits 3, 8) | 212.3 | 23.5 | 0.8 |

Figure: Spectral clustering of the MNIST database for varying $\frac{\alpha}{\beta}$.
Asymptotic performances: EEG data

- EEG data are “variance-dominant”

<table>
<thead>
<tr>
<th>Datasets</th>
<th>$|\mu_1^o - \mu_2^o|^2$</th>
<th>$\frac{1}{\sqrt{p}} \text{Tr} (C_1 - C_2)^2$</th>
<th>$\frac{1}{p} \text{Tr} (C_1 - C_2)^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEG (sets A, E)</td>
<td>2.4</td>
<td>10.9</td>
<td>1.1</td>
</tr>
</tbody>
</table>
Asymptotic performances: EEG data

- EEG data are “variance-dominant”

<table>
<thead>
<tr>
<th>DATASETS</th>
<th>$|\mu_1^0 - \mu_2^0|^2$</th>
<th>$\frac{1}{\sqrt{p}} \text{TR} (C_1 - C_2)^2$</th>
<th>$\frac{1}{p} \text{TR} (C_1 - C_2)^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEG (sets A, E)</td>
<td>2.4</td>
<td>10.9</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Figure: Spectral clustering of the EEG database for varying $\frac{\alpha}{\beta}$.
Outline

Basics of Random Matrix Theory
 Motivation: Large Sample Covariance Matrices
 Spiked Models

Applications
 Reminder on Spectral Clustering Methods
 Kernel Spectral Clustering
 Kernel Spectral Clustering: The case \(f'(\tau) = 0 \)
 Kernel Spectral Clustering: The case \(f'(\tau) = \frac{\alpha}{\sqrt{p}} \)

Semi-supervised Learning
 Semi-supervised Learning improved
 Random Feature Maps, Extreme Learning Machines, and Neural Networks
 Community Detection on Graphs

Perspectives
Problem Statement

Context: Similar to clustering:

- Classify $x_1, \ldots, x_n \in \mathbb{R}^p$ in k classes, with n_l labelled and n_u unlabelled data.
Problem Statement

Context: Similar to clustering:
- Classify $x_1, \ldots, x_n \in \mathbb{R}^p$ in k classes, with n_l labelled and n_u unlabelled data.
- Problem statement: give scores F_{ia} ($d_i = [K1n]_i$)

$$F = \arg\min_{F \in \mathbb{R}^{n \times k}} \sum_{a=1}^{k} \sum_{i,j} K_{ij} (F_{ia} d_i^\alpha - F_{ja} d_j^\alpha)^2$$

such that $F_{ia} = \delta\{x_i \in C_a\}$, for all labelled x_i.

Problem Statement

Context: Similar to clustering:

- Classify \(x_1, \ldots, x_n \in \mathbb{R}^p \) in \(k \) classes, with \(n_l \) labelled and \(n_u \) unlabelled data.
- Problem statement: give scores \(F_{ia} \) (\(d_i = [K1n]_i \))

\[
F = \arg\min_{F \in \mathbb{R}^{n \times k}} \sum_{a=1}^{k} \sum_{i,j} K_{ij}(F_{ia}d_i^{\alpha-1} - F_{ja}d_j^{\alpha-1})^2
\]

such that \(F_{ia} = \delta\{x_i \in C_a\} \), for all labelled \(x_i \).

Solution: for \(F^{(u)} \in \mathbb{R}^{n_u \times k} \), \(F^{(l)} \in \mathbb{R}^{n_l \times k} \) scores of unlabelled/labelled data,

\[
F^{(u)} = \left(I_{n_u} - D_{(u)}^{-\alpha}K_{(u,u)}D_{(u)}^{\alpha-1}\right)^{-1}D_{(u)}^{-\alpha}K_{(u,l)}D_{(l)}^{\alpha-1}F^{(l)}
\]

where we naturally decompose

\[
K = \begin{bmatrix} K_{(l,l)} & K_{(l,u)} \\ K_{(u,l)} & K_{(u,u)} \end{bmatrix}
\]

\[
D = \begin{bmatrix} D_{(l)} & 0 \\ 0 & D_{(u)} \end{bmatrix} = \text{diag}\{K1n\}.
\]
The finite-dimensional intuition: What we expect

Figure: Typical expected performance output
The finite-dimensional intuition: What we expect

Figure: Typical expected performance output
The finite-dimensional intuition: What we expect

Figure: Typical expected performance output
Figure: Vectors $[F(u)]_{\cdot,a}$, $a = 1, 2, 3$, for 3-class MNIST data (zeros, ones, twos), $n = 192$, $p = 784$, $n_l/n = 1/16$, Gaussian kernel.
Figure: Vectors $[F^{(u)}]_{a}$, $a = 1, 2, 3$, for 3-class MNIST data (zeros, ones, twos), $n = 192$, $p = 784$, $n_l / n = 1/16$, Gaussian kernel.
Figure: Vectors $[F(u)]_{\cdot,a}$, $a = 1, 2, 3$, for 3-class MNIST data (zeros, ones, twos), $n = 192$, $p = 784$, $n_l/n = 1/16$, Gaussian kernel.
Figure: Centered Vectors \([F_{(u)}^0]., a = [F(u) - \frac{1}{k} F(u) 1_k 1_k^T]., a\), 3-class MNIST data (zeros, ones, twos), \(\alpha = 0\), \(n = 192\), \(p = 784\), \(n_l/n = 1/16\), Gaussian kernel.
MNIST Data Example

\[F(u) - \frac{1}{k} \sum_{k=1}^{k} F(u) \cdot \alpha = \left[F(u) - \frac{1}{k} F(u) 1_k 1_k^T \right] \cdot \alpha, \] 3-class MNIST data (zeros, ones, twos), \(\alpha = 0, n = 192, p = 784, n_l/n = 1/16, \) Gaussian kernel.

Figure: Centered Vectors \([F(u)]_{\cdot 1} (Zeros)\) and \([F(u)]_{\cdot 2} (Ones)\)
MNIST Data Example

Figure: Centered Vectors $[F^O_{(u)}]_{:,a} = [F(u) - \frac{1}{k} \sum_{b=1}^{k} F(u)^T]_{:,a}$, 3-class MNIST data (zeros, ones, twos), $\alpha = 0$, $n = 192$, $p = 784$, $n_l/n = 1/16$, Gaussian kernel.
Theoretical Findings

Method: Assume $n_l/n \rightarrow c_l \in (0, 1)$

- We aim at characterizing

$$F^{(u)} = \left(I_{n_u} - D_{(u)}^{-\alpha} K_{(u,u)} D_{(u)}^{\alpha-1} \right)^{-1} D_{(u)}^{-\alpha} K_{(u,l)} D_{(l)}^{\alpha-1} F^{(l)}$$
Theoretical Findings

Method: Assume \(n_l/n \to c_l \in (0, 1) \)

- We aim at characterizing

\[
F^{(u)} = \left(I_{n_u} - D^{-\alpha}_u K(u,u) D^{\alpha - 1}_u \right)^{-1} D^{-\alpha}_u K(u,l) D^{\alpha - 1}_l F(l)
\]

- Taylor expansion of \(K \) as \(n, p \to \infty \),

\[
K(u,u) = f(\tau) 1_{n_u} 1_{n_u}^T + O\|\cdot\|(n^{-\frac{1}{2}})
\]

\[
D_u = nf(\tau) I_{n_u} + O(n^{\frac{1}{2}})
\]

and similarly for \(K(u,l), D(l) \).
Theoretical Findings

Method: Assume $n_l/n \to c_l \in (0, 1)$

- We aim at characterizing

\[
F^{(u)} = \left(I_{n_u} - D_{(u)}^{-\alpha} K_{(u,u)} D_{(u)}^{\alpha-1} \right)^{-1} D_{(u)}^{-\alpha} K_{(u,l)} D_{(l)}^{\alpha-1} F^{(l)}
\]

- Taylor expansion of K as $n, p \to \infty$,

\[
K_{(u,u)} = f(\tau) n_u 1_n u^T 1_n u + O \| \cdot \| (n^{-\frac{1}{2}})
\]

\[
D_{(u)} = n f(\tau) I_{n_u} + O(n^{\frac{1}{2}})
\]

and similarly for $K_{(u,l)}$, $D_{(l)}$.

- So that

\[
\left(I_{n_u} - D_{(u)}^{-\alpha} K_{(u,u)} D_{(u)}^{\alpha-1} \right)^{-1} = \left(I_{n_u} - \frac{1_n u 1_n u^T}{n} + O \| \cdot \| (n^{-\frac{1}{2}}) \right)^{-1}
\]

easily Taylor expanded.
Main Results

Results: Assuming \(n_l/n \to c_l \in (0, 1) \), by previous Taylor expansion,

- In the first order,

\[
F_{\cdot,a}(u) = C \frac{n_l, a}{n} \left[v + \alpha \frac{t_a 1 n_u}{\sqrt{n}} \right] + O(n^{-1})
\]

where \(v = O(1) \) random vector (entry-wise) and \(t_a = \frac{1}{\sqrt{p}} \text{tr} C_\alpha^0 \).

Informative terms
Main Results

Results: Assuming $n_l/n \to c_l \in (0, 1)$, by previous Taylor expansion,

- In the first order,

\[
F_{\cdot,a}^{(u)} = C \frac{n_l,a}{n} \left[v + \alpha \frac{t_a 1_{n_u}}{\sqrt{n}} \right] + O(n^{-1})
\]

where $v = O(1)$ random vector (entry-wise) and $t_a = \frac{1}{\sqrt{p}} \text{tr} C_a^\circ$.

- Consequences:
Main Results

Results: Assuming $n_l/n \to c_l \in (0, 1)$, by previous Taylor expansion,

- In the first order,

$$F^{(u)}_{\cdot, a} = C \frac{n_{l,a}}{n} \left[v + \alpha \frac{t_a 1_{n,u}}{\sqrt{n}} \right] + O(n^{-1})$$

where $v = O(1)$ random vector (entry-wise) and $t_a = \frac{1}{\sqrt{p}} \text{tr} C^\circ_a$.

- **Consequences:**
 - Random non-informative bias v
Main Results

Results: Assuming $n_l/n \to c_l \in (0, 1)$, by previous Taylor expansion,

- In the first order,

\[
F_{:,a}^{(u)} = C \frac{n_l,a}{n} \left[v + \alpha \frac{t_a 1_n u}{\sqrt{n}} \right] + O(n^{-1}) + O(n^{-1/2})
\]

where $v = O(1)$ random vector (entry-wise) and $t_a = \frac{1}{\sqrt{p}} \text{tr} C_a^\circ$.

- Consequences:
 - Random non-informative bias v
 - Strong Impact of n_l,a

\[
F_{:,a}^{(u)} \text{ to be scaled by } n_l,a
\]
Main Results

Results: Assuming $n_l/n \to c_l \in (0, 1)$, by previous Taylor expansion,

- In the first order,

$$F_{\cdot,a}(u) = C \frac{n_l,a}{n} \left(v + \alpha \frac{t_a 1_{n_u}}{\sqrt{n}} \right) + O(n^{-1})$$

Informative terms

where $v = O(1)$ random vector (entry-wise) and $t_a = \frac{1}{\sqrt{p}} \text{tr } C_\circ^a$.

- Consequences:
 - Random non-informative bias v
 - Strong Impact of n_l,a

 $F_{\cdot,a}(u)$ to be scaled by n_l,a

 Additional per-class bias $\alpha t_a 1_{n_u}$

 $\alpha = 0 + \beta \sqrt{p}$.

Main Results

As a consequence of the remarks above, we take

$$\alpha = \frac{\beta}{\sqrt{p}}$$

and define

$$\hat{F}_{i,a}^{(u)} = \frac{n_p}{n_{l,a}} F_{i,a}^{(u)}.$$
Main Results

As a consequence of the remarks above, we take

$$\alpha = \frac{\beta}{\sqrt{p}}$$

and define

$$\hat{F}_{i,a}^{(u)} = \frac{np}{n_l,a} F_{i,a}^{(u)}.$$

Theorem

For $x_i \in C_b$ unlabelled,

$$\hat{F}_{i,.} - G_b \to 0, \ G_b \sim \mathcal{N}(m_b, \Sigma_b)$$

where $m_b \in \mathbb{R}^k$, $\Sigma_b \in \mathbb{R}^{k \times k}$ given by

$$(m_b)_a = -\frac{2f'(\tau)}{f(\tau)} \tilde{M}_{ab} + \frac{f''(\tau)}{f(\tau)} \tilde{t}_a \tilde{t}_b + \frac{2f'''(\tau)}{f(\tau)^2} \tilde{T}_{ab} - \frac{f'(\tau)^2}{f(\tau)^2} t_a t_b + \frac{\beta}{n_l} \frac{f'(\tau)}{f(\tau)} t_a + B_b$$

$$(\Sigma_b)_{a_1 a_2} = \frac{2trC_b^2}{p} \left(\frac{f'(\tau)^2}{f(\tau)^2} - \frac{f''(\tau)}{f(\tau)} \right)^2 t_{a_1} t_{a_2} + \frac{4f'(\tau)^2}{f(\tau)^2} \left[[M^T C_b M]_{a_1 a_2} + \frac{\delta_{a_2} a_2 p}{n_l a_1} T_{b a_1} \right]$$

with t, T, M as before, $\tilde{X}_a = X_a - \sum_{d=1}^{k} \frac{n_l,d}{n_l} X_d^o$ and B_b bias independent of a.
Main Results

Corollary (Asymptotic Classification Error)

For \(k = 2 \) classes and \(a \neq b \),

\[
P(\hat{F}_{i,a} > \hat{F}_{ib} | x_i \in C_b) - Q \left(\frac{(m_b)_b - (m_b)_a}{\sqrt{[1, -1] \Sigma_b [1, -1]^T}} \right) \to 0.
\]

Some consequences:

- non obvious choices of appropriate kernels
- non obvious choice of optimal \(\beta \) (induces a possibly beneficial bias)
- importance of \(n_l \) versus \(n_u \).
Main Results

Corollary (Asymptotic Classification Error)

For \(k = 2 \) classes and \(a \neq b \),

\[
P(\hat{F}_{i,a} > \hat{F}_{ib} \mid x_i \in C_b) = Q\left(\frac{(m_b)_b - (m_b)_a}{\sqrt{[1, -1] \Sigma_b [1, -1]^T}}\right) \to 0.
\]

Some consequences:

- non obvious choices of appropriate kernels
- non obvious choice of optimal \(\beta \) (induces a possibly beneficial bias)
- importance of \(n_l \) versus \(n_u \).
Figure: Performance as a function of α, for 3-class MNIST data (zeros, ones, twos), $n = 192$, $p = 784$, $n_l/n = 1/16$, Gaussian kernel.
MNIST Data Example

![Graph showing performance as a function of α for 3-class MNIST data (zeros, ones, twos). $n = 192$, $p = 784$, $n_l/n = 1/16$, Gaussian kernel.]

Figure: Performance as a function of α, for 3-class MNIST data (zeros, ones, twos), $n = 192$, $p = 784$, $n_l/n = 1/16$, Gaussian kernel.
Figure: Performance as a function of α, for 2-class MNIST data (zeros, ones), $n = 1568$, $p = 784$, $n_1/n = 1/16$, Gaussian kernel.
Figure: Performance as a function of α, for 2-class MNIST data (zeros, ones), $n = 1568$, $p = 784$, $n_t/n = 1/16$, Gaussian kernel.
Reminder:
For \(x_i \in C_b \) unlabelled, \(\hat{F}_{i,.} - G_b \to 0 \), \(G_b \sim \mathcal{N}(m_b, \Sigma_b) \) with

\[
(m_b)_a = -\frac{2f'(\tau)}{f(\tau)} \tilde{M}_{ab} + \frac{f''(\tau)}{f(\tau)} \tilde{t}_a \tilde{t}_b + \frac{2f''(\tau)}{f(\tau)} \tilde{T}_{ab} - \frac{f'(\tau)^2}{f(\tau)^2} t_a t_b + \beta \frac{n}{n_l} \frac{f'(\tau)}{f(\tau)} t_a + B_b
\]

\[
(\Sigma_b)_{a1a2} = \frac{2\text{tr} C_b^2}{p} \left(\frac{f'(\tau)^2}{f(\tau)^2} - \frac{f''(\tau)}{f(\tau)} \right)^2 t_{a1} t_{a2} + \frac{4f'(\tau)^2}{f(\tau)^2} \left([M^T C_b M]_{a1a2} + \frac{\delta_{a1}^2 p}{n_l,a1} T_{ba1} \right)
\]

with \(t, T, M \) as before, \(\tilde{X}_a = X_a - \sum_{d=1}^{k} \frac{n_l,d}{n_l} X_d^c \) and \(B_b \) bias independent of \(a \).
Is semi-supervised learning really semi-supervised?

Reminder:
For \(x_i \in C_b \) unlabelled, \(\hat{F}_{i,.} - G_b \to 0 \), \(G_b \sim \mathcal{N}(m_b, \Sigma_b) \) with

\[
(m_b)_a = -\frac{2f'(\tau)}{f(\tau)} \tilde{M}_{ab} + \frac{f''(\tau)}{f(\tau)} \tilde{t}_a \tilde{t}_b + \frac{2f''(\tau)}{f(\tau)} \tilde{T}_{ab} - \frac{f'(\tau)^2}{f(\tau)^2} t_a t_b + \beta \frac{n}{n_l} \frac{f'(\tau)}{f(\tau)} t_a + B_b
\]

\[
(\Sigma_b)_{a_1 a_2} = \frac{2\text{tr} C_b^2}{p} \left(\frac{f'(\tau)^2}{f(\tau)^2} - \frac{f''(\tau)}{f(\tau)} \right)^2 t_{a_1} t_{a_2} + \frac{4f'(\tau)^2}{f(\tau)^2} \left([M^T C_b M]_{a_1 a_2} + \frac{\delta_{a_1 a_2} p}{n_{l,a_1} T_{ba}} \right)
\]

with \(t, T, M \) as before, \(\tilde{X}_a = X_a - \sum_{d=1}^k \frac{n_{l,d}}{n_l} X_d^o \) and \(B_b \) bias independent of \(a \).

The problem with unlabelled data:

- Result does not depend on \(n_u \)!
 \(\longrightarrow \) increasing \(n_u \) asymptotically non beneficial.
Is semi-supervised learning really semi-supervised?

Reminder:
For $x_i \in C_b$ unlabelled, $\hat{F}_{i,.} - G_b \to 0$, $G_b \sim N(m_b, \Sigma_b)$ with

$$(m_b)_a = -\frac{2f'(\tau)}{f(\tau)} \tilde{M}_{ab} + \frac{f''(\tau)}{f(\tau)} \tilde{t}_a \tilde{t}_b + \frac{2f''(\tau)}{f(\tau)} \tilde{T}_{ab} - \frac{f'(\tau)^2}{f(\tau)^2} t_a t_b + \beta \frac{n}{n_l} \frac{f'(\tau)}{f(\tau)} t_a + B_b$$

$$(\Sigma_b)_{a_1 a_2} = 2\text{tr} C_b^2 \left(\frac{f'(\tau)^2}{f(\tau)^2} - \frac{f''(\tau)}{f(\tau)} \right)^2 t_{a_1} t_{a_2} + \frac{4f'(\tau)^2}{f(\tau)^2} \left([M^T C_b M]_{a_1 a_2} + \frac{\delta_{a_1}^a p}{n_l, a_1} T_{ba_1} \right)$$

with t, T, M as before, $\tilde{X}_a = X_a - \sum_{d=1}^k \frac{n_{l,d}}{n_l} X^o_d$ and B_b bias independent of a.

The problem with unlabelled data:

- Result does not depend on n_u!
 \longrightarrow increasing n_u asymptotically non beneficial.

- Even best Laplacian regularizer brings SSL to be merely supervised learning.
Outline

Basics of Random Matrix Theory
 Motivation: Large Sample Covariance Matrices
 Spiked Models

Applications
 Reminder on Spectral Clustering Methods
 Kernel Spectral Clustering
 Kernel Spectral Clustering: The case $f'(\tau) = 0$
 Kernel Spectral Clustering: The case $f'(\tau) = \frac{\alpha}{\sqrt{p}}$

Semi-supervised Learning
 Semi-supervised Learning improved
 Random Feature Maps, Extreme Learning Machines, and Neural Networks
 Community Detection on Graphs

Perspectives
Resurrecting SSL by centering

Reminder:

\[F = \arg\min_{F \in \mathbb{R}^{n \times k}} \sum_{a=1}^{k} \sum_{i,j} K_{ij} (F_{ia} d_i^\alpha - F_{ja} d_j^\alpha)^2 \]

with \(F_{ia} = \delta\{x_i \in \mathcal{C}_a\} \)

\[\Leftrightarrow F^{(u)} = \left(I_n - D_{(u)}^{-\alpha} K_{(u,u)} D_{(u)}^{\alpha-1} \right)^{-1} D_{(u)}^{-\alpha} K_{(u,l)} D_{(l)}^{\alpha-1} F^{(l)}. \]
Resurrecting SSL by centering

Reminder:

\[F = \arg\min_{F \in \mathbb{R}^{n \times k}} \sum_{a=1}^{k} \sum_{i,j} K_{ij} (F_{ia} d_i^{\alpha-1} - F_{ja} d_j^{\alpha-1})^2 \quad \text{with} \quad F_{ia}^{(l)} = \delta \{ x_i \in C_a \} \]

\[\iff F^{(u)} = \left(I_{nu} - D_{(u)}^{-\alpha} K(u,u) D_{(u)}^{\alpha-1} \right)^{-1} D_{(u)}^{-\alpha} K(u,l) D_{(l)}^{\alpha-1} F^{(l)}. \]

Domination of score flattening:

- Finite-dimensional intuition imposes \(K_{ij} \) decreasing with \(\|x_i - x_j\| \Rightarrow \) solutions \(F_{ia} \) tend to “flatten”
Reminder:

\[F = \arg\min_{F \in \mathbb{R}^{n \times k}} \sum_{a=1}^{k} \sum_{i,j} K_{ij} (F_{ia} d_i^{\alpha-1} - F_{ja} d_j^{\alpha-1})^2 \quad \text{with} \quad F_{ia} = \delta\{x_i \in C_a\} \]

\[\iff F^{(u)} = \left(I_{n_u} - D^{-\alpha} (u) K(u,u) D^{\alpha-1} (u) \right)^{-1} D^{-\alpha} (u) K(u,l) D^{\alpha-1} (l) F^{(l)}. \]

Domination of score flattening:

- Finite-dimensional intuition imposes \(K_{ij} \) decreasing with \(\|x_i - x_j\| \Rightarrow \) solutions \(F_{ia} \) tend to “flatten”

- **Consequence:** \(D^{-\alpha} (u) K(u,u) D^{\alpha-1} (u) \approx \frac{1}{n} 1_{n_u} 1_{n_u}^T \) and clustering information vanishes (not so obvious but can be shown).
Resurrecting SSL by centering

Reminder:

\[F = \arg\min_{F \in \mathbb{R}^{n \times k}} \sum_{a=1}^{k} \sum_{i,j} K_{ij} (F_{ia} d_i^{\alpha-1} - F_{ja} d_j^{\alpha-1})^2 \quad \text{with} \quad F_{ia}^{(l)} = \delta\{x_i \in C_a\} \]

\[\Leftrightarrow F^{(u)} = \left(I_{nu} - D^{-\alpha}(u) K(u,u) D^{\alpha-1}(u) \right)^{-1} D^{-\alpha}(u) K(u,l) D^{\alpha-1}(l) F^{(l)}. \]

Domination of score flattening:

- Finite-dimensional intuition imposes \(K_{ij} \) decreasing with \(\|x_i - x_j\| \) ⇒ solutions \(F_{ia} \) tend to “flatten”

- **Consequence:** \(D^{-\alpha}(u) K(u,u) D^{\alpha-1}(u) \approx \frac{1}{n} 1_{nu} 1_{nu}^T \) and clustering information vanishes (not so obvious but can be shown).

Solution:

- Forgetting finite-dimensional intuition: “recenter” \(K \) to kill flattening, i.e., use

\[\tilde{K} = PKP, \quad P = I_n - \frac{1}{n} 1_n 1_n^T. \]
Theoretical results

Setting

- $K = 2$, $x_i \sim \mathcal{N}(\pm \mu, I_p)$
- scores $f_u = (\alpha I_{n_u} - \tilde{K}_{uu})^{-1} \tilde{K}_{ul} f_l$.

\textbf{Theorem (Asymptotic mean and variance)}

As $n \to \infty$, $j_u(f_u - m_{1n_u})_T (f_u - m_{1n_u}) \to 0$, $(f_u - m_{1n_u})_T D_j (f_u - m_{1n_u}) \to 0$

where, for $i = 1, 2$, $m_i \equiv -c_{ul}(1 - \left[1 + c_{cl}c_1 \parallel \mu \parallel^2 c_{00} \delta_1 + \delta_2 \right]^{-1})$

$\sigma_i^2 \equiv s_i^2 c_{li}^2 \parallel \mu \parallel^2 c_{00} (1 + \delta_2)^2 - c_{ul} \delta_2^2 (1 + c_{cl}c_2 \parallel \mu \parallel^2 c_{00} \delta_1 + \delta_2)^2 + s_i^2 c_{li}^2 \parallel \mu \parallel^2 c_{00} (1 + c_{cl}c_2 \parallel \mu \parallel^2 c_{00} \delta_1 + \delta_2)^2$

\textbf{with} δ defined as $\delta \equiv -\frac{1}{2} + c_{ul} - c_{00} + \text{sign}(\alpha) \sqrt{\left(\alpha - \alpha - \alpha + \alpha\right)\left(\alpha - \alpha + \alpha\right)^2} \alpha$.

70 / 113
Theoretical results

Setting

- $K = 2$, $x_i \sim \mathcal{N}(\pm \mu, I_p)$
- scores $f_u = (\alpha I_{n_u} - \tilde{K}_{uu})^{-1} \tilde{K}_{ul} f_l$.

Theorem (Asymptotic mean and variance)

As $n \to \infty$,

$$\frac{j_i^{(u)\top} f_u}{n_{ui}} - m_i \xrightarrow{a.s.} 0, \quad \frac{(f_u - m_i 1_{n_u})\top D_i^{(u)} (f_u - m_i 1_{n_u})}{n_{ui}} - \sigma_i^2 \xrightarrow{a.s.} 0$$

where, for $i = 1, 2$,

$$m_i \equiv -\frac{c_l}{c_u} s_i \left(1 - \left[1 + \frac{c_u c_1 c_2 \|\mu\|^2 c_0}{\delta (1 + \delta)}\right]^{-1}\right)$$

$$\sigma_i^2 \equiv \frac{s_i^2 c_l^2 c_i^2 \|\mu\|^2 \delta^2}{c_0^2 (1 + \delta)^2 - c_u c_0 \delta^2} \frac{1 + \frac{c_u c_1 c_2 \|\mu\|^2}{c_0} \frac{\delta^2}{(1 + \delta)^2}}{\left(1 + \frac{c_u c_1 c_2 \|\mu\|^2}{c_0} \frac{\delta}{1 + \delta}\right)^2} + \frac{s_i^2 c_l c_i}{1 - c_i} \frac{\delta^2}{c_0 (1 + \delta)^2 - c_u \delta^2}$$

with δ defined as

$$\delta \equiv -\frac{1}{2} + \frac{c_u - c_0 + \text{sign}(\alpha) \sqrt{(\alpha - \alpha_-)(\alpha - \alpha_+)}}{2\alpha}.$$
Performance as a function of n_u, n_l

Figure: Correct classification rate, at optimal α, as a function of (i) n_u for fixed $p/n_l = 5$ (blue) and (ii) n_l for fixed $p/n_u = 5$ (black); $c_1 = c_2 = \frac{1}{2}$; different values for $\|\mu\|$. Comparison to optimal Neyman–Pearson performance for known μ (in red).
The spike case or not (1)

\textbf{Marčenko–Pastur + spike limit}

- limiting eigenvalue distribution is \textit{Marčenko–Pastur law}

\[
\text{If } \|\mu\|_2 > 1, \text{ then there is a leading isolated eigenvalue.}
\]

In the presence of a spike, the empirical eigenvalues can diverge from the \textit{Marčenko–Pastur law}.
The spike case or not (1)

Marčenko–Pastur + spike limit

- limiting eigenvalue distribution is Marčenko–Pastur law
- presence of isolated spike if

\[\|\mu\|^2 > \frac{1}{c_1 c_2} \sqrt{\frac{c_0}{c_u}}. \]
The spike case or not (1)

Marčenko–Pastur + spike limit

- limiting eigenvalue distribution is Marčenko–Pastur law
- presence of **isolated spike iif**

\[
\|\mu\|^2 > \frac{1}{c_1 c_2} \sqrt{\frac{c_0}{c_u}}.
\]

- determines **existence or not of unsupervised spectral clustering solution**.
The spike case or not (1)

Marčenko–Pastur + spike limit
- limiting eigenvalue distribution is Marčenko–Pastur law
- presence of isolated spike iff

\[
\|\mu\|^2 > \frac{1}{c_1 c_2} \sqrt{\frac{c_0}{c_u}}.
\]

- determines existence or not of unsupervised spectral clustering solution.

Figure: Eigenvalue distribution of K_{uu} versus the (scaled) Marčenko–Pastur law with Stieltjes transform δ, for $c_u = \frac{9}{10}$, $c_0 = \frac{1}{2}$. The value $\|\mu\| = 2.5$ ensures the presence of a leading isolated eigenvalue (spike).
The spike case or not (2)

\[\delta(\alpha) = -\left(1 + c_u c_1 c_2 c_0^{-1} \|\mu\|^2\right)^{-1} \]

Figure: Asymptotic correct classification probability \(\Phi \left(\frac{m_1}{\sigma_1} \right) \) as a function of \(\alpha \) for \(c_u = \frac{9}{10} \), \(c_0 = \frac{1}{2} \), \(c_1 = \frac{1}{2} \), two different values of \(\|\mu\| \), below and above phase transition.
SSL: the road from supervised to unsupervised

Figure: Theory (solid) versus practice (dashed; from right to left: $n = 400, 1000, 4000$): correct classification probability as a function of α for $c_u = \frac{9}{10}$, $c_0 = \frac{1}{2}$, $c_1 = \frac{1}{2}$, and left: $\|\mu\| = 1.5$ (below phase transition); right: $\|\mu\| = 2.5$ (above phase transition). Different values of n.
Experimental evidence: MNIST

<table>
<thead>
<tr>
<th>Digits</th>
<th>(0,8)</th>
<th>(2,7)</th>
<th>(6,9)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$n_u = 100$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centered kernel</td>
<td>89.5±3.6</td>
<td>89.5±3.4</td>
<td>85.3±5.9</td>
</tr>
<tr>
<td>Iterated centered kernel</td>
<td>89.5±3.6</td>
<td>89.5±3.4</td>
<td>85.3±5.9</td>
</tr>
<tr>
<td>Laplacian</td>
<td>75.5±5.6</td>
<td>74.2±5.8</td>
<td>70.0±5.5</td>
</tr>
<tr>
<td>Iterated Laplacian</td>
<td>87.2±4.7</td>
<td>86.0±5.2</td>
<td>81.4±6.8</td>
</tr>
<tr>
<td>Manifold</td>
<td>88.0±4.7</td>
<td>88.4±3.9</td>
<td>82.8±6.5</td>
</tr>
<tr>
<td></td>
<td>$n_u = 1000$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centered kernel</td>
<td>92.2±0.9</td>
<td>92.5±0.8</td>
<td>92.6±1.6</td>
</tr>
<tr>
<td>Iterated centered kernel</td>
<td>92.3±0.9</td>
<td>92.5±0.8</td>
<td>92.9±1.4</td>
</tr>
<tr>
<td>Laplacian</td>
<td>65.6±4.1</td>
<td>74.4±4.0</td>
<td>69.5±3.7</td>
</tr>
<tr>
<td>Iterated Laplacian</td>
<td>92.2±0.9</td>
<td>92.4±0.9</td>
<td>92.0±1.6</td>
</tr>
<tr>
<td>Manifold</td>
<td>91.1±1.7</td>
<td>91.4±1.9</td>
<td>91.4±2.0</td>
</tr>
</tbody>
</table>

Table: Comparison of classification accuracy (%) on MNIST datasets with $n_l = 10$. Computed over 1000 random iterations for $n_u = 100$ and 100 for $n_u = 1000$.
Experimental evidence: Traffic signs (HOG features)

<table>
<thead>
<tr>
<th>Class ID</th>
<th>(2,7)</th>
<th>(9,10)</th>
<th>(11,18)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n_u = 100$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centered kernel</td>
<td>79.0±10.4</td>
<td>77.5±9.2</td>
<td>78.5±7.1</td>
</tr>
<tr>
<td>Iterated centered kernel</td>
<td>85.3±5.9</td>
<td>89.2±5.6</td>
<td>90.1±6.7</td>
</tr>
<tr>
<td>Laplacian</td>
<td>73.8±9.8</td>
<td>77.3±9.5</td>
<td>78.6±7.2</td>
</tr>
<tr>
<td>Iterated Laplacian</td>
<td>83.7±7.2</td>
<td>88.0±6.8</td>
<td>87.1±8.8</td>
</tr>
<tr>
<td>Manifold</td>
<td>77.6±8.9</td>
<td>81.4±10.4</td>
<td>82.3±10.8</td>
</tr>
<tr>
<td>$n_u = 1000$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centered kernel</td>
<td>83.6±2.4</td>
<td>84.6±2.4</td>
<td>88.7±9.4</td>
</tr>
<tr>
<td>Iterated centered kernel</td>
<td>84.8±3.8</td>
<td>88.0±5.5</td>
<td>96.4±3.0</td>
</tr>
<tr>
<td>Laplacian</td>
<td>72.7±4.2</td>
<td>88.9±5.7</td>
<td>95.8±3.2</td>
</tr>
<tr>
<td>Iterated Laplacian</td>
<td>83.0±5.5</td>
<td>88.2±6.0</td>
<td>92.7±6.1</td>
</tr>
<tr>
<td>Manifold</td>
<td>77.7±5.8</td>
<td>85.0±9.0</td>
<td>90.6±8.1</td>
</tr>
</tbody>
</table>

Table: Comparison of classification accuracy (%) on German Traffic Sign datasets with $n_l = 10$. Computed over 1000 random iterations for $n_u = 100$ and 100 for $n_u = 1000$.
Outline

Basics of Random Matrix Theory
 Motivation: Large Sample Covariance Matrices
 Spiked Models

Applications
 Reminder on Spectral Clustering Methods
 Kernel Spectral Clustering
 Kernel Spectral Clustering: The case $f'(\tau) = 0$
 Kernel Spectral Clustering: The case $f'(\tau) = \frac{\alpha}{\sqrt{p}}$
 Semi-supervised Learning
 Semi-supervised Learning improved
 Random Feature Maps, Extreme Learning Machines, and Neural Networks
 Community Detection on Graphs

Perspectives
Context: Random Feature Map

- (large) input $x_1, \ldots, x_T \in \mathbb{R}^p$
- random $W = \begin{bmatrix} w_1^T \\ \vdots \\ w_n^T \end{bmatrix} \in \mathbb{R}^{n \times p}$
- non-linear activation function σ.

\[X = [x_1, \ldots, x_T] \]
\[\sigma(Wx_t) \]
Context: Random Feature Map

- (large) input $x_1, \ldots, x_T \in \mathbb{R}^p$
- random $W = \begin{bmatrix} w_1^T \\ \vdots \\ w_n^T \end{bmatrix} \in \mathbb{R}^{n \times p}$
- non-linear activation function σ.

Neural Network Model (extreme learning machine): Ridge-regression learning

- small output $y_1, \ldots, y_T \in \mathbb{R}^d$
- ridge-regression output $\beta \in \mathbb{R}^{n \times d}$
Objectives: evaluate training and testing MSE performance as $n, p, T \to \infty$
Random Feature Maps and Extreme Learning Machines

Objectives: evaluate training and testing MSE performance as $n, p, T \to \infty$

- **Training MSE:**

 $$E_{\text{train}} = \frac{1}{T} \sum_{i=1}^{T} \left\| y_i - \beta^T \sigma(Wx_i) \right\|^2 = \frac{1}{T} \left\| Y - \beta^T \Sigma \right\|_F^2$$

 with

 $$\Sigma = \sigma(WX) = \left\{ \sigma(w_i^T x_j) \right\}_{1 \leq i \leq n, 1 \leq j \leq T}$$

 $$\beta = \frac{1}{T} \Sigma \left(\frac{1}{T} \Sigma^T \Sigma + \gamma I_T \right)^{-1} Y.$$
Objectives: evaluate training and testing MSE performance as \(n, p, T \to \infty \)

Training MSE:

\[
E_{\text{train}} = \frac{1}{T} \sum_{i=1}^{T} \| y_i - \beta^T \sigma(W x_i) \|^2 = \frac{1}{T} \| Y - \beta^T \Sigma \|_F^2
\]

with

\[
\Sigma = \sigma(W X) = \left\{ \sigma(w_i^T x_j) \right\}_{1 \leq i \leq n}^{1 \leq j \leq T} \\
\beta = \frac{1}{T} \Sigma \left(\frac{1}{T} \Sigma^T \Sigma + \gamma I_T \right)^{-1} Y.
\]

Testing MSE: upon new pair \((\hat{X}, \hat{Y})\) of length \(\hat{T}\),

\[
E_{\text{test}} = \frac{1}{\hat{T}} \| \hat{Y} - \beta^T \hat{\Sigma} \|_F^2.
\]

where \(\hat{\Sigma} = \sigma(W \hat{X})\).
Preliminary observations:

- Link to resolvent of $\frac{1}{T} \Sigma^T \Sigma$:

$$E_{\text{train}} = \frac{\gamma^2}{T} \text{tr} Y^T Y Q^2 = -\gamma^2 \frac{\partial}{\partial \gamma} \frac{1}{T} \text{tr} Y^T Y Q$$

where $Q = Q(\gamma)$ is the resolvent

$$Q \equiv \left(\frac{1}{T} \Sigma^T \Sigma + \gamma I_T \right)^{-1}$$

with $\Sigma_{ij} = \sigma(w_i^T x_j)$.
Technical Aspects

Preliminary observations:

▶ Link to resolvent of $\frac{1}{T} \Sigma^T \Sigma$:

$$E_{\text{train}} = \frac{\gamma^2}{T} \text{tr} \ Y^T Y Q^2 = -\gamma^2 \frac{\partial}{\partial \gamma} \frac{1}{T} \text{tr} \ Y^T Y Q$$

where $Q = Q(\gamma)$ is the resolvent

$$Q \equiv \left(\frac{1}{T} \Sigma^T \Sigma + \gamma I_T \right)^{-1}$$

with $\Sigma_{ij} = \sigma(w_i^T x_j)$.

Central object: resolvent $E[Q]$.
Main Technical Result

Theorem [Asymptotic Equivalent for $E[Q]$]

For Lipschitz σ, bounded $\|X\|$, $\|Y\|$, $W = f(Z)$ (entry-wise) with Z standard Gaussian, we have, for all $\varepsilon > 0$,

$$\|E[Q] - \bar{Q}\| < Cn^{\varepsilon - \frac{1}{2}}$$

for some $C' > 0$, where

$$\bar{Q} = \left(\frac{n}{T} \frac{\Phi}{1 + \delta} + \gamma I_T \right)^{-1}$$

$$\Phi \equiv E \left[\sigma(X^T w)\sigma(w^T X) \right]$$

with $w = f(z)$, $z \sim \mathcal{N}(0, I_p)$, and $\delta > 0$ the unique positive solution to

$$\delta = \frac{1}{T} \text{tr} \Phi \bar{Q}.$$
Main Technical Result

Theorem [Asymptotic Equivalent for $E[Q]$]

For Lipschitz σ, bounded $\|X\|$, $\|Y\|$, $W = f(Z)$ (entry-wise) with Z standard Gaussian, we have, for all $\varepsilon > 0$,

$$\|E[Q] - \bar{Q}\| < Cn^{\varepsilon - \frac{1}{2}}$$

for some $C > 0$, where

$$\bar{Q} = \left(\frac{n}{T} \frac{\Phi}{1 + \delta} + \gamma I_T \right)^{-1}$$

$$\Phi = E\left[\sigma(X^T w)\sigma(w^T X) \right]$$

with $w = f(z)$, $z \sim \mathcal{N}(0, I_p)$, and $\delta > 0$ the unique positive solution to

$$\delta = \frac{1}{T} \text{tr} \Phi \bar{Q}.$$

Proof arguments:

- $\sigma(WX)$ has independent rows but dependent columns
- breaks the “trace lemma” argument (i.e., $\frac{1}{p} w^T XAX^T w \simeq \frac{1}{p} \text{tr} XAX^T$)
Main Technical Result

Theorem [Asymptotic Equivalent for $E[Q]$]

For Lipschitz σ, bounded $\|X\|, \|Y\|$, $W = f(Z)$ (entry-wise) with Z standard Gaussian, we have, for all $\varepsilon > 0$,

$$\|E[Q] - \bar{Q}\| < Cn^{\varepsilon - \frac{1}{2}}$$

for some $C > 0$, where

$$\bar{Q} = \left(\frac{n}{T} \frac{\Phi}{1 + \delta} + \gamma I_T \right)^{-1}$$

$$\Phi \equiv E \left[\sigma(X^T w) \sigma(w^T X) \right]$$

with $w = f(z), z \sim \mathcal{N}(0, I_p)$, and $\delta > 0$ the unique positive solution to

$$\delta = \frac{1}{T} \text{tr} \Phi \bar{Q}.$$

Proof arguments:

- $\sigma(WX)$ has independent rows but dependent columns
- breaks the “trace lemma” argument (i.e., $\frac{1}{p} w^T X A X^T w \simeq \frac{1}{p} \text{tr} X A X^T$)

Concentration of measure:

$$P \left(\left| \frac{1}{p} \sigma(w^T X) A \sigma(X^T w) - \frac{1}{p} \text{tr} \Phi A \right| > t \right) \leq Ce^{-cn \min(t, t^2)}$$
Main Technical Result

Values of $\Phi(a, b)$ for $w \sim \mathcal{N}(0, I_p)$,

<table>
<thead>
<tr>
<th>$\sigma(t)$</th>
<th>$\Phi(a, b)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\max(t, 0)$</td>
<td>$\frac{1}{2\pi}</td>
</tr>
<tr>
<td>$</td>
<td>t</td>
</tr>
<tr>
<td>$\text{erf}(t)$</td>
<td>$\frac{2}{\pi} \arcsin \left(\frac{2 a^T b}{\sqrt{(1+2</td>
</tr>
<tr>
<td>$1{t>0}$</td>
<td>$\frac{1}{2} - \frac{1}{2\pi} \arccos(\angle(a, b))$</td>
</tr>
<tr>
<td>$\text{sign}(t)$</td>
<td>$1 - \frac{1}{\pi} \arccos(\angle(a, b))$</td>
</tr>
<tr>
<td>$\cos(t)$</td>
<td>$\exp(-\frac{1}{2} (</td>
</tr>
</tbody>
</table>

where $\angle(a, b) \equiv \frac{a^T b}{||a|| ||b||}$.
Main Technical Result

- **Values of** \(\Phi(a, b) \) **for** \(w \sim \mathcal{N}(0, I_p) \),

<table>
<thead>
<tr>
<th>(\sigma(t))</th>
<th>(\Phi(a, b))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\max(t, 0))</td>
<td>(\frac{1}{2\pi} |a| |b| \left(\angle(a, b) \cos(-\angle(a, b)) + \sqrt{1 - \angle(a, b)^2} \right))</td>
</tr>
<tr>
<td>(</td>
<td>t</td>
</tr>
<tr>
<td>(\text{erf}(t))</td>
<td>(\frac{2}{\pi} \arcsin \left(\frac{2a^Tb}{\sqrt{(1+2|a|^2)(1+2|b|^2)}} \right))</td>
</tr>
<tr>
<td>(\mathbb{1}_{{t>0}})</td>
<td>(\frac{1}{2} - \frac{1}{2\pi} \arccos(\angle(a, b)))</td>
</tr>
<tr>
<td>(\text{sign}(t))</td>
<td>(1 - \frac{1}{2\pi} \arccos(\angle(a, b)))</td>
</tr>
<tr>
<td>(\cos(t))</td>
<td>(\exp(-\frac{1}{2}(|a|^2 + |b|^2)) \cosh(a^Tb))</td>
</tr>
</tbody>
</table>

where \(\angle(a, b) \equiv \frac{a^Tb}{\|a\| \|b\|} \).

- **Value of** \(\Phi(a, b) \) **for** \(w_i \) **i.i.d. with** \(\mathbb{E}[w_i^k] = m_k \ (m_1 = 0) \), \(\sigma(t) = \zeta_2 t^2 + \zeta_1 t + \zeta_0 \)

\[
\Phi(a, b) = \zeta_2^2 \left[m_k^2 \left(2(a^Tb)^2 + \|a\|^2 \|b\|^2 \right) + (m_4 - 3m_2^2)(a^2)^T(b^2) \right] + \zeta_1^2 m_2 a^T b \\
+ \zeta_2 \zeta_1 m_3 \left[(a^2)^T b + a^T(b^2) \right] + \zeta_0^2 m_2 \left[\|a\|^2 + \|b\|^2 \right] + \zeta_0^2
\]

where \((a^2) \equiv [a_1^2, \ldots, a_p^2]^T \).
Main Results

Theorem [Asymptotic E_{train}]

For all $\varepsilon > 0$,

$$n^{\frac{1}{2} - \varepsilon} \left(E_{\text{train}} - \bar{E}_{\text{train}} \right) \rightarrow 0$$

almost surely, where

$$E_{\text{train}} = \frac{1}{T} \left\| Y^T - \Sigma^T \beta \right\|^2_F = \frac{\gamma^2}{T} \text{tr} Y^T Y Q^2$$

$$\bar{E}_{\text{train}} = \frac{\gamma^2}{T} \text{tr} Y^T Y \bar{Q} \left[\frac{1}{n} \text{tr} \Psi \bar{Q}^2 \frac{1}{1 - \frac{1}{n} \text{tr} (\Psi \bar{Q})^2} \Psi + I_T \right] \bar{Q}$$

with $\Psi \equiv \frac{n}{T} \frac{\Phi}{1 + \delta}$.
Main Results

Letting $\hat{X} \in \mathbb{R}^{p \times \hat{T}}$, $\hat{Y} \in \mathbb{R}^{d \times \hat{T}}$ satisfy “similar properties” as (X, Y),

Claim [Asymptotic E_{test}]

For all $\varepsilon > 0$,

$$n^{\frac{1}{2} - \varepsilon} (E_{\text{test}} - \bar{E}_{\text{test}}) \to 0$$

almost surely, where

$$E_{\text{test}} = \frac{1}{\hat{T}} \left\| \hat{Y}^T - \hat{\Sigma}^T \beta \right\|_F^2$$

$$\bar{E}_{\text{test}} = \frac{1}{\hat{T}} \left\| \hat{Y}^T - \Psi_{X\hat{X}} \bar{Q} Y^T \right\|_F^2$$

$$+ \frac{\frac{1}{n} \text{tr} Y^T Y \bar{Q} \Psi \bar{Q}}{1 - \frac{1}{n} \text{tr} (\Psi \bar{Q})^2} \left[\frac{1}{\hat{T}} \text{tr} \Psi \hat{X} \hat{X} - \frac{1}{\hat{T}} \text{tr} (I_T + \gamma \bar{Q})(\Psi_{X\hat{X}} \Psi \hat{X} \hat{X} \bar{Q}) \right]$$

with $\Psi_{AB} = \frac{n}{\hat{T}} \Phi_{AB}^1 + \delta$, $\Phi_{AB} = E[\sigma(A^T w)\sigma(w^T B)]$.
Simulations on MNIST: Lipschitz $\sigma(\cdot)$

Figure: Neural network performance for Lipschitz continuous $\sigma(\cdot)$, as a function of γ, for 2-class MNIST data (sevens, nines), $n = 512$, $T = \hat{T} = 1024$, $p = 784$.

$$
\sigma(t) = t
$$
Simulations on MNIST: Lipschitz $\sigma(\cdot)$

Figure: Neural network performance for Lipschitz continuous $\sigma(\cdot)$, as a function of γ, for 2-class MNIST data (sevens, nines), $n = 512$, $T = \hat{T} = 1024$, $p = 784$.
Simulations on MNIST: Lipschitz $\sigma(\cdot)$

![Graph showing neural network performance for Lipschitz continuous $\sigma(\cdot)$, as a function of γ, for 2-class MNIST data (sevens, nines), $n = 512$, $T = \hat{T} = 1024$, $p = 784$.](image)

Figure: Neural network performance for Lipschitz continuous $\sigma(\cdot)$, as a function of γ, for 2-class MNIST data (sevens, nines), $n = 512$, $T = \hat{T} = 1024$, $p = 784$.
Simulations on MNIST: Lipschitz $\sigma(\cdot)$

Figure: Neural network performance for Lipschitz continuous $\sigma(\cdot)$, as a function of γ, for 2-class MNIST data (sevens, nines), $n = 512$, $T = \hat{T} = 1024$, $p = 784$.
Simulations on MNIST: Lipschitz $\sigma(\cdot)$

Figure: Neural network performance for Lipschitz continuous $\sigma(\cdot)$, as a function of γ, for 2-class MNIST data (sevens, nines), $n = 512$, $T = \hat{T} = 1024$, $p = 784$.

$\sigma(t) = t \quad \sigma(t) = |t| \quad \sigma(t) = \max(t, 0) \quad \sigma(t) = \text{erf}(t)$
Simulations on MNIST: non Lipschitz $\sigma(\cdot)$

Figure: Neural network performance for $\sigma(\cdot)$ either discontinuous or non Lipschitz, as a function of γ, for 2-class MNIST data (sevens, nines), $n = 512$, $T = \hat{T} = 1024$, $p = 784$.
Deeper investigation on Φ

Statistical Assumptions on X

- **Gaussian mixture model**

\[
x_i \in C_a \iff x_i \sim \mathcal{N}(\frac{1}{\sqrt{p}}\mu_a, \frac{1}{p}C_a).
\]

- **Growth rate:** $\|\mu_a\| = O(1)$, $\frac{1}{\sqrt{p}}\text{tr} C_a = O(1)$.
Deeper investigation on Φ

Statistical Assumptions on X

- Gaussian mixture model

$$x_i \in C_a \Leftrightarrow x_i \sim \mathcal{N}\left(\frac{1}{\sqrt{p}}\mu_a, \frac{1}{p}C_a \right).$$

- **Growth rate:** $\|\mu_a^o\| = O(1)$, $\frac{1}{\sqrt{p}} \text{tr} C_a^o = O(1)$.

Theorem

As $p, T \to \infty$, for all $\sigma(\cdot)$ given in next table,

$$\|P\Phi P - P\tilde{\Phi}P\| \overset{a.s.}{\to} 0$$

with

$$\tilde{\Phi} \equiv d_1 \left(\Omega + M \frac{J^T}{\sqrt{p}} \right)^T \left(\Omega + M \frac{J^T}{\sqrt{p}} \right) + d_2 UBU^T + d_0 I_T$$

$$U \equiv \left[\frac{J}{\sqrt{p}}, \phi \right]$$

$$B \equiv \begin{bmatrix} tt^T + 2T & t \\ t^T & 1 \end{bmatrix}$$

and d_0, d_1, d_2 given in next table ($\phi_i = \|w_i\|^2 - E[\|w_i\|^2]$ for $x_i = \frac{1}{\sqrt{p}}\mu_a + w_i$).
Deeper investigation on Φ

Figure: Coefficients d_i in $\tilde{\Phi}$ for different $\sigma(\cdot)$.

<table>
<thead>
<tr>
<th>$\sigma(t)$</th>
<th>d_0</th>
<th>d_1</th>
<th>d_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>0</td>
<td>$\frac{1}{4} \left(1 - \frac{1}{2\pi} \right) \tau$</td>
<td>$\frac{1}{8\pi \tau}$ $(\zeta_+ + \zeta_-)^2$</td>
</tr>
<tr>
<td>ReLU(t)</td>
<td>$\frac{1}{4} - \frac{1}{2\pi} \tau$</td>
<td>$\frac{1}{4}$</td>
<td>$\frac{1}{8\pi \tau}$ $(\zeta_+ + \zeta_-)^2$</td>
</tr>
<tr>
<td>$</td>
<td>t</td>
<td>$</td>
<td>$1 - \frac{2}{\pi}$</td>
</tr>
<tr>
<td>LReLU(t)</td>
<td>$\frac{\pi - 2}{4\pi} (\zeta_+ + \zeta_-)^2 \tau$</td>
<td>$\frac{1}{4} (\zeta_+ - \zeta_-)^2$</td>
<td>0</td>
</tr>
<tr>
<td>$1_{t>0}$</td>
<td>$\frac{1}{4} - \frac{1}{2\pi}$</td>
<td>$\frac{1}{8\tau \pi}$ $(\zeta_+ + \zeta_-)^2$</td>
<td>0</td>
</tr>
<tr>
<td>sign(t)</td>
<td>$\frac{1}{4}$ - $\frac{1}{2\pi}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\zeta_2 t^2 + \zeta_1 t + \zeta_0$</td>
<td>$2\tau^2 \zeta_2$</td>
<td>$\frac{1}{2} \frac{1}{2} + e^{-2\tau} - e^{-\tau}$</td>
<td>$\frac{1}{4} \zeta_2^2$</td>
</tr>
<tr>
<td>cos(t)</td>
<td>$\frac{1}{2} + e^{-2\tau} - e^{-\tau}$</td>
<td>0</td>
<td>$\frac{1}{4}$ $e^{-\tau}$</td>
</tr>
<tr>
<td>sin(t)</td>
<td>$\frac{1}{2} - e^{-2\tau} - \tau e^{-\tau}$</td>
<td>$e^{-\tau}$</td>
<td>0</td>
</tr>
<tr>
<td>erf(t)</td>
<td>$\frac{2}{\pi} \left(\arccos \left(\frac{2\tau}{2\tau + 1} \right) - \frac{2\tau}{2\tau + 1} \right)$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>exp$(-\frac{t^2}{2})$</td>
<td>$\frac{1}{\sqrt{2\tau + 1}} - \frac{1}{\tau + 1}$</td>
<td>0</td>
<td>$\frac{1}{4(\tau + 1)^3}$</td>
</tr>
</tbody>
</table>

where

- ReLU$(t) = \max(t, 0)$
- LReLU$(t) = \zeta_+ \max(t, 0) + \zeta_- \max(-t, 0)$.

Deeper investigation on Φ

Three groups of functions $\sigma(\cdot)$ emerge:
- “means-oriented”: $d_2 = 0$
- “covariance-oriented”: $d_1 = 0$
- “balanced”: $d_1, d_2 \neq 0$
Deeper investigation on Φ

Three groups of functions $\sigma(\cdot)$ emerge:

- "means-oriented": $d_2 = 0$
- "covariance-oriented": $d_1 = 0$
- "balanced": $d_1, d_2 \neq 0$

Case of the Leaky–ReLU

- $\sigma(t) = \varsigma_+ \max(t, 0) + \varsigma_- \max(-t, 0)$
Deeper investigation on Φ

Three groups of functions $\sigma(\cdot)$ emerge:
- “means-oriented”: $d_2 = 0$
- “covariance-oriented”: $d_1 = 0$
- “balanced”: $d_1, d_2 \neq 0$

Case of the Leaky–ReLU
- $\sigma(t) = \varsigma_+ \max(t, 0) + \varsigma_- \max(-t, 0)$

![Figure: Eigenvectors 1 and 2 of $P\Phi P$ for: $\mathcal{N}(\mu_1, C_1)$, $\mathcal{N}(\mu_1, C_2)$, $\mathcal{N}(\mu_2, C_1)$, $\mathcal{N}(\mu_2, C_2)$]
Deeper investigation on Φ: Simulation results

Table: Clustering accuracies for different $\sigma(t)$ on MNIST dataset ($n = 32$).

<table>
<thead>
<tr>
<th>$\sigma(t)$</th>
<th>$T = 32$</th>
<th>$T = 64$</th>
<th>$T = 128$</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>85.31%</td>
<td>88.94%</td>
<td>87.30%</td>
</tr>
<tr>
<td>$1_{t>0}$</td>
<td>86.00%</td>
<td>82.94%</td>
<td>85.56%</td>
</tr>
<tr>
<td>$\text{sign}(t)$</td>
<td>81.94%</td>
<td>83.34%</td>
<td>85.22%</td>
</tr>
<tr>
<td>$\sin(t)$</td>
<td>85.31%</td>
<td>87.81%</td>
<td>87.50%</td>
</tr>
<tr>
<td>$\text{erf}(t)$</td>
<td>86.50%</td>
<td>87.28%</td>
<td>86.59%</td>
</tr>
</tbody>
</table>

Mean-oriented

$	t	$	62.81%	60.41%	57.81%
$\cos(t)$	62.50%	59.56%	57.72%		
$\exp(-\frac{t^2}{2})$	64.00%	60.44%	58.67%		

Cov-oriented

Balanced | (t) | 82.87% | 85.72% | 82.27% |
Deeper investigation on Φ: Simulation results

Table: Clustering accuracies for different $\sigma(t)$ on epileptic EEG dataset ($n = 32$).

<table>
<thead>
<tr>
<th></th>
<th>$\sigma(t)$</th>
<th>$T = 32$</th>
<th>$T = 64$</th>
<th>$T = 128$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEAN-ORIENTED</td>
<td>t</td>
<td>71.81%</td>
<td>70.31%</td>
<td>69.58%</td>
</tr>
<tr>
<td></td>
<td>$1_{t>0}$</td>
<td>65.19%</td>
<td>65.87%</td>
<td>63.47%</td>
</tr>
<tr>
<td></td>
<td>sign(t)</td>
<td>67.13%</td>
<td>64.63%</td>
<td>63.03%</td>
</tr>
<tr>
<td></td>
<td>sin(t)</td>
<td>71.94%</td>
<td>70.34%</td>
<td>68.22%</td>
</tr>
<tr>
<td></td>
<td>erf(t)</td>
<td>69.44%</td>
<td>70.59%</td>
<td>67.70%</td>
</tr>
<tr>
<td>COV-ORIENTED</td>
<td>$</td>
<td>t</td>
<td>$</td>
<td>99.69%</td>
</tr>
<tr>
<td></td>
<td>cos(t)</td>
<td>99.00%</td>
<td>99.38%</td>
<td>99.36%</td>
</tr>
<tr>
<td></td>
<td>$\exp(-\frac{t^2}{2})$</td>
<td>99.81%</td>
<td>99.81%</td>
<td>99.77%</td>
</tr>
<tr>
<td>BALANCED</td>
<td>(t)</td>
<td>84.50%</td>
<td>87.91%</td>
<td>90.97%</td>
</tr>
</tbody>
</table>
Outline

Basics of Random Matrix Theory
 Motivation: Large Sample Covariance Matrices
 Spiked Models

Applications
 Reminder on Spectral Clustering Methods
 Kernel Spectral Clustering
 Kernel Spectral Clustering: The case $f'(\tau) = 0$
 Kernel Spectral Clustering: The case $f'(\tau) = \frac{\alpha}{\sqrt{p}}$
 Semi-supervised Learning
 Semi-supervised Learning improved
 Random Feature Maps, Extreme Learning Machines, and Neural Networks
 Community Detection on Graphs

Perspectives
System Setting

Undirected graph with n nodes, m edges:
- “intrinsic” average connectivity $q_1, \ldots, q_n \sim \mu$ i.i.d.

- “intrinsic” average connectivity $q_1, \ldots, q_n \sim \mu$ i.i.d.
System Setting

Undirected graph with n nodes, m edges:

- “intrinsic” average connectivity $q_1, \ldots, q_n \sim \mu$ i.i.d.
- k classes C_1, \ldots, C_k independent of $\{q_i\}$ of (large) sizes n_1, \ldots, n_k, with preferential attachment C_{ab} between C_a and C_b
System Setting

Undirected graph with n nodes, m edges:

- “intrinsic” average connectivity $q_1, \ldots, q_n \sim \mu$ i.i.d.
- k classes C_1, \ldots, C_k independent of $\{q_i\}$ of (large) sizes n_1, \ldots, n_k, with preferential attachment C_{ab} between C_a and C_b
- Edge probability for nodes $i \in C_{g_i}$:

$$P(i \sim j) = q_i q_j C_{g_i g_j}.$$
System Setting

Undirected graph with n nodes, m edges:

- “intrinsic” average connectivity $q_1, \ldots, q_n \sim \mu$ i.i.d.
- k classes C_1, \ldots, C_k independent of $\{q_i\}$ of (large) sizes n_1, \ldots, n_k, with preferential attachment C_{ab} between C_a and C_b
- edge probability for nodes $i \in C_{g_i}$:
 \[P(i \sim j) = q_i q_j C_{g_i g_j}. \]

- adjacency matrix A with
 \[A_{ij} \sim \text{Bernoulli}(q_i q_j C_{g_i g_j}) \]
Limitations of Classical Methods

- 3 classes with μ bi-modal ($\mu = \frac{3}{4} \delta_{0.1} + \frac{1}{4} \delta_{0.5}$)
Limitations of Classical Methods

- 3 classes with μ bi-modal ($\mu = \frac{3}{4}\delta_{0.1} + \frac{1}{4}\delta_{0.5}$)

(Modularity $A - \frac{dd^T}{2m}$) (Bethe Hessian $D - rA$)
Recall: \[P(i \sim j) = q_i q_j C_{gi gj}. \]
Proposed Regularized Modularity Approach

Recall: \(P(i \sim j) = q_i q_j C_{g_i g_j} \).

Dense Regime Assumptions: Non trivial regime when, \(\forall a, b \), as \(n \to \infty \),

\[
C_{ab} = 1 + \frac{M_{ab}}{\sqrt{n}}, \quad M_{ab} = O(1).
\]
Proposed Regularized Modularity Approach

Recall: \(P(i \sim j) = q_i q_j C_{g_i g_j} \).

Dense Regime Assumptions: Non trivial regime when, \(\forall a, b \), as \(n \to \infty \),

\[
C_{ab} = 1 + \frac{M_{ab}}{\sqrt{n}}, \quad M_{ab} = O(1).
\]

Community information is **weak but highly redundant**
Proposed Regularized Modularity Approach

Recall: \(P(i \sim j) = q_i q_j C_{g_i g_j} \).

Dense Regime Assumptions: Non trivial regime when, \(\forall a, b \) as \(n \to \infty \),

\[
C_{ab} = 1 + \frac{M_{ab}}{\sqrt{n}}, \quad M_{ab} = O(1).
\]

Community information is weak but highly redundant

Considered Matrix:

\[
L_\alpha = (2m)^\alpha \frac{1}{\sqrt{n}} D^{-\alpha} \left[A - \frac{dd^T}{2m} \right] D^{-\alpha}.
\]
Asymptotic Equivalence

Theorem (Limiting Random Matrix Equivalent)
As $n \to \infty$, $\|L_\alpha - \tilde{L}_\alpha\| \xrightarrow{a.s.} 0$, where

$$L_\alpha = (2m)^\alpha \frac{1}{\sqrt{n}} D^{-\alpha} \left[A - \frac{dd^T}{2m} \right] D^{-\alpha}$$

$$\tilde{L}_\alpha = \frac{1}{\sqrt{n}} D^{-\alpha} q X D^{-\alpha} + U \Lambda U^T$$

with $D_q = \text{diag}(\{q_i\})$, X zero-mean random matrix with variance profile,

$$U = \begin{bmatrix} D_q^{1-\alpha} \frac{J}{\sqrt{n}} & D^{-\alpha} X 1_n \end{bmatrix}, \quad \text{rank } k + 1$$

$$\Lambda = \begin{bmatrix} (I_k - 1_k c^T) M (I_k - c 1_k^T) & -1_k \\ 1_k^T & 0 \end{bmatrix}$$

and $J = [j_1, \ldots, j_k]$, $j_a = [0, \ldots, 0, 1_{n_a}^T, 0, \ldots, 0]^T \in \mathbb{R}^n$.
Asymptotic Equivalence

Theorem (Limiting Random Matrix Equivalent)

As $n \to \infty$, $\|L_\alpha - \tilde{L}_\alpha\| \xrightarrow{a.s.} 0$, where

$$L_\alpha = (2m)^\alpha \frac{1}{\sqrt{n}} D^{-\alpha} \left[A - \frac{dd^T}{2m} \right] D^{-\alpha}$$

$$\tilde{L}_\alpha = \frac{1}{\sqrt{n}} D_q^{-\alpha} XD_q^{-\alpha} + U \Lambda U^T$$

with $D_q = \text{diag}(\{q_i\})$, X zero-mean random matrix with variance profile,

$$U = \begin{bmatrix} D_q^{1-\alpha} \frac{J}{\sqrt{n}} & D_q^{-\alpha} X 1_n \end{bmatrix}, \text{ rank } k + 1$$

$$\Lambda = \begin{bmatrix} (I_k - 1_k c^T) M (I_k - c 1_k^T) & -1_k \\ 1_k^T & 0 \end{bmatrix}$$

and $J = [j_1, \ldots, j_k]$, $j_a = [0, \ldots, 0, 1^T_{n_a}, 0, \ldots, 0]^T \in \mathbb{R}^n$.

Consequences:

- isolated eigenvalues beyond phase transition $\Leftrightarrow \lambda(M) > \text{“spectrum edge”}$

Optimal choice α_{opt} of α from study of limiting spectrum.
Asymptotic Equivalence

Theorem (Limiting Random Matrix Equivalent)

As \(n \to \infty \), \(\| \mathcal{L}_\alpha - \tilde{\mathcal{L}}_\alpha \| \xrightarrow{a.s.} 0 \), where

\[
\mathcal{L}_\alpha = (2m)^\alpha \frac{1}{\sqrt{n}} D^{-\alpha} \left[A - \frac{dd^T}{2m} \right] D^{-\alpha}
\]

\[
\tilde{\mathcal{L}}_\alpha = \frac{1}{\sqrt{n}} D_q^{-\alpha} XD_q^{-\alpha} + U\Lambda U^T
\]

with \(D_q = \text{diag}(\{q_i\}) \), \(X \) zero-mean random matrix with variance profile,

\[
U = \begin{bmatrix} D_q^{1-\alpha} \frac{J}{\sqrt{n}} & D_q^{-\alpha} XD_q^{-\alpha} \end{bmatrix}, \quad \text{rank } k + 1
\]

\[
\Lambda = \begin{bmatrix} (I_k - 1_k c^T)M(I_k - c1_k^T) & -1_k \\ 1_k^T & 0 \end{bmatrix}
\]

and \(J = [j_1, \ldots, j_k] \), \(j_a = [0, \ldots, 0, 1_{n_a}^T, 0, \ldots, 0]^T \in \mathbb{R}^n \).

Consequences:

▶ isolated eigenvalues beyond phase transition \(\Leftrightarrow \lambda(M) > \text{“spectrum edge”} \)

Optimal choice \(\alpha_{\text{opt}} \) of \(\alpha \) from study of limiting spectrum.

▶ eigenvectors correlated to \(D_q^{1-\alpha} J \)

Necessary regularization by \(D^{\alpha-1} \).
Eigenvalue Spectrum

Figure: 3 classes, \(c_1 = c_2 = 0.3, c_3 = 0.4, \mu = \frac{1}{2} \delta_{0.4} + \frac{1}{2} \delta_{0.9}, \) \(M = 4 \begin{bmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{bmatrix} \).
Theorem (Phase Transition)

Isolated eigenvalue $\lambda_i(L_\alpha)$ if $|\lambda_i(\bar{M})| > \tau^\alpha$, $\bar{M} = (D(c) - cc^T)M$, where

$$
\tau^\alpha = \lim_{x \downarrow S_+^\alpha} \frac{1}{g^\alpha(x)}, \text{ phase transition threshold}
$$

with $[S_-^\alpha, S_+^\alpha]$ limiting eigenvalue support of L_α and $g^\alpha(x)$ ($|x| > S_+^\alpha$) solution of

$$
\begin{align*}
\hat{f}^\alpha(x) &= \int \frac{q^{1-2\alpha}}{-x - q^{1-2\alpha} f^\alpha(x) + q^{2-2\alpha} g^\alpha(x)} \mu(dq) \\
\hat{g}^\alpha(x) &= \int \frac{q^{2-2\alpha}}{-x - q^{1-2\alpha} f^\alpha(x) + q^{2-2\alpha} g^\alpha(x)} \mu(dq).
\end{align*}
$$

In this case, $\lambda_i(L_\alpha) \xrightarrow{a.s.} (g^\alpha)^{-1} (-1/\lambda_i(\bar{M})).$
Theorem (Phase Transition)

Isolated eigenvalue \(\lambda_i(L_\alpha) \) if \(|\lambda_i(\bar{M})| > \tau_\alpha\), \(\bar{M} = (\mathcal{D}(c) - cc^T)M \), where

\[
\tau_\alpha = \lim_{x \downarrow S_+^\alpha} \frac{1}{g_\alpha(x)}, \quad \text{phase transition threshold}
\]

with \([S_-^\alpha, S_+^\alpha]\) limiting eigenvalue support of \(L_\alpha\) and \(g_\alpha(x)\) \((|x| > S_+^\alpha)\) solution of

\[
f_\alpha(x) = \int \frac{q^{1-2\alpha}}{-x - q^{1-2\alpha} f_\alpha(x) + q^{2-2\alpha} g_\alpha(x)} \mu(dq)
\]

\[
g_\alpha(x) = \int \frac{q^{2-2\alpha}}{-x - q^{1-2\alpha} f_\alpha(x) + q^{2-2\alpha} g_\alpha(x)} \mu(dq).
\]

In this case, \(\lambda_i(L_\alpha) \overset{a.s.}{\to} (g_\alpha)^{-1} \left(-1/\lambda_i(\bar{M})\right)\).

Clustering possible when \(\lambda_i(\bar{M}) > (\min_\alpha \tau_\alpha)\):

- “Optimal” \(\alpha_{opt} \equiv \arg\min_\alpha \{\tau_\alpha\} \).
Phase Transition

Theorem (Phase Transition)

Isolated eigenvalue $\lambda_i(L_\alpha)$ if $|\lambda_i(\bar{M})| > \tau_\alpha$, $\bar{M} = (D(c) - cc^T)M$, where

$$\tau_\alpha = \lim_{x \downarrow \alpha} \left(S^\alpha_+ - \frac{1}{g^\alpha(x)} \right), \text{ phase transition threshold}$$

with $[S^-_\alpha, S^+_\alpha]$ limiting eigenvalue support of L_α and $g^\alpha(x) (|x| > S^\alpha_+)$ solution of

$$f^\alpha(x) = \int \frac{q^{1-2\alpha}}{-x - q^{1-2\alpha} f^\alpha(x) + q^{2-2\alpha} g^\alpha(x)} \mu(dq)$$

$$g^\alpha(x) = \int \frac{q^{2-2\alpha}}{-x - q^{1-2\alpha} f^\alpha(x) + q^{2-2\alpha} g^\alpha(x)} \mu(dq).$$

In this case, $\lambda_i(L_\alpha) \xrightarrow{a.s.} (g^\alpha)^{-1} \left(-1/\lambda_i(\bar{M}) \right)$.

Clustering possible when $\lambda_i(\bar{M}) > (\min_\alpha \tau_\alpha)$:

- “Optimal” $\alpha_{\text{opt}} \equiv \arg\min_\alpha \{\tau_\alpha\}$.
- From $\hat{q}_i \equiv \frac{d_i}{\sqrt{d_i^T 1_n}} \xrightarrow{a.s.} q_i$, $\mu \simeq \hat{\mu} \equiv \frac{1}{n} \sum_{i=1}^{n} \delta_{\hat{q}_i}$ and thus:

 Consistent estimator $\hat{\alpha}_{\text{opt}}$ of α_{opt}.
Simulated Performance Results (2 masses of q_i)

(Modularity $A - \frac{dd^T}{2m}$)
(Bethe Hessian $D - rA$)
Simulated Performance Results (2 masses of q_i)

Figure: 3 classes, $\mu = \frac{3}{4} \delta_{0.1} + \frac{1}{4} \delta_{0.5}, c_1 = c_2 = \frac{1}{4}, c_3 = \frac{1}{2}, M = 100I_3.$
Simulated Performance Results (2 masses of q_i)

Figure: 3 classes, $\mu = \frac{3}{4}\delta_{0.1} + \frac{1}{4}\delta_{0.5}$, $c_1 = c_2 = \frac{1}{4}$, $c_3 = \frac{1}{2}$, $M = 100I_3$.
Simulated Performance Results (2 masses for q_i)

Figure: Overlap performance for $n = 3000$, $K = 3$, $c_i = \frac{1}{3}$, $\mu = \frac{3}{4}\delta q_{(1)} + \frac{1}{4}\delta q_{(2)}$ with $q_{(1)} = 0.1$ and $q_{(2)} = 0.5$, $M = \Delta I_3$, for $\Delta \in [5, 50]$. Here $\alpha_{opt} = 0.07$.
Simulated Performance Results (2 masses for q_i)

Figure: Overlap performance for $n = 3000$, $K = 3$, $c_i = \frac{1}{3}$, $\mu = \frac{3}{4}\delta q(1) + \frac{1}{4}\delta q(2)$ with $q(1) = 0.1$ and $q(2) = 0.5$, $M = \Delta I_3$, for $\Delta \in [5, 50]$. Here $\alpha_{opt} = 0.07$.
Simulated Performance Results (2 masses for q_i)

Figure: Overlap performance for $n = 3000$, $K = 3$, $c_i = \frac{1}{3}$, $\mu = \frac{3}{4} \delta q(1) + \frac{1}{4} \delta q(2)$ with $q(1) = 0.1$ and $q(2) = 0.5$, $M = \Delta I_3$, for $\Delta \in [5, 50]$. Here $\alpha_{opt} = 0.07$.
Simulated Performance Results (2 masses for q_i)

Figure: Overlap performance for $n = 3000$, $K = 3$, $c_i = \frac{1}{3}$, $\mu = \frac{3}{4} \delta q(1) + \frac{1}{4} \delta q(2)$ with $q(1) = 0.1$ and $q(2) = 0.5$, $M = \Delta I_3$, for $\Delta \in [5, 50]$. Here $\alpha_{\text{opt}} = 0.07$.
Simulated Performance Results (2 masses for q_i)

Figure: Overlap performance for $n = 3000$, $K = 3$, $\mu = \frac{3}{4}\delta q_1 + \frac{1}{4}\delta q_2$ with $q_1 = 0.1$ and $q_2 \in [0.1, 0.9]$, $M = 10(2I_3 - 1_31_3^T)$, $c_i = \frac{1}{3}$.
Real Graph Example: PolBlogs ($n = 1490$, two classes)

\[L_0 \]

\[(\lambda_{\text{max}} \simeq 1.75) \]

\[L_1 \]

\[(\lambda_{\text{max}} \simeq 483) \]

<table>
<thead>
<tr>
<th>Algorithms</th>
<th>Overlap</th>
<th>Modularity</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha_{\text{opt}} \ (\simeq 0)$</td>
<td>0.897</td>
<td>0.4246</td>
</tr>
<tr>
<td>$\alpha = 0.5$</td>
<td>0.035</td>
<td>$\simeq 0$</td>
</tr>
<tr>
<td>$\alpha = 1$</td>
<td>0.040</td>
<td>$\simeq 0$</td>
</tr>
<tr>
<td>BH</td>
<td>0.304</td>
<td>0.2723</td>
</tr>
</tbody>
</table>
Outline

Basics of Random Matrix Theory
 Motivation: Large Sample Covariance Matrices
 Spiked Models

Applications
 Reminder on Spectral Clustering Methods
 Kernel Spectral Clustering
 Kernel Spectral Clustering: The case $f'(\tau) = 0$
 Kernel Spectral Clustering: The case $f'(\tau) = \frac{\alpha}{\sqrt{p}}$

Semi-supervised Learning
 Semi-supervised Learning improved
 Random Feature Maps, Extreme Learning Machines, and Neural Networks
 Community Detection on Graphs

Perspectives
Summary of Results and Perspectives I

Random Neural Networks.
- ✔ Extreme learning machines (one-layer random NN)
- ✔ Linear echo-state networks (ESN)
- ✸ Logistic regression and classification error in extreme learning machines (ELM)
- ✸ Further random feature maps characterization
- ✸ Generalized random NN (multiple layers, multiple activations)
- ✸ Random convolutional networks for image processing
- ✿ Non-linear ESN

Deep Neural Networks (DNN).
- ✸ Backpropagation in NN ($\sigma(WX)$ for random X, backprop. on W)
- ✿ Statistical physics-inspired approaches (spin-glass models, Hamiltonian-based models)
- ✿ Non-linear ESN

DNN performance of physics-realistic models (4th-order Hamiltonian, locality)
References.

Summary of Results and Perspectives I

Kernel methods.

✓ Spectral clustering
✓ Subspace spectral clustering \((f'(\tau) = 0) \)
◆ Spectral clustering with outer product kernel \(f(x^Ty) \)
✓ Semi-supervised learning, kernel approaches.
✓ Least square support vector machines (LS-SVM).
◆ Support vector machines (SVM).
◆ Kernel matrices based on Kendall \(\tau \), Spearman \(\rho \).

Applications.

✓ Massive MIMO user subspace clustering (patent proposed)
◆ Kernel correlation matrices for biostats, heterogeneous datasets.
◆ Kernel PCA.
◆ Kendall \(\tau \) in biostats.

References.

Summary of Results and Perspectives I

Community detection.

✓ Heterogeneous dense network clustering.
✏ Semi-supervised clustering.
💡 Sparse network extensions.
💡 Beyond community detection (hub detection).

Applications.

✓ Improved methods for community detection.
✏ Applications to distributed optimization (network diffusion, graph signal processing).

References.

Summary of Results and Perspectives I

Robust statistics.

- Tyler, Maronna (and regularized) estimators
- Elliptical data setting, deterministic outlier setting
- Central limit theorem extensions
- Joint mean and covariance robust estimation
- Robust regression (preliminary works exist already using strikingly different approaches)

Applications.

- Statistical finance (portfolio estimation)
- Localisation in array processing (robust GMUSIC)
- Detectors in space time array processing
- Correlation matrices in biostatistics, human science datasets, etc.

References.

Summary of Results and Perspectives II

Summary of Results and Perspectives I

Other works and ideas.
- Spike random matrix sparse PCA
- Non-linear shrinkage methods
- Sparse kernel PCA
- Random signal processing on graph methods.

Applications.
- Spike factor models in portfolio optimization
- Non-linear shrinkage in portfolio optimization, biostats

References.
Thank you.