Transport Network Design Based on Origin/Destination Clustering During the COVID-19 Pandemic Use Case

Matthieu Guillot, Angelo Furno, El-Houssaine Aghezzaf, Nour-Eddin El Faouzi

Smartlab Lability

The Smartlab

- Temporary laboratory : from January 2021 to January 2023
- Funded Île-De-France region (around Paris) and driven by Gustave Eiffel University
- 9 postdoc researchers
- Multidisciplinary : economy, sociology, applied mathematics, computer science...

Objectives

- Studying the resilience of Île-De-France region during and after the COVID-19 pandemic
- 2 axes : mobility and telework

Context

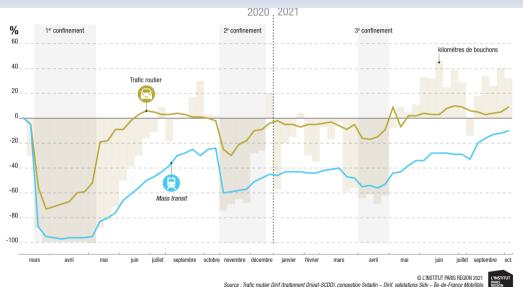
Mobility changes

- 17% of users have changed their mobility habits with COVID-19
- Most of them from collective modes to individual ones

Modes

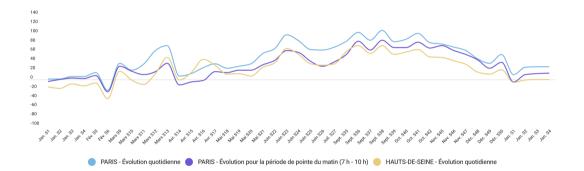
- Decrease of mass transit
- Increase of the use of private cars
- Increase in cycling

Context



Source : Trafic routier Dirif (traitement Drieat-SCDD), congestion Sytadin – Dirif, validations Sidv – Île-de-France Mobilités

Context



Social

- Increased incivilities between cyclists and car users
- Increased number of accidents involving cyclists
- Increase of traffic jams

Financial

- Revenue decline, shortfalls for public transports operators
- 1 billion (€) for Île-De-France Region

Demand

- Public transportation demand has decreased (even now)
- Possible future changes in the demand

Public transport networks must be reconfigured to increase resilience

We want :

- A new network that fits the new (decreasing) demand
 - \rightarrow sustainability for network operators
- A good quality of service
- A dynamic solution
- Good properties under sanitary constraints

How to tackle the problem?

Which mode?

- Re-use of equipment
- Light infrastructure
 - $\rightarrow \mathsf{Bus}\ \mathsf{network}$

Subnetwork in terms of bus stops¹

- Easier to compute
- Bound the access/egress time
- But the operational cost is not that related with bus stops
- Our approach : work directly on the lines

^{1.} https://doi.org/10.48550/arXiv.2105.02600

Introduction to the problem

We consider a bus network G = (V, E):

- V : set of bus stops
- *E* set of edges connecting these stops

Entries :

- $d(v_1, v_2)$ a distance metric between all $v_1 \in V$ and $v_2 \in V$
- $OD(v_1, v_2)$ a demand on the bus stops between all $v_1 \in V$ and $v_2 \in V$

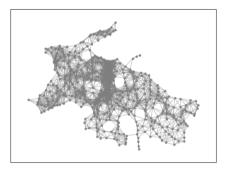


Figure – Bus network of Lyon

Introduction to the problem

We consider a bus network G = (V, E):

- V : set of bus stops
- *E* set of edges connecting these stops

Output :

- a set of lines on V
- with good properties

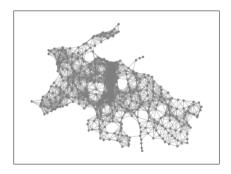


Figure – Bus network of Lyon

Introduction to the problem

We consider a bus network G = (V, E):

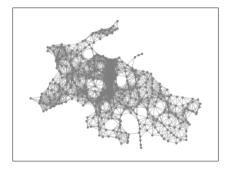
- V : set of bus stops
- *E* set of edges connecting these stops

Output :

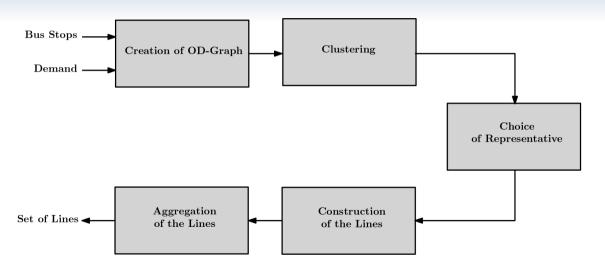
- a set of lines on V
- with good properties

Figure – Bus network of Lyon

Main idea : group origin/destination pairs that are close



Outline



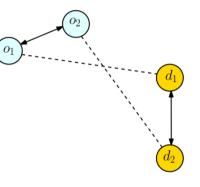
Creation of OD-Graph

We define G' = (V', E') the OD-graph as :

- V' : set of OD pairs
- *E'* set of edges that connect close ODs
- *d_{walk}* a acceptable distance by walk

$$V'=\{v'=(o,d)\in V|d(o,d)>d_{\textit{walk}}\}$$

 $E' = \{(v'_1 = (o_1, d_1), v'_2 = (o_2, d_2)) \in V' | d(o_1, o_2) + d(d_1, d_2) < d_{\mathit{walk}} \}$



Clustering

We apply a clustering algorithm on G'

- Louvain, spectral algorithm, ...
- c : the number of clusters

 $\mathcal{C} = \{\mathit{C}_1, \mathit{C}_2, ..., \mathit{C}_c\}$ the set of clusters of ODs

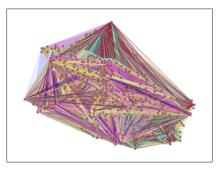


Figure –
$$c = 32$$

Choice of representatives

For each $C_i \in C$, we compute a representative (a node $r(C_i) \in C_i$) :

- central
- demand-dependant

$$D^{C_i} = \min_{v \in C_i} \sum_{u \in C_i} D(u, v) O D(u)$$

$$r(C_i) = \argmin_{v \in C_i} D^{C_i}$$

D : minimal distance in G' (in term of # of edges)

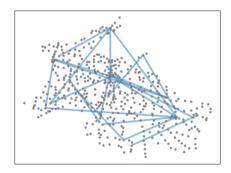


Figure – representatives for c = 32

Construction of the lines

For each $C_i \in C$, we build a bus line from $r(C_i)$

- back in *G*, $r(C_i) = (o_{C_i}, d_{C_i})$
- we build a line from o_{C_i} to d_{C_i}

We compute the shortest path in G between o_{C_i} and d_{C_i}

$$I_{C_i} = (o_{C_i}, ..., d_{C_i}) = SP_G(o_{C_i}, d_{C_i})$$

Construction of the lines

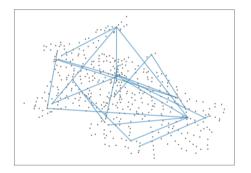


Figure – Corresponding lines

Aggregation of the lines

Issue : some lines are built from different "size" of OD. We choose p_{aggreg} , and define :

$$p_{com}(l_1, l_2) = \frac{|l_1 \cap l_2|}{\min(|l_1|, |l_2|)}$$

We merge the lines until no pair l_1 , l_2 such that $p_{com}(l_1, l_2) > p_{aggreg}$ exists

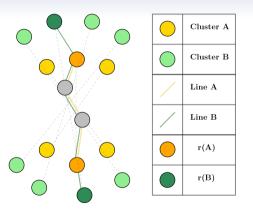


Figure – aggregation of the lines

Aggregation of the lines

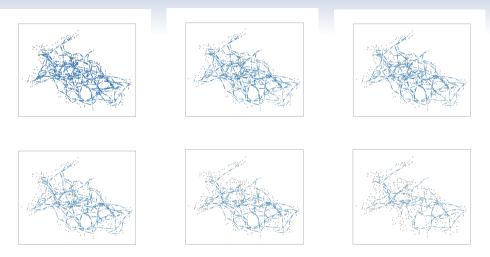


Figure – Procedure of aggregation for p_{aggreg} from 0.7 to 0.3

Network properties

One only bus line

- for any trip (o, d), one can take only one bus line
- we can tell which one to take

Sanitary constraints

- only one bus to take, no transfer
- decrease of risks of contamination

Network properties

Capacity and frequency of the buses

We can easily define the bus capacities and frequencies since only one line is taken per trip \rightarrow sanitary constraints

Walking time

We can also bound the additional walking time for $v' \in C_i$:

 $WT(v') \leq D(v', r(C_i)) imes d_{walk}$

Geographical equity

- the demand is taken into account only in the choice of representative
- no spacial preferential treatment
- ${\ \bullet\ }$ suburb \rightarrow suburb trips are not penalized

Evaluation of the network

p_{eggreg}	# lines	% covered stops
1	150	55%
0.7	76	53%
0.6	69	52%
0.5	56	50%
0.4	35	44%
0.3	20	33%

Travel time : Toy example

$\mathsf{Trip}:\mathsf{Guillotière}\to\mathsf{Mermoz}$

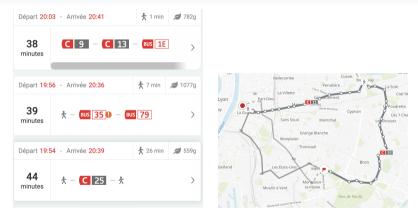
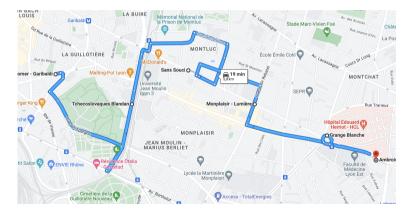


Figure – Advised trip from TCL

Travel time : Toy example

 $\mathsf{Trip}:\mathsf{Guillotière}\to\mathsf{Mermoz}$

 $\mathsf{Our}\ \mathsf{line}:\mathsf{Domer}\to\mathsf{Ambroise}\ \mathsf{Par\acute{e}}$



Travel time : Toy example

Access and egress time : 4 and 18 minutes

Total : 40 minutes + waiting time at stops without transfer

Conclusion & Perspectives

Work done

- a methodology to build bus lines from existing bus stops
- the lines have some interesting properties
- the methodology is modular

Perspectives

- evaluation of the network with travel time metrics
- evaluation of the increase of access time
- comparison with existing network
- test other choices for the different steps of the methodology

Thank you for your attention !

Algorithm 1 Aggregate lines

```
Require: a set of lines \mathcal{L} = l_1, ..., l_c
Ensure: a subset \mathcal{L}' \subseteq \mathcal{L} such that p_{com}(I, I') < p_{aggreg} for all pair (I, I') \in \mathcal{L}'
   continue \leftarrow True
   \mathcal{L}_{curr} \leftarrow \mathcal{L}
   while continue do
       continue \leftarrow FALSE
       for l \in \mathcal{L}_{curr} do
           for l' \in \mathcal{L}_{curr} do
               if l \neq l' AND p_{com}(l, l') > p_{aggreg} then
                   if |l| < |l'| then
                       Delete I from \mathcal{L}_{curr}
                   else
                       Delete l' from \mathcal{L}_{curr}
                   end if
                   continue \leftarrow TRUE
               end if
           end for
       end for
   end while
```