
Transport Network Design Based on
Origin/Destination Clustering During the COVID-19

Pandemic Use Case

Matthieu Guillot, Angelo Furno, El-Houssaine Aghezzaf, Nour-Eddin El Faouzi

LABILITY
Smart Lab
Paris Region

June, 21st

1/23

Smartlab Lability

The Smartlab
• Temporary laboratory : from January 2021 to January 2023
• Funded Île-De-France region (around Paris) and driven by Gustave Eiffel University
• 9 postdoc researchers
• Multidisciplinary : economy, sociology, applied mathematics, computer science...

Objectives
• Studying the resilience of Île-De-France region during and after the COVID-19

pandemic
• 2 axes : mobility and telework

2/23

Context

Mobility changes
• 17% of users have changed their mobility habits with COVID-19
• Most of them from collective modes to individual ones

Modes
• Decrease of mass transit
• Increase of the use of private cars
• Increase in cycling

3/23

Context

3/23

Context

3/23

Consequences

Social
• Increased incivilities between cyclists and car users
• Increased number of accidents involving cyclists
• Increase of traffic jams

Financial
• Revenue decline, shortfalls for public transports operators
• 1 billion (€) for Île-De-France Region

Demand
• Public transportation demand has decreased (even now)
• Possible future changes in the demand

4/23

Consequences

Public transport networks must be reconfigured to increase resilience

We want :
• A new network that fits the new (decreasing) demand
→ sustainability for network operators
• A good quality of service
• A dynamic solution
• Good properties under sanitary constraints

5/23

How to tackle the problem ?

Which mode ?
• Re-use of equipment
• Light infrastructure
→ Bus network

Subnetwork in terms of bus stops 1

• Easier to compute
• Bound the access/egress time
• But the operational cost is not that related with bus stops
• Our approach : work directly on the lines

1. https ://doi.org/10.48550/arXiv.2105.02600
6/23

Introduction to the problem

We consider a bus network G = (V ,E) :

• V : set of bus stops
• E set of edges connecting these

stops

Entries :

• d(v1, v2) a distance metric between
all v1 ∈ V and v2 ∈ V

• OD(v1, v2) a demand on the bus
stops between all v1 ∈ V and
v2 ∈ V

Figure – Bus network of Lyon

7/23

Introduction to the problem

We consider a bus network G = (V ,E) :

• V : set of bus stops
• E set of edges connecting these

stops

Output :

• a set of lines on V

• with good properties
Figure – Bus network of Lyon

7/23

Introduction to the problem

We consider a bus network G = (V ,E) :

• V : set of bus stops
• E set of edges connecting these

stops

Output :

• a set of lines on V

• with good properties
Figure – Bus network of Lyon

Main idea : group origin/destination pairs that are close
7/23

Outline

8/23

Creation of OD-Graph

We define G ′ = (V ′,E ′) the OD-graph
as :
• V ′ : set of OD pairs
• E ′ set of edges that connect close

ODs
• dwalk a acceptable distance by walk

V ′ = {v ′ = (o, d) ∈ V |d(o, d) > dwalk}

E ′ = {(v ′
1 = (o1, d1), v

′
2 = (o2, d2)) ∈ V ′|d(o1, o2)+d(d1, d2) < dwalk}

9/23

Clustering

We apply a clustering algorithm on G ′

• Louvain, spectral algorithm, ...
• c : the number of clusters

C = {C1,C2, ...,Cc} the set of clusters of
ODs

Figure – c = 32

10/23

Choice of representatives

For each Ci ∈ C, we compute a represen-
tative (a node r(Ci) ∈ Ci) :

• central
• demand-dependant

DCi = min
v∈Ci

∑
u∈Ci

D(u, v)OD(u)

r(Ci) = argmin
v∈Ci

DCi

D : minimal distance in G ′ (in term of #
of edges) Figure – representatives for c = 32

11/23

Construction of the lines

For each Ci ∈ C, we build a bus line from r(Ci)

• back in G , r(Ci) = (oCi
, dCi

)

• we build a line from oCi
to dCi

We compute the shortest path in G between oCi
and dCi

lCi
= (oCi

, .., dCi
) = SPG (oCi

, dCi
)

12/23

Construction of the lines

Figure – Representatives for c = 32 Figure – Corresponding lines

13/23

Aggregation of the lines

Issue : some lines are built from different
"size" of OD. We choose paggreg , and de-
fine :

pcom(l1, l2) =
|l1 ∩ l2|

min (|l1|, |l2|)

We merge the lines until no pair l1, l2 such
that pcom(l1, l2) > paggreg exists

Figure – aggregation of the lines

14/23

Aggregation of the lines

Figure – Procedure of aggregation for paggreg from 0.7 to 0.3
15/23

Network properties

One only bus line
• for any trip (o, d), one can take only one bus line
• we can tell which one to take

Sanitary constraints
• only one bus to take, no transfer
• decrease of risks of contamination

16/23

Network properties
Capacity and frequency of the buses
We can easily define the bus capacities and frequencies since only one line is taken per
trip → sanitary constraints

Walking time
We can also bound the additional walking time for v ′ ∈ Ci :

WT (v ′) ≤ D(v ′, r(Ci))× dwalk

Geographical equity
• the demand is taken into account only in the choice of representative
• no spacial preferential treatment
• suburb → suburb trips are not penalized

17/23

Evaluation of the network

peggreg # lines % covered stops
1 150 55%

0.7 76 53%
0.6 69 52%
0.5 56 50%
0.4 35 44%
0.3 20 33%

18/23

Travel time : Toy example
Trip : Guillotière → Mermoz

Figure – Advised trip from TCL

19/23

Travel time : Toy example
Trip : Guillotière → Mermoz

Our line : Domer → Ambroise Paré

20/23

Travel time : Toy example

Access and egress time : 4 and 18 minutes

Total : 40 minutes + waiting time at stops without transfer

21/23

Conclusion & Perspectives

Work done
• a methodology to build bus lines from existing bus stops
• the lines have some interesting properties
• the methodology is modular

Perspectives
• evaluation of the network with travel time metrics
• evaluation of the increase of access time
• comparison with existing network
• test other choices for the different steps of the methodology

22/23

Thank you for your attention !

23/23

Algorithm 1 Aggregate lines
Require: a set of lines L = l1, .., lc
Ensure: a subset L′ ⊆ L such that pcom(l , l ′) < paggreg for all pair (l , l ′) ∈ L′

continue ← True
Lcurr ← L
while continue do

continue ← FALSE
for l ∈ Lcurr do

for l ′ ∈ Lcurr do
if l ̸= l ′ AND pcom(l , l

′) > paggreg then
if |l | < |l ′| then

Delete l from Lcurr

else
Delete l ′ from Lcurr

end if
continue ← TRUE

end if
end for

end for
end while
return Lcurr

