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80-100 mph winds, combined with ignition, launched an uncontrollable “fire storm
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® Loss of 2 lives. 1000 homes and 20 businesses were destroyed, and more damaged
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® Thomas Fire destroyed 1063 structures and led to poor air quality

® |Intense rainfall as the fire was nearing containment produced a debris flow
e 23 lives and over 130 homes were lost
o
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Machine learning can shed light on climate change



new solutions this creates for nations, business and for everyday life, we must also
think about how to maximize the gains for society and our environment at large.”




Climate Informatics is based on the vision that
Machine learning can shed light on climate change

2008 Start research on Climate Informatics, with Gavin Schmidt, NASA

2010 “Tracking Climate Models” [Monteleoni et al., NASA CIDU, Best Application Paper Award]
2011 Launch International Workshop on Climate Informatics, New York Academy of Sciences

2012 Climate Informatics Workshop held at NCAR, Boulder, for next 7 years / \
2013 “Climate Informatics” book chapter [M et al., SAM] 4\\@' |
2014  “Climate Change: Challenges for Machine Learning,” [M & Banerjee, NeurlPS Tutorial]

2015 Launch Climate Informatics Hackathon, Paris and Boulder

2018 World Economic Forum recognizes Climate Informatics as key priority
2019 Climate Informatics Conference held at ENS, Paris

2022  First batch of articles published in Environmental Data Science, Cambridge University Press
2022 11% Conference on Climate Informatics and 8™ Hackathon, NOAA, Asheville, NC

2023 12" Conference on Climate Informatics and 9t Hackathon, April 19-21, Cambridge, UK



Machine Learning for Climate Change
and Environmental Sustainability

* Machine Learning for Understanding and Predicting Climate Change

* Machine Learning for Extreme Weather and Cascading Hazards

* Machine Learning for the Green Transition



Our Climate Informatics research also addresses
open problems in Machine Learning

d Online learning with spatiotemporal non-stationarity
1 Prediction at multiple timescales simultaneously
J Anomaly detection with limited supervision

d Tracking highly-deformable patterns



Machine Learning for Understanding
and Predicting Climate Change

S Online learning from non-stationary
Bl Y spatiotemporal data to adaptively
combine climate model ensemble
forecasts

[Multiple papers 2009-2020, e.g., AAAI
2012, ALT 2020]

Causal information hubs in Pacific
ENSO region

[Saha et al. Climate Informatics 2019]

NASA project to attribute and
forecast sea-level rise using climate
models and satellite altimetry

[Sinha et al., AGU 2022] with NCAR

=2 UCAR Science Education



Online learning with spatiotemporal
non-stationarity

Learning when the target concept can vary over time, o
and multiple other dimensions (e.g., latitude, longitude) 2

We can exploit local structure in space and time

We can learn the level of non-stationarity in time and space
[McQuade and Monteleoni, AAAI 2012] extended [Monteleoni & Jaakkola,

NeurlIPS 2003; Monteleoni et al. SAM 2011] to multiple dimensions : ey | evbw | stbw
: : . : : : t-60d ®
This framework for online learning was open in machine learning
New “regret” framework: [Cesa-Bianchi, Cesari, & Monteleoni, ALT 2020] t-30d l _________
- - . t i pEodmdods
Prediction at multiple timescales simultaneously l """"""""
Applications to both climate science, and financial volatility: t +30d
[McQuade and Monteleoni, Cl 2015; SIGMOD DSMM 2016] t+60d 3

. = Prediction Initiated {:}= Prediction Evaluated



Machine Learning for Extreme Weather
and Cascading Hazards

P . . . . .
el A Defining and detecting diverse, multivariate
(~altitude) extreme events with topic modeling
225 hPa - [Tang & Monteleoni, Climate Informatics 2014; IEEE CISE 2015]
Hurricane track prediction via fused CNNs
500 hPa - [Giffard-Roisin et al., Climate Informatics 2018; Frontiers 2020]
200 hPa - Forecasting Indian Summer Monsoon
precipitation extremes
\ [Saha et al. Climate Informatics 2019; 2020] with India
Meteorological Department (IMD)

Avalanche detection using CNN; VAE

\_ong'\tUde I[:Sr;nnhcaeet al., Climate Informatics 2019; 2020] with Météo-
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[Giffard-Roisin et al., Frontiers 2020]
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Avalanche detection /

o Limited in-situ ground-truth
/
measurements S
. Météo-France \os. (77, ey o
. Unlabeled SAR imagery o
- Monitoring French Alps in 2017-2018 /fi s Xer
- Sentinel-1A and 1B satellites A ;M jos i, A9

.- 4 features:
- Backscatter coefficients at present and previous time
- Topological features: Slope & Angle

METEO
FRANCE

[Sinha et al., Climate Informatics 2020]



Challenges for Machine Learning

e Severe class imbalance

. Avalanches are rare events

e Ground-truth labeled data difficult to obtain
. Terrain accessibility
. Weather conditions
. Danger of avalanches



Approach

@ Treat an avalanche as a rare event, or an anomaly
@ Train a variational autoencoder (VAE) on the negative examples

® Threshold the VAE’s reconstruction error to classify a new image

o Our idea: when labeled data is scarce, the VAE can instead be trained
without supervision!



What is an Auto-encoder?

* Train a neural network in an unsupervised way
e Use the unlabeled data both as input, and to evaluate the output

 After training, the bottleneck layer will be a compact representation of the

input distribution
—> Encoder ei-» Decoder —»
Reconstructed

Original
input

input

Compressed
representation



Autoencoder: The parameters of the encoder and
decoder networks are trained to make the output
approximate the input. After training on many input
examples, the parameters of the bottleneck layer form
a compact representation of the input distribution.

Output




Variational Autoencoder (VAE)

Learn a distribution over latent representations, instead of a single encoding

| J | ] | J

encode sampling decode



VAE for anomaly detection is typically trained on
negative examples only

Pre-processed SAR

+ Slope +Angle mean vector
Sentmel 1 ” sampled
latent
\ vector 64x64x4
—>
7 |— |
—>
> .
Label Images Only negatlve / Reconstructed
samples o Input
std dev vector

[Sinha et al., Climate Informatics 2020]



Our approach: Train a VAE on unlabeled examples

mean vector
p sampled
|atent

64x64x4 / \ vector 64x64x4

—> YA —

— -

Reconstructed

All Images / econstructe
(unlabeled) N Input

1)

std dev vector

[Sinha et al., Climate Informatics 2020]



Tuning the hyperparameter for avalanche detection

mean vector
<Rdx sampled
iy / Il \ latent
vector
—>
Labeled / 4 '
Validation — > '
d / Reconstructed
Dataset 0 AW Input
(0}
Input
std dev vector

» | Reconstruction Error

%l A\/alﬁhe

avalanche
[Sinha et al., Climate Informatics 2020]



Avalanche detection on a test image

mean vector
H sampled
latent
064x04x4 / \ vector 64X64x4
> Z —
__’ __’
New / Reconstructed
Test Image \ - Input
l std dev vector
» | Reconstruction Error |<€—

>

threshojq A\/iﬂ&he
: AN
? ‘
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/A
No

avalanche

[Sinha et al., Climate Informatics 2020]



Evaluation

One of the most avalanche-prone
mountain chains in the Alps data set

All Alps Haute Maurienne
Balanced Accuracy F1-score Balanced Accuracy F1-score
Baseline 0.58 0.05 0.58 0.12
Supervised - CNN 0.53 0.10 0.53 0.12
Semi-supervised - VAE 0.59 0.1 0.6 0.23
Unsupervised - VAE 0.69 0.14 0.68 0.26

« Held-out test set: 6,498 labeled examples
« Baseline method from avalanche-detection literature: Thresholding [Karbou et al., ISSW 2018]

« Supervised-learning benchmark method: Convolutional Neural Network (CNN) trained on
artificially balanced dataset [Sinha et al., Climate Informatics 2019]

[Sinha et al., Climate Informatics 2020]



ML contribution

e Provided a semi-supervised approach to detecting rare events when
labeled data is limited

Key idea: lean heavily on unsupervised learning and use labeled data ONLY for
hyperparameter tuning

e Can be viewed as a form of virtual sensor

[Sinha et al., Climate Informatics 2020]



ML for the
Green Transition

Week-ahead solar irradiance

forecasting via deep sequence
learning

[Sinha et al., Cl 2022] with NREL

ML to downscale climate model
data for renewable energy
planning in U.S. and India

Climate Change Al / Future Earth project
with NREL, IIT-Roorkee

[Harilal et al., NeurlPS workshop 2022]




ClimAlign: Unsupervised, generative downscaling
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General downscaling technique via domain alignment with normalizing flows
[AlignFlow: Grover et al., AAAI 2020][Glow: Kingma & Dhariwal, NeurlPS 2018]

* Unsupervised: do not need paired maps at low and high resolution

* Generative: can sample from posterior over latent representation OR sample
conditioned on a low (or high!) resolution map

* Intepretable, e.g., via interpolation

[Groenke, et al., Climate Informatics 2020]
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Normalizing Flows IG: x :" ] P
"
[Rezende & Mohamed, ICML 2015] - “ - -\ ’ ~n . .‘ -

Can be viewed as extension of VAE beyond Gaussian assumption on latent space

Learn a series of invertible transformations, {f;}, from a simple prior on latent
space, Z, to allow for more informative distributions on the latent space:

2k = fro fk—10---0 fi(20)

cex I




Our Climate Informatics research also addresses
open problems in Machine Learning

(1 Online learning with spatiotemporal non-stationarity
1 Prediction at multiple timescales simultaneously
J Anomaly detection with limited supervision

d Tracking highly-deformable patterns



Summary and Outlook

Data limitations
* Limited labeled data: unsupervised learning, dimensionality reduction
* Class imbalance: e.g., extreme events are rare by definition!
e Data is limited along the time dimension. Can we substitute data diversity and
granularity over space?
Scale resolution challenges
* Downscaling spatiotemporal data fields
e Climate model parameterization problems

Non-stationarity
* Climate change means we cannot assume i.i.d. data!
* ML models need to adapt over time, and space

Interpretability
* Evaluation of generative models is an active research area of core ML



Long-term Inspirations

Cascading Hazards
. Goal: move beyond individual weather extremes, to how they couple
. With massive wildfires in France and the U.S., there is extreme urgency!

Climate Justice
. Our research should always help increase climate equity

. Ultimately, we should strive for approaches to help UNDO the legacy of
climate IN-justice
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Balazs Kégl, Huawei Research & CNRS
Luke Madaus, Jupiter Intelligence
Scott McQuade, Amazon
Ravi S. Nanjundiah, Indian Institute of Tropical Meteorology
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o ENVIRONMENTAL
DATA SCIENCE

An interdisciplinary, open access journal dedicated to the potential of
artificial intelligence and data science to enhance our understanding of
the environment, and to address climate change.

Data and methodological scope: Data Science broadly defined, including:
Machine Learning; Artificial Intelligence; Statistics; Data Mining; Computer Vision; Econometrics

Environmental scope, includes:

Water cycle, atmospheric science (including air quality, climatology, meteorology, atmospheric chemistry &
physics, paleoclimatology)

Climate change (including carbon cycle, transportation, energy, and policy)

Sustainability and renewable energy (the interaction between human processes and ecosystems, including
resource management, transportation, land use, agriculture and food)

Biosphere (including ecology, hydrology, oceanography, glaciology, soil science)

Societal impacts (including forecasting, mitigation, and adaptation, for environmental extremes and hazards)

Environmental policy and economics
Q@envdatascience

OPEN aACCESS

www.cambridge.org/eds
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Bonus slides



Unsupervised learning to define/detect multivariate

eXt remes [Tang & M, Climate Informatics 2014; IEEE CISE 2015]

Extend probabilistic topic modeling (Latent Dirichlet Allocation [Blei et al., 2001]) from NLP
* Multiple variables (complex, multivariate extreme events)

e Ability to detect multiple types of events

 Multiple degrees of severity

e Uses all data, not just extreme values

Geo-locations

f?abIC_4 0.25196

Year 1971 Al . @ ¥ . LEREE N, - l

Climate
topics

shuml 0.18842
pr_wtrl 0.16720
slps  0.15101
rhunl  0.13596 L
\_Press  0.13455 Humidity extremely low

(TOPIC2  0.24983
Climate
Descriptors

rhum5 0.19172
pr_wtrs 0.18384
shum5 0.15476
slpl 0.12487
\‘presl 0.11816

Soil moisture content extremely low




Unsupervised Deep Learning

e Supervised DL. Prediction loss is a function of the label, v,
and the network’s output on input x.

Network output Loss function

fw(x) =9 L(y,y)

* Unsupervised DL. Prediction loss is only a function of x,
and the network’s output on input x. There is no label, y.

Network output Loss function

fw(x) =2 L(z,x)



Downscaling as domain alignment

 Domain alignment task: given random variables X, Y, learn a mapping
f: X = Y such that, for any x, E Xand y; €YY,

f(x;) ~ Py ' (yi) ~ Px

* Downscaling as domain alignment

* Learn the joint PDF over X and Y, by assuming conditional
independence over a shared latent space Z

Pxy(x,y) = /EZ Pxyz(x,y,z)dz = /eZ P(z|2)P(y|z)Pz(2)dz

« Model P(z|z), P(yl|z) using AlignFlow [Grover et al. 2020]
* Starting with a simple prior on P,, learn normalizing flows
* No pairing between x and y examples needed!



ClimAlign architecture

fx:ZoX

X

— Input to next ;
layer '
Input Squeeze x K P xL
(Low resolution, upsampled)

Latent

e —— . ﬁ

Reshape/Concat x L
XK

Network parameters to learn:
f¢ X & 7
gy - Y </ ~ bz

|-

Latent variables

\_

[_-_-5‘?5.[“'3‘9‘?@92"""“'-

Y Latent variables i+ Architecture follows AlignFlow
Input

s « 5 . [Groveretal., 2020]
queeze X b ox - .
(High resolution) e Normalizing flow: Glow [Kingma &

Input to next :} |l: Dhariwal, 2018]

layer




Comparison with supervised benchmarks

Daily Max Temperature

Region Method RMSE Bias Corr
BCSD 1.51 + 0.15 -0.02 £ 0.21  0.93 £+ 0.05
SE-US BMD-CNN 1.30 + 0.12 0.03 + 0.13 0.90 + 0.05
ClimAlign (ours) | 1.56 & 0.13 -0.005 + 0.22 0.87 £ 0.06
BCSD 1.54 £ 0.23 0.01 £ 0.10 0.95 £+ 0.03
P-NW BMD-CNN 1.25 + 0.14 -0.06 £+ 0.05 0.93 + 0.02
ClimAlign (ours) | 1.58 + (.18 0.03 £+ 0.15 0.89 4+ 0.04

Daily Precipitation

Region Method RMSE Bias Corr
BCSD 27.32 + 5.0 0.95 + 1.4 0.39 + 0.07
SE-US BMD-CNN 14.11 + 2,18 -0.23 £ 047 0.50 £+ 0.10
ClimAlign (ours) | 18.40 +2.64 0.08 + 0.86 0.42 £+ 0.07
BCSD 8.90 + 2.30 0.41 4+ 0.26 0.61 + 0.06
P-NW BMD-CNN 5.77 £ 0.72 -0.18 £ 0.61 0.70 £ 0.03
ClimAlign (ours) | 7.33 £+ 0.69 0.54 £ 0.54 0.67 £ 0.03
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ERA-I

Point prediction example

WRF-4

Predicted

Sample 1

Sample 2
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CllmAhgn Uwsupervised generative downscaling
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General downscaling technique via domain alignment with normalizing flows
[AlignFlow: Grover et al., AAAI 2020][Glow: Kingma & Dhariwal, NeurlPS 2018]

[Groenke et al., Cl 2020]

* Unsupervised: do not need paired maps at low and high resolution

* Generative: can sample from posterior over latent representation OR sample
conditioned on a low (or high!) resolution map

* Intepretable, e.g., via interpolation



Baseline method: Thresholding
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[Karbou et al., International Snow Science Workshop 2018 & EGU 2018]



Downscaling: training data

. o : . L1, .
ERA: reanalysis data, 1° resolution; WRF: numerical weather model prediction, p resolution

ERA-I, max temperature WRF-8, max temperature

100.9
841
67.3
50.5
33.6
16.8
0.0

precipitation (m




Storm track data

category
trop. depress.
trop. storm

1

2
3
4
5

3000 tropical/extra-tropical storm tracks since 1979, measurements every 6 hrs

NOAA IBTrACS database



Storm track data

Saffir-Simpson Hurricane Scale

Wind Speed
aiEU, mph knots'
4 131-155 114-134
3 111-130  96-113
2 96-110 84-95
1 74-95 65-83

Non-Hurricane Scale

Tropical = 5973 3464
Storm
HODiCH 0-38 0-33
Depression

@ Hurricane Katrina, 2005. (1 dot every 6 hours).

@ Tracks and Intensity : Two main goals of the forecast



Deep Learning fusion network
Wind CNN

Input source 1
wind fields FC-1 FC-2

Conv-1 Conv-2 Conv-3 _FC-3

: I
. Il |[FC-4
2 J j l :
2 10 a o,

4 256 |

10 U e

25 - 64 & i 128 I

12 !

I

I

576

FC1_Feg2 Pmmm—————
Input source 2 Conv-1 Conv-2 Conw-3 gfas
geopotential height fields : FC-4
i : 0 output
10 ?
e | ., -
S J I
23 64 8 128 I
. ‘ 2 576 '
B i 6
- I
i
FC-1 FC-2
Input source 3 I
Past tracks + meta NN metacata || 1] @ ouwt
B 2
9 8

[Giffard-Roisin et al.,Frontiers 2020]

Fusion Network

FC-4 (fusion)

FC-5
= (fusion)
ﬁ B output (fusion)

long + lat
24242 displacement

64+64+8



Comparison to benchmarks

24-h forecast errors (Hemine hurricane, 2016)

42.5

40.0 A

37.5

35.0 1

32.5 1

30.0 A

27.5 A

25.0 1

22.5

85 -80 -75 —70 85 -80 ~-75 -70 85 -80 -75 70

model OFCL (official) model BCD5 (statistical) Fusion neural network

Figure: Hermine hurricane (2016) : 24-h forecast errors (4 time steps
ahead). The bars connect each pair of predicted and ground truth

location. The larger the length, the larger the error.
[Giffard-Roisin et al.,Frontiers 2020]



Forecasting task: 24h spatial displacement

latitude

longitude



Our approach: moving frame-of-reference

e Estimate future displacement as v = (dx, dy)

@ Centered reanalysis data (center = current storm location)

Pressure A 25°x 25°
level

(~altitude)
225 hPa -

500 hPa -

[Giffard-Roisin et al.,Frontiers 2020]



Related work

@ Define a region (hurricane basin)
e Estimate future location as (x,y) coordinates
@ Training set: storms from the same basin

o

| " Y | ' ’ - 4
‘1 2 4
' * -
} . | i ',
| A l l .
M*m *m :
CNN, -
S, X, 15
: El

5 * S %y Se .

'
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Figure: Mudigonda et. al, DLPS Workshop at NIPS 2017



Data types

e Wind and pressure fields: at 3 pressure levels (700 hPa, 500
hPa, and 225 hPa); at times t and t — 6h (2D+t)

o Past displacements: u;_gp and u; 1o, (0D41)
e Other hand-crafted features: (0D):

o current latitude / longitude

e windspeed

o Jday predictor(Gaussian function of " Julian day of storm init -
peak day of the hurricane season”)

e current distance to land




Training the fusion network

@ Stage I: Train separate networks
@ Stage Ill: Train the fusion network

e Zoom in fusion layers:

e Add connections between different streams in fusion layers
e Re-train the whole network



Performance of network components

)

km

Forecast error (

400 +

w
o
o

200 1

100 -

1 mean = 186.6

mean = 172.7

T -

mean = 148.9 mean = 135.8 mean = 130.4

0D NN

Pres.' CNN

Wind CNN Fusion Fusion
simple pre-trained




State of the art

@ BCD5 : statistical model, often used to benchmark other
storm track forecasting methods

@ OFCL : National Hurricane Center official forecast (consensus
of dynamical models), BUT evolving over years

Atlantic errors (km) | East Pacific errors (km)
Model

mean error std mean error std
BCD5 125 90 112 78
Fusion 112 71 38 52

Table: Mean and standard deviation 24h-forecast errors for the Atlantic
and Pacific basins on part of the test set (total = 4349 time steps)

» Mean error across all basins, time steps from hurricanes only: 103.9 km
» [Climate Informatics ‘18]: 6h prediction error, same evaluation: 28.5 km



