

Ecole Saisonnière en IA

L'activité inventive en ingénierie peut-elle être boostée par l'IA Le cas de l'énergie

Presentation AFIA – April 15th, 2025

Denis Cavallucci – Guillaume Guarino – Connor Mc Lean

The new challenges facing our society (and that's just the beginning...)

Those who bear the responsibility for inventing new solutions need help

Is there an inventor's gene?

Can we disambiguate the tacit cognitive functioning of a talented inventor?

What for ?

- To digitize it, to reproduce it, to teach it
- To build an "intelligent assistant", an aid for the activity of invention (Alpowered) at the service of engineers, scientists
- So that the activity of invention enters into the logic of performance.

The Genesis of TRIZ

I didn't want to invent it myself, I wanted to help others become inventors... G.S. Altshuller (1926-1998)

H1 TRIZ Introduction

TRIZ: Key figures

50 years of research – 1500 researchers – 300 schools/laboratory (former USSR) 300 inventors' bios – 400,000 patents studied – 1500 object lineages analysed

Observations:

- Inventors react according to similar cognitive mechanisms when they invent. These mechanisms are independent of their area of specialty;
- Technical systems develop in accordance with recurrent logics of evolution;
- Each step of these evolutions results in the resolution of one or more contradictions.

The first hypotheses:

- It is possible to define the laws that govern the evolution of technical systems (help the inventor to anticipate);
- It is possible to construct methods for inventing (helping the inventor solve problems).

H1 TRIZ Introduction

CA (administrative): I would like [the table to withstand heavy loads] but I don't know how.

CT (technique): If I improve [the mechanical strength] of [my table] it will also become [less transportable].

CP (physical): The thickness of the platen must be important for good mechanical strength and low for good transportability.

CA (administrative): I would like to allow a shirt to be put on my hanger without unbuttoning it but I don't know how.

CT (technique): If I improve the ability of the hanger to fit into the neckline, I degrade the fit of the shirt on the hanger

CP (physical): The length of the arms should be small to fit the neckline and large so that the shirt is well held on its hanger.

H2 Inventive Principles of TRIZ

Matrix

19/13 Principle 17: Add a new dimension (a. If the object is moving along a line, consider motion in twodimensional space)

Interpret

(reasoning by analogy)

H2 Inventive Principles of TRIZ

AIARD's Key figures

- Budget: €1,5M€ / 5 yrs
- 70% Private / 30% Public
- 10 Industrial partners
- 2 institutional funders
- 38 art./3 years (10 ACL)
- 8 PhDs (2021-2027)
- +4 on/+2 coming in 2026
- 3 Soft APP 1 Androïd
- 1 startup deeptech

Reliable texts as a resource

One more startup every month

Elicit

IPRally

CUBE

Scypris

SSYMILARITY

The value of knowledge

16

First step: Understanding TRIZ, its limits and drawing up its ontology

Step Three: Towards + Intelligence

- BERT and Q&A in Physical Effects
- Cosine Similarity for Generic BP-Generic BP Equivalence
- Machine Learning and RN trained to recognize the Inventive Principle in a text
- DeepLearning and GAN to extract contradictions from patents
- LLM to generate responses from very large databases
- Intelligent assistance in the construction of a problem (DaVinci)

Graphs as a mode of representation

Extractions of Contradictions

Targeting the essentials

Searching for answers in other disciplines

Testing, discussing, evolving our tools

Roadmap

For the future, 3 major scientific obstacles:

- The interdisciplinarity of pairings between models
- The robustness of data when facing heterogeneity

But also, 3 important technical obstacles:

adhere to our proposals and observe the uses

research demonstrator for our industrial partners

Merging similarities to reduce noise

model

Sign up AIARD Industrial Chair Artificial Intelligence Assisted R&D Build a set of intelligent tools that accompany users, real time, from expressing their problem to the most relevant scientific information likely to solve it Q Engineering Research Axes 2 Softwares Activities feedback - Partners

A (8 **Engineering articles** Contribute hese tiny power converters un on vibrational energy \succ An attractive UX/UI to get a large number of engineers to ical Vibration Self-Service eronautical Revolution: This tartup taps into an. > A scalable infrastructure, power, volumes, not just to train a noed 2 months ago ti-Weight Composite The aame has changed.' Al > Build and preserve the tool as a teaching object AND as a

Some successes

