

Battery Digital Twin with Physics, Data and Al

ESIA, Strasbourg, France

4/14/2025 Prof. Dr.-Ing. Weihan Li

Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems (CARL) Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems

Center for Ageing, Reliability and Lifetime Prediction for Electrochemical and **Power Electronic Systems –** Supporting battery applications, production and material design

- State government and Federal government invest about 110 Million Euros for building this center in Aachen
- 5000 m² of net area for laboratories and offices
- 5000 battery testing channels and environmental stress lab
- Chemical labs for post-mortem analysis and material analysis
- Clean room & Dry room, CT & Microscopy
- Largest university research group in Europe for battery system technologies
 - More than 30 years of experience in battery system technologies
 - More than 80 researchers
 - □ More than 10 million € total budget per year

 Interdisciplinary team from chemistry, physics, mathematics, material science, electrical and mechanical engineering

Center for Ageing, Reliability and Lifetime Prediction for Electrochemical and Power Electronic Systems – Supporting battery applications, production and material design

4/14/2025 | Prof. Dr.-Ing. Weihan Li Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems (CARL)

3

Post Mortem Laboratory

Battery Testing

Battery Sensors

Environmental Loads

Research Group Artificial Intelligence and Digitalization for Batteries

Research at Battery Material & Component Level

Research at Battery Cell Level

Research at Battery System Level

Batteries age differently over their lifetime

Battery cell after Thermal Runaway

© ISEA/RWTH Aachen

More efficient and reliable battery use possible?

Battery management system (BMS)

Cloud battery management system

CARL Center for Ageing, Reliability and Lifetime Prediction of Electronic Systems

Battery digital twin: the fusion of physics, data and machine learning

Agenda

Aging diagnosis – Online parameter identification

- Seamlessly monitoring of the battery cells
 - Battery internal states
 - State of charge
 - Internal physical states
 - Battery parameters
 - SOH-C
 - SOH-R
 - Impedance?
 - Degradation mode?

17 4/14/2025 | Prof. Dr.-Ing. Weihan Li Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems (CARL)

Online aging diagnosis by integrating physics and AI

- Data
 - Low-dynamic profile
 - High-dynamic profile
- Battery model
 - Impedance-based model
 - OCV model
- Artificial Intelligence
 - Cuckoo search algorithm

Li W, et al. 2022, Energy Storage Materials, 53, 391-403.

Combining the impedance-based model and OCV reconstruction model

- Equivalent-circuit model
 - Ohmic resistance
 - Charge transfer
 - Diffusion
- OCV reconstruction model
 - Electrode OCP
 - OCV balancing parameters
 - Cut-off voltages: U_{max}, U_{min}

Li W, et al. 2022, Energy Storage Materials, 53, 391-403.

19 4/14/2025 | Prof. Dr.-Ing. Weihan Li Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems (CARL)

Online OCV reconstruction

- OCV reconstruction
 - Benchmark: qOCV test
- Incremental capacity analysis
 - Qualitative evaluation of the degradation modes

Li W, et al. 2022, Energy Storage Materials, 53, 391-403.

20 4/14/2025 | Prof. Dr.-Ing. Weihan Li Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems (CARL)

Online aging mode identification

Identification results of stoichiometric parameters and degradation modes

Li W, et al. 2022, Energy Storage Materials, 53, 391-403.

Overview of the variables in field data

NameDescriptionValue rangeSingle valuesSOHstate of health at readout $[0, 100]$ (%)SOCstate of charge at readout $[0, 100]$ (%)energy_throughputtotal battery energy throughput until readout $[0, 8,000]$ (kWh)voltagebattery voltage at readout $[0, 70]$ (V)currentbattery current at readout $[-1,500, 1,500]$ (A)temperaturebattery temperature at readout $[-126, 126]$ (°C)Histogram valuestime spent in SOC range $[0, 10, 20,, 100]$ (%) $[0, 2^{32} - 1]$ (s)time_temperature_x, x \in $[1, 6]$ time spent in temperature range $[0, 0, 20,, >70]$ (°C) $[0, 2^{32} - 1]$ (s)(dis)charge_temperature_x, x \in [1,7]number of DODs in range $[0, 1.1, 2.2,, >9.9]$ (Ah) $[0, 2^{32} - 1]$ (counts	100 [%] 95 90 0	1,000 2,000 3,0 Full cycles [-]	100 95 90 90 0 1,000 1,0	0
Single valuesSOHstate of health at readout[0, 100] (%)SOCstate of charge at readout[0, 100] (%)energy_throughputtotal battery energy throughput until readout[0, 8,000] (kWh)voltagebattery voltage at readout[0, 70] (V)currentbattery current at readout[-1,500, 1,500] (A)temperaturebattery temperature at readout[-126, 126] (°C)Histogram valuestime spent in SOC range [0, 10, 20,, 100] (%)[0, 2 ³² - 1] (s)time_temperature_x, x \in [1, 6]time spent in temperature range [,0, 0, 20,, >70] (°C)[0, 2 ³² - 1] (s)(dis)charge_temperature_x, x \in [1, 6]time spent in temperature range [,0, 0, 20,, >70] (°C)[0, 2 ³² - 1] (s)number_dod_x, x \in [1,7]number of DODs in range [0, 1.1, 2.2,, >9.9] (Ah)[0, 2 ³² - 1] (counts	Name		Description	Value range
SOHstate of health at readout[0, 100] (%)SOCstate of charge at readout[0, 100] (%)energy_throughputtotal battery energy throughput until readout[0, 8,000] (kWh)voltagebattery voltage at readout[0, 70] (V)currentbattery current at readout[-1,500, 1,500] (A)temperaturebattery temperature at readout[-126, 126] (°C)Histogram valuestime_soc_x, $x \in [1, 10]$ time spent in SOC range [0, 10, 20,, 100] (%)[0, $2^{32} - 1$] (s)time_temperature_x, $x \in [1, 6]$ time spent in temperature range [,0, 0, 20,, >70] (°C)[0, $2^{32} - 1$] (s)(dis)charge_temperature_x, $x \in [1, 7]$ number of DODs in range [0, 1.1, 2.2,, >9.9] (Ah)[0, $2^{32} - 1$] (counts	Single values			
SOCstate of charge at readout[0, 100] (%)energy_throughputtotal battery energy throughput until readout[0, 8,000] (kWh)voltagebattery voltage at readout[0, 70] (V)currentbattery current at readout[-1,500, 1,500] (A)temperaturebattery temperature at readout[-126, 126] (°C)Histogram valuestime_soc_x, x \in [1, 10]time spent in SOC range [0, 10, 20,, 100] (%)[0, 2 ³² - 1] (s)(dis)charge_temperature_x, x \in [1, 6]time spent in temperature range [,0, 0, 20,, >70] (°C)[0, 2 ³² - 1] (s)(1, 6]number_dod_x, x \in [1, 7]number of DODs in range [0, 1.1, 2.2,, >9.9] (Ah)[0, 2 ³² - 1] (counts	SOH		state of health at readout	[0, 100] (%)
energy_throughputtotal battery energy throughput until readout[0, 8,000] (kWh)voltagebattery voltage at readout[0, 70] (V)currentbattery current at readout $[-1,500, 1,500]$ (A)temperaturebattery temperature at readout $[-126, 126]$ (°C)Histogram valuestime_soc_x, x $\in [1, 10]$ time spent in SOC range $[0, 10, 20,, 100]$ (%) $[0, 2^{32} - 1]$ (s)time_temperature_x, x $\in [1, 6]$ time spent in temperature range $[0, 0, 20,, >70]$ (°C) $[0, 2^{32} - 1]$ (s)(dis)charge_temperature_x, x $\in [1, 6]$ time of DODs in range $[0, 1.1, 2.2,, >9.9]$ (Ah) $[0, 2^{32} - 1]$ (counts	SOC		state of charge at readout	[0, 100] (%)
voltagebattery voltage at readout $[0, 70]$ (V)currentbattery current at readout $[-1,500, 1,500]$ (A)temperaturebattery temperature at readout $[-126, 126]$ (°C)Histogram valuestime_soc_x, x $\in [1, 10]$ time spent in SOC range $[0, 10, 20,, 100]$ (%) $[0, 2^{32} - 1]$ (s)time_temperature_x, x $\in [1, 6]$ time spent in temperature range $[0, 0, 20,, >70]$ (°C) $[0, 2^{32} - 1]$ (s)(dis)charge_temperature_x, x $\in [1, 7]$ number of DODs in range $[0, 1.1, 2.2,, >9.9]$ (Ah) $[0, 2^{32} - 1]$ (counts	energy_throughput		total battery energy throughput until readout	[0, 8,000] (kWh)
currentbattery current at readout $[-1,500, 1,500]$ (A)temperaturebattery temperature at readout $[-126, 126]$ (°C)Histogram valuestime_soc_x, x \in [1,10]time spent in SOC range [0, 10, 20,, 100] (%) $[0, 2^{32} - 1]$ (s)time_temperature_x, x \in [1,6]time spent in temperature range [,0, 0, 20,, >70] (°C) $[0, 2^{32} - 1]$ (s)(dis)charge_temperature_x, x \in [1,6](dis)charge in temperature range [,0, 0, 20,, >70] (°C) $[0, 2^{32} - 1]$ (Ah) $[1,6]$ number_dod_x, x \in [1,7]number of DODs in range [0, 1.1, 2.2,, >9.9] (Ah) $[0, 2^{32} - 1]$ (counts	voltage		battery voltage at readout	[0, 70] (V)
temperaturebattery temperature at readout $[-126, 126]$ (°C)Histogram valuestime_soc_x, x \in [1, 10]time spent in SOC range [0, 10, 20,, 100] (%) $[0, 2^{32} - 1]$ (s)time_temperature_x, x \in [1, 6]time spent in temperature range [,0, 0, 20,, >70] (°C) $[0, 2^{32} - 1]$ (s)(dis)charge_temperature_x, x \in [1, 6](dis)charge in temperature range [,0, 0, 20,, >70] (°C) $[0, 2^{32} - 1]$ (Ah)number_dod_x, x \in [1,7]number of DODs in range [0, 1.1, 2.2,, >9.9] (Ah) $[0, 2^{32} - 1]$ (counts	current		battery current at readout	[-1,500, 1,500] (A)
Histogram values time_soc_x, x \in [1, 10] time spent in SOC range [0, 10, 20,, 100] (%) $[0, 2^{32} - 1]$ (s) time_temperature_x, x \in [1, 6] time spent in temperature range [,0, 0, 20,, >70] (°C) $[0, 2^{32} - 1]$ (s) (dis)charge_temperature_x, x \in [1, 6] (dis)charge in temperature range [,0, 0, 20,, >70] (°C) $[0, 2^{32} - 1]$ (Ah) $[1, 6]$ number_dod_x, x \in [1, 7] number of DODs in range [0, 1.1, 2.2,, >9.9] (Ah) $[0, 2^{32} - 1]$ (counts	temperature		battery temperature at readout	[-126, 126] (°C)
time_soc_x, x \in [1, 10]time spent in SOC range [0, 10, 20,, 100] (%) $[0, 2^{32} - 1]$ (s)time_temperature_x, x \in [1, 6]time spent in temperature range [,0, 0, 20,, >70] (°C) $[0, 2^{32} - 1]$ (s)(dis)charge_temperature_x, x \in [1, 6](dis)charge in temperature range [,0, 0, 20,, >70] (°C) $[0, 2^{32} - 1]$ (Ah)number_dod_x, x \in [1, 7]number of DODs in range [0, 1.1, 2.2,, >9.9] (Ah) $[0, 2^{32} - 1]$ (counts)	Histogram values			
time_temperature_x, x \in [1,6]time spent in temperature range [,0, 0, 20,, >70] (°C) $[0, 2^{32} - 1]$ (s)(dis)charge_temperature_x, x \in (1,6](dis)charge in temperature range [,0, 0, 20,, >70] (°C) $[0, 2^{32} - 1]$ (Ah)[1,6]number_dod_x, x \in [1,7]number of DODs in range [0, 1.1, 2.2,, >9.9] (Ah) $[0, 2^{32} - 1]$ (counts	time_soc_x,x ∈ [1,10]		time spent in SOC range [0, 10, 20,, 100] (%)	[0, 2 ³² - 1] (s)
(dis)charge_temperature_x, x ∈ (dis)charge in temperature range [,0, 0, 20,, >70] (°C) [0, 2 ³² - 1] (Ah) [1,6] number_dod_x, x ∈ [1,7] number of DODs in range [0, 1.1, 2.2,, >9.9] (Ah) [0, 2 ³² - 1] (counts	time_temperature_ $x, x \in [1, 6]$		time spent in temperature range [,0, 0, 20,, >70] (°C)	[0, 2 ³² - 1] (s)
number_dod_x,x ∈ [1,7] number of DODs in range [0, 1.1, 2.2,, >9.9] (Ah) [0, 2 ³² - 1] (counts	(dis)charge_temperature_x, x ∈ [1,6]		(dis)charge in temperature range [,0, 0, 20,, >70] (°C)	[0, 2 ³² - 1] (Ah)
	number_dod_ $x, x \in [1, 7]$		number of DODs in range [0, 1.1, 2.2,, >9.9] (Ah)	[0, 2 ³² – 1] (counts

V. Steininger, et al., Cell Reports Physical Science 4, 101596, 2023.

Laboratory data for both calendar and cyclic aging

V. Steininger, et al., Cell Reports Physical Science 4, 101596, 2023.

nical and Powe

Field data vs. laboratory data for aging diagnosis

- Field data from 600.000 vehicles
- Laboratory data from both calendar and cyclic ageing tests

Feature extraction framework to integrate laboratory and field data

V. Steininger, et al., Cell Reports Physical Science 4, 101596, 2023.

Center for Ageing, Reliabilit and Lifetime Prediction of Electrochemical and Power

lectronic Systems

Self-supervised learning for large scale unlabeled field data (20 vehicles)

Q. Wang, et al., Journal of Energy Chemistry, 2024, 99, 681 – 691.

Transfer learning between different battery cells

Transfer learning for capacity estimation from laboratory to field application

Successful transfer between two batteries with the same chemistry but different formats and capacity

Agenda

Challenges in battery aging prediction

29 4/14/2025 | Prof. Dr.-Ing. Weihan Li Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems (CARL)

One-shot prediction of service life with sequence-to-sequence learning

CARL

Capacity fade and power fade co-prediction with multi-task learning

W. Li, et al., Energy Storage Materials, 53, 453-466, 2022.

31 4/14/2025 | Prof. Dr.-Ing. Weihan Li Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems (CARL)

Lifetime prediction from large-scale field data

Q. Wang, et al., Cell Reports Physical Science, 4(12), 2023.

Data preprocessing and charging curve reconstruction

33 4/14/2025 | Prof. Dr.-Ing. Weihan Li

Statistical distributions of stress factors of vehicles with different ageing rates

Q. Wang, et al., Cell Reports Physical Science, 4(12), 2023.

34 4/14/2025 | Prof. Dr.-Ing. Weihan Li Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems (CARL)

Statistical feature engineering with multi-level strategy

Feature pool construction

Q. Wang, et al., Cell Reports Physical Science, 4(12), 2023.

Feature selection with correlation analysis

						ac			acc			ac	0	W	and	ים [©] ו	tal	Ce	-II F	2en	orts	Ph	ieve	cal	Sci	ence	4(12)	2023
	T_mean	T_tota	lc_mean	lc_max	lc_total	c_energy_chg	ld_ec_mean	ld_ec_tota	c_energy_d_ec	ld_er_mean	ld_er_tota	c_energy_d_er	ld_total	acc_energy_d	SOC_min	c_median_var	:yc_DOD_max	V_mean	V_max	V_range	V_var	acc_run_time	acc_time	calendar_time	ld_mean	total		
I_total -	0.51	0.94	-0.15	0.2	-0.97	0.97	-0.023	1	1	-0.43	-0.91	0.91	0.99	0.99	-0.22	-0.16	0.28	0.058	-0.057	-0.028	-0.27	0.89	0.93	0.19	0.088	1		
ld_mean -	0.27	-0.15	-0.014	-0.23	-0.12	0.12	0.96	0.085	0.084	-0.26	-0.018	0.019	0.069	0.068	0.1	-0.056	-0.12	0.13	0.23	0.21	0.47	-0.35	-0.27	-0.43	1	0.088		
calendar_time -	-0.17	0.26	0.13	0.098	-0.1	0.098		0.19	0.19	-0.16	-0.32	0.32	0.23	0.23	-0.19	-0.037	0.1	-0.3	-0.3	-0.22	-0.29	0.38	0.35	1	-0.43	0.19		
acc_time -	0.36	0.96	-0.11	0.26	-0.88	0.88	-0.36	0.93	0.93	-0.31	-0.88	0.88	0.94	0.94	-0.24	-0.14	0.3	-0.0019	-0.15	-0.11	-0.43	0.99		0.35	-0.27	0.93		0.75
acc_run_time -	0.31	0.93	-0.17	0.32	-0.82	0.82		0.89	0.89	-0.33	-0.87	0.87	0.9	0.9	-0.23	-0.16	0.3	-0.03	-0.19	-0.15	-0.48	1	0.99	0.38	-0.35	0.89		
V_var -	-0.24	-0.44	0.07	-0.15	0.2	-0.2	0.55	-0.28	-0.28	0.21	0.33	-0.33	-0.3	-0.3	0.062	0.24	-0.13	0.1	0.43	0.6	1	-0.48	-0.43	-0.29	0.47	-0.27		
V_range -	0.0002	5-0.097	0.13	-0.18	-0.037	0.038	0.26	-0.036	-0.032	0.15	0.13	-0.13	-0.062	-0.059	-0.21	0.33	0.098	0.44	0.8	1	0.6	-0.15	-0.11	-0.22	0.21	-0.028		0.50
V_max -	0.11	-0.098	0.2	-0.24	-0.017	0.019	0.3	-0.058	-0.049	0.2	0.19	-0.18	-0.094	-0.087	0.052	0.29	-0.071	0.79	1	0.8	0.43	-0.19	-0.15	-0.3	0.23	-0.057		
V_mean -	0.2	0.054	0.047	-0.017	-0.12	0.12	0.15	0.052	0.064	0.028	0.051	-0.044	0.025	0.036	0.12	0.13	-0.089	1	0.79	0.44	0.1	-0.03	-0.0019	-0.3	0.13	0.058		
cyc_DOD_max -	0.18	0.31	-0.015	0.0041	-0.29	0.28	-0.15	0.27	0.27	-0.078	-0.24	0.24	0.27	0.27	-0.71	0.14	1	-0.089	-0.071	0.098	-0.13	0.3	0.3	0.1	-0.12	0.28		0.25
cyc_median_var -	-0.14	-0.16	0.36	-0.28	0.13	-0.14	0.013	-0.17	-0.17	0.24	0.16	-0.16	-0.17	-0.17	-0.31	1	0.14	0.13	0.29	0.33	0.24	-0.16	-0.14	-0.037	-0.056	-0.16		
SOC_min -	-0.091	-0.24	-0.17	0.1	0.24	-0.23	0.11	-0.22	-0.22	0.023	0.19	-0.18	-0.21	-0.21	1	-0.31	-0.71	0.12	0.052	-0.21	0.062	-0.23	-0.24	-0.19	0.1	-0.22		
acc_energy_d -	0.45	0.93	-0.15	0.21	-0.93	0.94	-0.055	0.99	0.99		-0.95	0.95			-0.21	-0.17	0.27	0.036	-0.087	-0.059	-0.3	0.9	0.94	0.23	0.068	0.99		- 0.00
Id_total -	0.45	0.93	-0.15	0.21	-0.9 <u>3</u>	0.93	-0.054	0.99	0.99		-0.95	0.95			-0.21	-0.17	0.27	0.025	-0.094	-0.062	-0.3	0.9	0.94	0.23	0.069	0.99		
acc energy d er -	0.25	0.82	-0.17	0.24	-0.8	0.8	-0.14	0.9	0.9_	-0.57	-1	1	0.95	0.95	-0.18	-0.16	0.24	-0.044	-0.18	-0.13	-0.33	0.87	0.88	0.32	0.019	0.91		
ld er total -	-0.25	-0.82	0.17	-0.24	0.8	-0.8	0.14	-0.9	-0.9	0.57	1	-1	-0.95	-0.95	0.19	0.16	-0.24	0.051	0.19	0.13	0.33	-0.87	-0.88	-0.32	-0.018	-0.91		- 0.25
Id er mean -	-0.2	-0.33	0.42	-0.41	0.35	-0.35	0.0051	-0.41	-0.41	1	0.57	-0.52	-0.46	-0.46	0.023	0.24	-0.078	0.028	0.2	0.15	0.23	-0.33	-0.31	-0.16	-0.26	-0.43		
acc energy d ec -	0.51	0.94	-0.14	0.2	-0.96	0.96	-0.021	1		-0.41	-0.9	0.9	0.99	0.99	-0.22	-0.17	0.27	0.052	-0.058	-0.030	-0.28	0.89	0.93	0.19	0.085	1		
id_ec_total -	0.24	-0.24	-0.14	-0.34	-0.038	0.038	-0.021	-0.021	-0.022	-0.41	.0.9	-0.14	-0.054	0.055	-0.22	-0.17	-0.15	0.15	-0.059	-0.036	-0.55	-0.45	-0.36	-0.5	0.96	-0.023		- 0.50
d oc moon	0.59	0.92	-0.14	0.16	-1	0.039	1.038	0.96	0.98	-0.35	-0.8	0.14	0.93	0.94	-0.23	-0.14	0.28	0.12	0.019	0.038	-0.2	0.82	0.88	0.098	0.12	0.022		0.50
acc energy cho	0.50	-0.92	-0.14	-0.16	-1	-1	0.038	-0.96	-0.96	-0.35	-0.8	0.8	-0.93	-0.93	-0.23	-0.14	-0.29	-0.12	0.010	-0.037	-0.2	-0.82	-0.88	-0.1	-0.12	-0.97		
ic_max -	0.011	0.23	-0.58	0.16	-0.16	0.16	-0.34	0.2	0.2	-0.41	-0.24	0.24	0.21	0.21	0.1	-0.28	-0.0041	0.12	-0.24	-0.18	-0.15	0.32	0.26	0.098	-0.23	0.2		
ic_mean -	0.16	-0.13	0.50	-0.58	0.14	-0.14	0.086	-0.14	-0.14	0.42	0.17	-0.17	-0.15	-0.15	-0.17	0.36	-0.015	0.047	0.2	0.13	0.07	-0.17	-0.11	0.13	-0.014	-0.15		- 0.75
T_total -	0.61	1	-0.13	0.23	-0.92	0.92	-0.24	0.94	0.94	-0.33	-0.82	0.82	0.93	0.93	-0.24	-0.16	0.31	0.054	-0.098	-0.097	-0.44	0.93	0.96	0.26	-0.15	0.94		
T_mean -	1	0.61	-0.16	0.011	-0.6	0.59	0.24	0.51	0.51	-0.2	-0.25	0.25	0.45	0.45	-0.091	-0.14	0.18	0.2	0.11-	0.0002!	5-0.24	0.31	0.36	-0.17	0.27	0.51		
																												- 1.00

Q. Wally, et al., Cell Reports Physical Science, 4(12),

Uncertainty-aware degradation prediction

Q. Wang, et al., Cell Reports Physical Science, 4(12), 2023.

37 4/14/2025 | Prof. Dr.-Ing. Weihan Li Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems (CARL)

Failure distribution is as important as lifetime prediction for warranty

Q. Wang, et al., Cell Reports Physical Science, 4(12), 2023.

4/14/2025 | Prof. Dr.-Ing. Weihan Li Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems (CARL)

Agenda

Challenges in aging optimization

Fleet management

Energy management

https://driivz.com/solutions/ev-fleets/

https://www.aroundhome.de/magazin/energie/smart-grid-intelligente-stromnetzefuer-die-erhoffte-energiewende/

- How to develop safety- and aging-conscious operation strategies?
- How to develop updatable operation strategies?
- How to consider a large dimension of states?

40 4/14/2025 | Prof. Dr.-Ing. Weihan Li Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems (CARL)

Fast Charging Trade-off

Trade-off between fast charging and ageing

Lithium plating

M. Sanne, et al., 2024, in preparation

Aging-aware fast charging with reinforcement learning

Z. Wei, et al., Energy Storage Materials, 56, 62-75, 2023

CARL Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electrochemical states and the states of the states o

Testing Procedure - Experimental Setup

Scenario

- □ Charge from 10% SOC to 80% SOC
- □ Temperature 0 °C
- Active Cooling with Aluminium Cooling Plates
- □ Charging Time ~ 54 minutes

Benchmarks

- Constant Current Constant Voltage (CCCV)
- Multistage Constant Current (MCC)

M. Sanne, et al., 2025, in preparation

Battery lifetime extension with intelligent fast charging

Benchmarks
CCCV @ 0.787 C
MCC @ 1.25, 1.05, 0.85, 0.5 C

Improved model performance

M. Sanne, et al., 2025, in preparation

Summary

- Battery digital twin with revolutionary battery management functionalities
- Fusion of physics-based and machine learning models
- Full life cycle monitoring, prediction and control of battery dynamics

Artificial Intelligence and Digitalization for Batteries @ RWTH Aachen University

Center for Ageing, Reliabili and Lifetime Prediction of Electrochemical and Powe **Electronic Systems**

4/14/2025 | Prof. Dr.-Ing. Weihan Li Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems (CARL)

46

Gefördert durch:

für Bildung