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Dijon, au cœur de l’Intelligence Artificielle
de demain

Lylia Abrouk
Professeur, LIB, Université Bourgogne-Franche-Comté
Président du Comité d’Organisation de la Plate-Forme IA 2025

Thomas Guyet, Fatiha Saïs, Ahmed Samet
Chercheur INRIA Lyon, Professeur Université de Paris-Saclay, Maître de Conférence INSA Strasbourg,
Membres du Conseil d’Administration de l’AFIA,
Co-Présidents du Comité de Programmation de la Plate-Forme IA 2025

L’AFIA et le laboratoire LIB s’associent pour organiser du 30 juin au 4 juillet 2025 la 18e Plate-Forme Intelligence
Artificielle – PFIA 2025. Les précédentes éditions se sont tenues à Palaiseau (1999), Grenoble (2001), Laval
(2003), Nice (2005), Grenoble (2007), Hammamet (2009), Chambéry (2011), Lille (2013), Rennes (2015), Caen
(2017), Nancy (2018), Toulouse (2019), Angers (2020), Bordeaux (2021), Saint-Étienne (2022), Strasbourg (2023)
et La Rochelle (2024).

La plate-forme IA constitue un point de rencontre unique pour la communauté IA permettant de rapprocher les
différentes disciplines qui la composent et d’établir des passerelles entre elles. À cette intention, la Plate-forme
IA s’adresse à l’ensemble de la communauté francophone en IA pour aborder des problématiques communes.

Dijon compte des acteurs de premier plan dans le domaine de l’Intelligence Artificielle, avec de réelles compé-
tences tant dans son cœur scientifique et technique que dans son intégration à d’autres technologies ou dans ses
applications dans différents domaines.

Pour son édition 2025, la Plate-Forme IA héberge les 9 conférences suivantes :
APIA 11e conférence nationale sur les Applications Pratiques de l’IA G. Atemezing et N. Abadie
CAp 27e Conférence sur l’Apprentissage automatique A. Cornuéjols et V. Guigue
CNIA 28e Conférence Nationale d’Intelligence Artificielle T. Cazenave
IC 36es journées francophones d’Ingénierie des Connaissances F. Mougin
JFPC 20es Journées Francophones de Programmation par Contraintes H. Verhaeghe
JFSMA 33es Journées Francophones sur les Système Multi-Agents G. Bonnet
JIAF 19es Journées d’Intelligence Artificielle Fondamentale J.-G. Mailly, F. Schwarzentru-

ber et A. Wilczynski
RJCIA 23es Rencontres des Jeunes Chercheurs en Intelligence Artificielle D. Symeonidou
SFC 32es rencontres de la Société Francophone de Classification P. Préa

les 4 journées suivantes :
Défense & IA journée « Défense & IA », en partenariat avec l’INRIA et l’ONERA
Humanité & IA journée « Humanité & IA », en partenariat avec l’action Sources aux Données

Historiques en Humanités Numériques du GdR MADICS
Société & IA journée « Société & IA », en partenariat avec le collège Humanités, Société et

Intelligence Artificielle de l’AFIA et le cluster IA MIAI de Grenoble
IA en BFC journée « IA en Bourgogne-Franche-Comté », en partenariat avec l’Université

Bourgogne Europe et SATT Sayens

6 ateliers thématiques (ACAI, GDR RADIA, IN-OVIVE, Jeux & IA, MAFTEC, Santé & IA),

ainsi que plusieurs tutoriels hébergés sur les thèmes :

— Comprendre et Maîtriser l’Incertitude dans les Réseaux de Neurones : Approches Bayésiennes, En-
semblistes et Applications Pratiques (G. Franchi, O. Laurent, A. Lafage) ;

— Introduction à la modélisation en programmation par contraintes (C. Lecoutre) ;
— Coordination multi-agents : approches coopératives par optimisation distribuée et enchères (G. Pi-

card) ;
— Apprentissage continu appliqué à la classification d’images (E. Feillet, C. Hudelot, A. Popescu) ;
— Explicabilité pour le NLP : théorie et pratique (W. Ouerdane, A. Poché, J.P. Poli) ;
— Apprendre et enseigner à l’aune de l’IA générative (N. Abchiche Mimouni, S. Tronçon).
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Dix collègues ont également été invités pour des conférences en début de chaque demi-journée :
Vaishak Belle University of Edinburgh UK
Thomas Fel Université Harvard USA
Rémi Flamary École Polytechnique France
Luis Galárraga IRISA France
Christian Hennig University of Bologna Italie
Emiliano Lorini CNRS, Université de Toulouse France
Simon Lucas University of London UK
Nardine Z. Osman Spanish National Research Council Espagne
Louis-Martin Rousseau Polytechnique Montréal Canada
Marieke van Erp Royal Netherlands Academy of Arts and Sciences Humanities Cluster Pays-Bas

plus les 3 lauréats du prix de thèse de l’AFIA :
Thomas Fel (1er prix) Université de Toulouse France
Edwige Cyffers (Accessit ex-aequo) Université de Lille France
Marc Jourdan (Accessit ex-aequo) Université de Lille France

Nous remercions les présidents et membres de comités de programme des conférences et journées hébergées,
les orateurs, les membres des comités de programmation et d’organisation, nos partenaires institutionnels et
industriels, ainsi que tous les participants, pour leurs contributions précieuses à la réussite de cette plate-forme.

L’ensemble des informations sur ces événements est disponible à partir du site de la Plate-Forme IA 2025
(https://pfia2025.u-bourgogne.fr).
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Comité de programmation

Conseil d’Administration de l’Association Française pour l’Intelligence Artificielle

Président

— Thomas GUYET, AIstroSight, Inria, Centre de Lyon.

Membres

— Davy Monticolo, Université de Lorraine, ERPI ;
— Ahmed Samet, INSA Strasbourg, ICube.

Comités de programme

Conférence nationale sur les Applications Pratiques de l’IA (APIA)

Présidence

— Ghislain Atemezing (European Union Agency for Railways) ;
— Nathalie Abadie (LASTIG, Université Gustave Eiffel, IGN-ENSG).

Membres

— Florence Amardeilh (Elzeard) ;
— Fabien Amarger (Digitanie) ;
— Nicolas Audebert (LASTIG, Université Gustave Eiffel, IGN-ENSG) ;
— Nathalie Aussenac (IRIT, CNRS) ;
— Alain Berger (Ardans) ;
— Sandra Bringay (LIRMM) ;
— Xavier Briottet (Office National d’Etudes et de Recherches Aérospatiales) ;
— Stephan Brunessaux (Sensei Consult) ;
— Davide Buscaldi (LIPN, Université Paris 13, Sorbonne Paris Cité) ;
— Gaëtan Caillaut (Lingua Custodia) ;
— Bruno Carron (Airbus) ;
— Laurent Cervoni (Talan) ;
— Gaël de Chalendar (CEA LIST) ;
— Nicolas Chauvat (Logilab) ;
— Caroline Chopinaud (Hub France IA) ;
— Franck Cotton (Making Sense) ;
— Yves Demazeau (CNRS - LIG) ;
— Sylvie Despres (Laboratoire d’Informatique Médicale et de BIOinformatique) ;
— Gayo Diallo (ISPED & LABRI, Université de Bordeaux) ;
— Valentina Dragos (Office National d’Etudes et de Recherches Aérospatiales) ;
— Guillaume Dubuisson Duplessis (EDF) ;
— Françoise Fogelman-Soulié (Hub France IA) ;
— Nicolas Gonthier (LASTIG, Université Gustave Eiffel, IGN-ENSG) ;
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— Céline Hudelot (Ecole Centrale Paris) ;
— Arnaud Lallouet (Huawei) ;
— Christine Largouët (Irisa - Agrocampus Ouest) ;
— Christelle Launois (Société Générale) ;
— Dino Lenco (INRAE) ;
— Dominique Lenne (Heudiasyc, Université de Technologie de Compiègne) ;
— Mustapha Lebbah (Université Paris-Saclay - UVSQ Versailles Campus) ;
— Sylvain Mahé (EDF R & D) ;
— Juliette Mattioli (Thales) ;
— Mathieu Roche (CIRAD, TETIS) ;
— Catherine Roussey (INRAE) ;
— Céline Rouveirol (LIPN, Université Paris 13) ;
— Brigitte Trousse (INRIA).

Conférence Nationale en Intelligence Artificielle (CNIA)

Présidence

— Tristan Cazenave.

Membres

— Ines Alaya - LAMSADE, Université Paris-Dauphine ;
— Jérôme Azé - LIRMM - CNRS UMR 5506 ;
— Nicolas Beldiceanu - IMT Atlantique (LS2N) ;
— Armelle Brun - LORIA - Université de Lorraine ;
— Olivier Boissier - LIMOS UMR 6158 CNRS ;
— Grégory Bonnet - Université de Caen Normandie ;
— Sandra Bringay - LIRMM;
— Benjamin Dalmas - Computer Research Institute of Montreal ;
— Yves Demazeau - CNRS - LIG ;
— Arnaud Doniec - IMT Nord Europe ;
— Louis Falissard - LIASD, Paris 8 ;
— Olivier Goudet - LERIA ;
— Jean-Gabriel Ganascia - LIP6, Sorbonne Université ;
— Christophe Guettier - SAFRAN ;
— Nicolas Jouandeau - Université Paris 8 ;
— Camille Kurtz - Université de Paris ;
— Jérôme Lang - LAMSADE, Université Paris-Dauphine ;
— Nicolas Lachiche - University of Strasbourg ;
— Florence Le Ber - ICube ;
— Marie-Jeanne Lesot - LIP6 - Sorbonne Université ;
— Nicolas Maudet - LIP6, Sorbonne Université ;
— Denis Pallez - Université Côte d’Azur ;
— Damien Pellier - Laboratoire d’Informatique de Grenoble ;
— Ana Roxin - Université Bourgogne Europe, LIB EA7534 ;
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— Pascale Sébillot - Université de Rennes, CNRS, Inria / IRISA ;
— Laurent Vercouter - LITIS lab, INSA de Rouen ;
— Bruno Zanuttini - GREYC, Normandie Univ. ; UNICAEN, CNRS, ENSICAEN.

Journées francophones d’Ingénierie des Connaissances (IC)

Présidence

— Fleur Mougin, BPH - Inserm U1219, Université de Bordeaux.

Membres

— Xavier Aimé, Cogsonomy ;
— Nathalie Abadie, LaSTIG, IGN France ;
— Marie-Hélène Abel, Heudiasyc, Université de Technologie de Compiègne ;
— Yamine Ait Ameur, IRIT, Toulouse INP ;
— Nathalie Aussenac-Gilles, IRIT, CNRS ;
— Bruno Bachimont, Heudiasyc, University de Technologie de Compiègne ;
— Nacéra Bennacer-Seghouani, LRI, Centrale Supélec ;
— Nathalie Bricon-Souf, IRIT, Université de Toulouse ;
— Sandra Bringay, LIRMM, Université Paul-Valéry Montpellier ;
— Davide Buscaldi, LIPN, Université Sorbonne Paris Nord ;
— Sylvie Calabretto, LIRIS, INSA de Lyon ;
— Pierre-Antoine Champin, LIRIS, Université Claude Bernard Lyon 1 ;
— Jean Charlet, AP-HP & Inserm U1142 ;
— Victor Charpenay, LIMOS, MINES Saint-Etienne ;
— Adrien Coulet, HeKA - Inserm & Inria, Université Paris Cité ;
— Jérôme David, mOeX - LIG & Inria, Université Grenoble Alpes ;
— Sylvie Despres, LIMICS, Université Sorbonne Paris Nord ;
— Gayo Diallo, BPH - Inserm U1219, Université de Bordeaux ;
— Catherine Faron, I3S, Université Côte d’Azur ;
— Béatrice Fuchs, LIRIS, Université Jean Moulin Lyon III ;
— Frédéric Fürst, MIS, Université de Picardie Jules Verne ;
— Alban Gaignard, Institut du Thorax, Nantes Université ;
— Mounira Harzallah, LS2N, Nantes Université ;
— Nathalie Hernandez, IRIT, Université Toulouse Jean Jaurès ;
— Liliana Ibanescu, INRAE, AgroParisTech ;
— Sébastien Iksal, LIUM, Le Mans Université ;
— Antoine Isaac, Europeana & Vrije Universiteit Amsterdam ;
— Clément Jonquet, INRAE & LIRMM ;
— Mouna Kamel, Université de Perpignan Via Domitia ;
— Gilles Kassel, Université de Picardie Jules Verne ;
— Maxime Lefrançois, LIMOS, MINES Saint-Etienne ;
— Dominique Lenne, Heudiasyc, Université de Technologie de Compiègne ;
— Pascal Molli, LS2N, Nantes Université ;
— Jérôme Nobécourt, LIMICS, Université Sorbonne Paris Nord ;
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— Nathalie Pernelle, LIPN, Université Sorbonne Paris Nord ;
— Cédric Pruski, Luxembourg Institute of Science and Technology ;
— Joe Raad, LISN, Université Paris Saclay ;
— Sylvie Ranwez, EuroMov DHM, Ecole des Mines d’Alès ;
— Catherine Roussey, INRAE ;
— Fatiha Saïs, LISN, Université Paris Saclay ;
— Karim Sehaba, LIRIS, Université Lumière Lyon 2 ;
— Lina F. Soualmia, LITIS & LIMICS, Normandie Universités ;
— Konstantin Todorov, LIRMM, Université de Montpellier ;
— Cassia Trojahn, mOeX - LIG & Inria, Université Grenoble Alpes ;
— Raphaël Troncy, EURECOM ;
— Danai Symeonidou, INRAE ;
— Haïfa Zargayouna, LIPN, Université Sorbonne Paris Nord.

Journées d’Intelligence Artificielle Fondamentale &
Journées Francophones sur la Planification, la Décision et l’Apprentissage
(JIAF-JFPDA)

Présidence

— Jean-Guy Mailly (IRIT, Université de Toulouse, UT Capitole) ;
— François Schwarzentruber (IRISA, ENS Rennes) ;
— Anaëlle Wilczynski (MICS, CentraleSupélec, Université Paris-Saclay).

Membres

— Francesco Belardinelli (Imperial College London) ;
— Aurélie Beynier (LIP6, Sorbonne Université) ;
— Élise Bonzon (LIPADE, Université Paris Cité) ;
— Nadjet Bourdache (GREYC, Université de Normandie) ;
— Olivier Buffet (INRIA / LORIA) ;
— Martin C. Cooper (IRIT - Université Paul Sabatier) ;
— Célia da Costa Pereira (Université Côte d’Azur) ;
— Tiago de Lima (Université d’Artois, CRIL CNRS) ;
— Sylvie Doutre (Université Toulouse Capitole - IRIT) ;
— Florence Dupin de Saint-Cyr (Université Paul Sabatier - IRIT) ;
— Alain Dutech (Loria - Inria) ;
— Sabine Frittella (INSA Centre Val de Loire) ;
— Hugo Gilbert (Lamsade - Université Paris Dauphine) ;
— Raïda Ktari (Aix-Marseille Université) ;
— Jérôme Lang (CNRS, LAMSADE, Université Paris-Dauphine) ;
— Jean Lieber (LORIA - INRIA Lorraine) ;
— Emiliano Lorini (CNRS, IRIT) ;
— Pierre Marquis (CRIL, U. Artois & CNRS - Institut Universitaire de France) ;
— Amedeo Napoli (LORIA Nancy, CNRS - Inria - Université de Lorraine) ;
— Wassila Ouerdane (MICS, CentraleSupélec, Université Paris-Saclay) ;
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— Damien Pellier (Laboratoire d’Informatique de Grenoble) ;
— Julien Rossit (Université Paris Cité, LIPADE) ;
— Stéphanie Roussel (ONERA) ;
— Régis Sabbadin (INRA-UBIA) ;
— Vincent Thomas (LORIA) ;
— Srdjan Vesic (CRIL - CNRS) ;
— Thierry Vidal (LGP, UTTOP Tarbes) ;
— Bruno Zanuttini (GREYC, Université de Normandie).

Rencontres des Jeunes Chercheurs en Intelligence Artificielle (RJCIA)

Présidence

— Danai Symeonidou - INRAE.

Membres

— Lylia Abrouk - LIB ;
— Vincent Armant - Institut de Recherche pour le Développement ;
— Sandra Bringay - Université de Montpellier 2 ;
— Francesca Bugiotti Paris-Saclay University ;
— Davide Di Pierro - Université de Montpellier ;
— Luis Galárraga - Inria ;
— Nathalie Hernandez - Université de Toulouse ;
— Liliana Ibanescu - Université Paris-Saclay ;
— Pierre Larmande - IRD ;
— Melanie Munch - INRAE ;
— Pierre-Henri Paris - Paris-Saclay University ;
— Nathalie Pernelle - Université Sorbonne Paris Nord ;
— Joe Raad - Vrije Universiteit, Amsterdam, The Netherlands ;
— Catherine Roussey - INRAE ;
— Danai Symeonidou - INRAE ;
— Cassia Trojahn - Université Grenoble Alpes ;
— Katerina Tzompanaki - CY Cergy Paris University ;
— Felipe Vargas-Rojas - IRD.
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Comité d’organisation

ICube, Université de Strasbourg

Présidence

— Lylia Abrouk (UBE).

Pilotage

— Hamid Ahaggach (Syartec) ;
— Angélique Bardollet (UBE) ;
— Claire Bourgeois-République (UBE) ;
— Nadine Cullot (UBE) ;
— Alexandrine Delbano (UBE) ;
— Alexis Guyot (Université de Montpellier) ;
— Marinette Savonnet (UBE).

Membres

— Pauline Armary ;
— Olivier Bailleux ;
— Maëlle Beuret ;
— David Camarazo ;
— Ibrahim Diarra ;
— Davide Di Pierro ;
— Lucie Druoton ;
— Laurence Dujourdy ;
— Mahya Faraji ;
— Irène Foucherot ;
— Christian Gentil ;
— Hussam Ghanem ;
— Sarah Ghidalia ;
— Sébastien Guillemin ;
— Matéo Iori ;
— Mahdi Madani ;
— Cyrille Migniot ;
— Clément Poull ;
— Céline Roudet ;
— Ana Roxin ;
— Joël Savelli ;
— Olivier Togni.
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Hybridizing Machine Learning and Optimization for Planning
Satellite Observations∗

Romain Barrault1, Cédric Pralet1, Gauthier Picard1, Eric Sawyer2
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Résumé
La planification des tâches d’un satellite d’observation ter-
restre est un problème hautement combinatoire. Cela con-
siste à calculer régulièrement la séquence d’observations à
effectuer par un satellite pour collecter des photographies
de points d’intérêt tout en tenant compte des manœuvres
temporelles nécessaires pour diriger le satellite vers les
points d’intérêts successifs. Pour résoudre un tel problème
d’optimisation, nous proposons une nouvelle approche qui
exploite des techniques d’apprentissage hors ligne pour ap-
proximer la faisabilité de l’ordonnancement pour des en-
sembles de tâches d’observation au sein d’un algorithme
d’optimisation.

Mots-clés
IA hybride, Réseaux de Neurones Artificiels, Recherche à
Voisinage Large, Planification, Satellite d’Observation Ter-
restre.

Abstract
Planning the activities of an Earth observation satellite is
a highly combinatorial task. It consists in regularly com-
puting the sequence of observations to be performed by a
satellite to collect images of candidate points of interest
(POIs), while taking into account the time-dependent man-
euvers required to point the satellite to the successive POIs.
To solve such a recurrent optimization problem, we propose
a novel approach that exploits offline learning techniques
to approximate scheduling feasibility for sets of observation
tasks within an optimization algorithm.

Keywords
Hybrid AI, Neural Networks, Large Neighbourhood Search,
Scheduling, Earth Observation Satellite.

1 Introduction
Earth observation satellites (EOSs) are vital for monitor-
ing the planet, supporting diverse applications from climate
studies to emergency response. Agile EOSs enhance re-
sponsiveness through advanced attitude control, enabling
swift instrument reorientation towards targets of interest.

∗Cet article a été accepté à CPAIOR’25.

However, planning the activities of agile EOSs presents
significant challenges in terms of optimization. This ex-
plains why this problem has received attention over the
last 25 years [24], leading to the use of various optimiz-
ation techniques. The latter include, for example, greedy
algorithms that iteratively insert observations one by one
to build feasible plans, and several types of metaheuristics
such as Large Neighborhood Search (LNS), where a cur-
rent plan is iteratively optimized using destroy and repair
operations. Among the state-of-the-art methods, we can
cite an Adaptive LNS (ALNS) where six removal operators
and three insertion operators are exploited [12]. Improve-
ments of this algorithm using tabu search mechanisms have
been proposed [10], as well as an extension that deals with
the multi-satellite case by adding decisions related to the
assignment of observations to satellites [9]. Another me-
taheuristic called GRILS for Greedy Randomized Iterated
Local Search has also been recently developed and outper-
forms ALNS in the multi-satellite context [15]. In another
direction, dynamic programming techniques have been stud-
ied to deal with cases where the profits collected depend on
the time at which the observations are performed [16]. All
of these approaches include a critical feasibility constraint
that assesses the temporal viability of observation schedules
based on satellite agility models. For example, operational
satellites may use detailed models that take into account
the peculiarities of their on-board momentum control gyro-
scopes. Frequent evaluation of this constraint during the
optimization process can significantly slow down solvers.
Consequently, many approaches simplify the agility model
by making assumptions such as constant maneuver times
or constant angular velocity/acceleration to reduce com-
putational complexity. However, these simplifications can
lead to less optimal or even impractical schedules. There
are also approaches that first search for solution plans us-
ing constant maneuver times, and then use a more complex
time-dependent agility model [22].
But a key point is that none of the previous contributions ex-
ploit the fact that observation scheduling for EOSs is a highly
recurrent optimization problem that is solved every day dur-
ing several years of operation. Therefore, to go beyond
these existing approaches, we propose a set of techniques
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that allow us to learn some aspects of the EOS scheduling
problems to be solved regularly. The models learned during
an offline phase are then used during an online phase, where
EOS scheduling problems have to be solved for precise sets
of candidate observations. In the literature, the use of learn-
ing methods for satellite scheduling problems has only been
tested by a few authors, with attempts to build a decision
policy that returns the next observation to insert in the cur-
rent plan given the features of the candidate requests and the
observations already selected [2, 11], and attempts to train
a neural network that predicts the probability that an obser-
vation can be inserted in the plan of a given satellite [5].
The approach we propose is original compared to existing
works because instead of learning an insertion heuristic or
an observation insertion success estimator, we try to learn
a so-called scheduling feasibility function. The latter is a
Boolean function that takes as an input a set of POIs I to be
observed and returns the value 1 if and only if the execution
of all observations in I is considered as feasible from the
point of view of the temporal constraints. More specific-
ally, for the offline phase, the idea we promote is to learn a
surrogate model that provides a good approximation of the
temporal feasibility constraints, which is one of the main
bottlenecks of the EOS schedulers. To do this, we first map
the temporal feasibility problem to a binary classification
problem for a neural networks (NN). We also approximate
capacity constraints over the number of POIs that can be ob-
served within orbit sections of different sizes. Since we are
trying to infer constraints corresponding to lower bounds on
the set of feasible solution plans, obtaining these capacity
constraints can be seen as a form of approximate knowledge
compilation [21].
In the end, we adopt a hybrid AI and combinatorial optim-
ization approach combining ML-based constraint modeling
and classical decision algorithms [13, 1]. Globally, this pa-
per brings several contributions with regard to the existing
works:

(i) We show how a complex routing/scheduling problem
(the visit of a set of POIs during some time windows)
can be approximated as a simpler binary classification
problem, by exploiting the geographical nature of the
problem;

(ii) We propose an NN-based feasibility classifier that has
a surprisingly low average error rate on average in
terms of scheduling feasibility;

(iii) We propose an approximation of capacity constraints
to help the optimization process, to tackle some chal-
lenging POI distributions that the NN struggles with;

(iv) We develop a hybrid AI approach, HySSEO (Hy-
brid Selection and Scheduling for Earth Observation),
where the feasibility constraints learned offline are
exploited within an online optimization model that
searches for an optimal selection of POIs.

Section 2 provides background on the EOS scheduling prob-
lem. Section 3 presents the offline learning methods we pro-
pose to approximate the scheduling feasibility constraints.

Figure 1: Satellite-centered discretization of the field of
view (in blue) and illustration of a set of selected meshes (in
red) that can be successively observed by the satellite over
its orbit.

Section 4 details the online algorithms used to schedule
EOS activities, including the hybrid AI approach proposed.
Section 5 provides experimental results concerning the pre-
cision of the learned feasibility model and the quality of
the schedules obtained. Section 6 concludes and provides
perspectives on multi-satellite scenarios.

2 Problem Formalization
We consider a satellite in low Earth orbit that needs to collect
acquisitions over points of interest on the ground during one
pass over a specific area (during one orbit). Our goal is to
select and schedule observations so as to maximize a total
reward. The problem is overconstrained in the sense that
capturing all candidate acquisitions is usually infeasible.

2.1 Space Discretization and Candidates
POIs

For the sake of the learning approach mentioned in the in-
troduction, we define the candidate observations from the
point of view of the satellite (satellite-centered representa-
tion of the candidate observations), instead of using a fixed
meshing of the Earth surface as usually done in the liter-
ature. This choice allows us to learn a unique scheduling
feasibility model that can be reused for all the satellite re-
volutions over the Earth, whatever the precise longitude at
which the satellite crosses the equatorial plane.
Formally, as illustrated in Figure 1, we build a grid of meshes
between two latitudes LatMin,LatMax . To compute this
grid for a North-to-South pass over all potential observation
targets, we follow the process described below (the case of
a South-to-North pass is symmetric). First, we consider
different rolling angles (right-left rotations of the satellite
allowing to capture areas on the left and right of its ground
track). More precisely, we consider an angular step δr
derived from the width of the field of view of the satellite
sensor, and a maximum number of steps Nr related to the
maximum observation angle usable to capture images. The
set of candidate rolling angles is then R = {k · δr | k ∈
[−Nr, Nr]}. To define different positions of the satellite on
its orbit, we consider an initial time t0 at which the satellite
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reaches latitude LatMax and a time-step δt derived from
the length of the field of view of the sensor and the speed
of the satellite on its orbit. We also define the number of
time-stepsNt required to reach latitude LatMin . The set of
candidate positions of the satellite on its orbit is then derived
from the set of times T = {t0 + k · δt | k ∈ [0, Nt − 1]}
and the space mechanic equations. From the previous sets of
candidate rolling angles and candidate satellite positions, we
build a grid of meshes by projecting, for each configuration,
the field of view of the sensor on the Earth ellipsoid. This
grid contains H rows and W columns, where H = Nt and
W = 2 ·Nr + 1.
In the following, we denote byM the set of meshes obtained
from this discretization process, and each potential POI of
the problem is mapped to the center of a mesh inM.

2.2 Optimization Problem
As an input, we consider a set of candidate observations
M ⊆ M. This set is strictly included inM when the end-
users require images only on specific points on Earth. For
each candidate observation i ∈ M , we have: (i) a position
Pi ∈ [1..H]×[1..W ] in the grid; (ii) a time window [Si, Ei],
during which observation i can be performed, derived from
a fixed maximum observation angle and from the ability
of the satellite to point towards right-left and/or forward-
backward directions; (iii) a reward Rw i depending on the
user requirements and the weather forecast (the higher the
cloud coverage prevision, the lower the reward).
Additionally, the satellite must maneuver between success-
ive observations in order to point its sensor towards the
right direction at each step. In the following, we denote by
tt the transition function such that tt(i, j, t) returns the dur-
ation required by a maneuver from a configuration where the
satellite is pointed to observation i ∈ M to a configuration
where the satellite is pointed to observation j ∈ M , when
the maneuver starts at time t. This transition function is
time-dependent (it depends on t) mainly due to the motion
of the satellite on its orbit along time.

Definition 1 (EOSP). The Earth Observation Scheduling
Problem (or EOSP) consists in finding a sequence of obser-
vations σ = [σ1, . . . , σK ] such that: (i) each candidate ob-
servation inM appears at most once in σ; (ii) the successive
observations can be performed during the allowed time win-
dows; formally, the earliest start time of the first observation
is sσ1

= Sσ1
, the earliest start time of the kth observation

is given by sσk
= max(Sσk

, sσk−1
+ tt(σk−1, σk, sσk−1

)),
and condition sσk

≤ Eσk
must be satisfied for every ob-

servation σk involved in σ; (iii) the total reward collected
(
∑

i∈σ Rwi) is maximized.

In terms of Operations Research, the problem obtained is
a Time-Dependent Orienteering Problem with Time Win-
dows (TD-OPTW) [20]. This problem is known to be NP-
hard [8]. Therefore, it is usually addressed using incomplete
methods, such as ant colony optimization [23], iterated local
search [7], or large neighborhood search (LNS) [20]. The
mapping between EOSP and TD-OPTW has been studied
in previous works and attacked using large neighborhood

search specifically [12]. Most of these local search or me-
taheuristic methods start searching from good quality solu-
tions found by a heuristic greedy algorithm. We also use
this approach as a baseline in our investigations.

3 Learning the Schedule Feasibility
For an EOS, schedules for successive orbits must be optim-
ized several times a day over several years of operation. To
solve this highly recurrent problem, we propose to learn,
during an offline phase, a set of constraints called feasibil-
ity constraints that should be satisfied by any selection of
observations.

3.1 Global Approach
To learn feasibility constraints during an offline phase, we
combine two distinct learning approaches: (1) based on
machine learning methods, we learn a globally feasibility
function feasibilityNN evaluating whether a set of POIs can
be observed during a single satellite pass; (2) based on oper-
ations research methods, we learn hard capacity constraints
limiting the number of POIs that can be observed within
specific areas. More specifically, for the second point, we
consider a set of rectangular areas A in the grid of meshes,
and for each area a ∈ A we try to compute the maximum
number of POIs that can be observed within a during a
single satellite pass, referred to as Capacitya.
During the online phase where a set of candidate observa-
tionsM is available, the idea is to exploit the previous feasib-
ility constraints to compute in a coarse-grain fashion an op-
timal selection of observations, before working on detailed
scheduling decisions. Equation (1), Equation (2), Equa-
tion (3) and Equation (4) give the corresponding coarse-
grain optimization model, where Boolean variable xi takes
value 1 if the ith candidate mesh is selected, and value 0
otherwise. In Equation (2), function feasibilityNN exploits
the global feasibility function expressed as a neural net-
work classifier to determine whether an assignment of the
xi variables is feasible. In Equation (3), the hard capacity
constraints enforce upper bounds about the selection. As a
result, the hybrid approach proposed combines on the one
hand a constraint-based optimization model that must be
solved online, several times per day, to compute a plan for
the satellite over the next decision horizon, and on the other
hand learning techniques through the offline computation of
function feasibilityNN and bounds Capacitya.

maximize
∑

i∈M Rw i · xi (1)
feasibilityNN (xi, . . . , x|M |) = 1 (2)

∀a ∈ A,
∑

i∈M |Pi∈a
xi ≤ Capacitya (3)

∀i ∈ M , xi ∈ {0, 1} (4)

One of the main advantages here is that the optimization
model proposed is focused on the selection aspect and does
not directly use the time-dependent transition function tt
that is associated with costly computations. As the calls
to the transition function are the main bottleneck of the
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(a) (b) (c)
Figure 2: Examples of maximum sets of meshes observable
by the satellite during a single pass (mesh indices on the
x-axis and y-axis): (a) sparse instance, (b) dense instance,
(c) mixed instance

search methods in practice, building a surrogate model of
the feasibility function is highly relevant. In the following
we successively detail how the global feasibility function
feasibilityNN and the capacities Capacitya are learned.

3.2 Learning a global feasibility function
3.2.1 From a Scheduling Feasibility Function to a Clas-

sification Problem.
From a machine learning point of view, if we consider the
grid of candidate meshes as an image where each pixel
is black if the corresponding mesh is activated and white
otherwise, our goal is to classify the images depending on
whether they correspond to feasible sets of observations.
On such an image, the satellite ground track would consist
in a straight vertical line crossing the middle of the x axis.
We will see later how we consider other local and global
features, derived from this initial image.
To illustrate the approach, Figure 2 provides images corres-
ponding to sets of meshes for which it is possible to find
feasible observation schedules given a realistic maneuver
model. More specifically, Figure 2(a) gives the image as-
sociated with the set of meshes activated in Figure 1. In
this case, the set of activated meshes is sparse and only a
reduced number of meshes are observed due to the time
consumed by the satellite maneuvers between the corres-
ponding acquisition tasks. On the other side, Figure 2(b)
gives an example of an image where the set of activated
meshes is dense. In this case, many contiguous meshes
are activated and many small maneuvers are used, which is
why the satellite is able to observe many meshes during a
single pass. Figure 2(b) also shows standard patterns where
the satellite observes strips of contiguous meshes that are
parallel to its ground track. Last, Figure 2(c) corresponds
to a mixed instance involving both clusters of meshes and
individual meshes spread over the observation area.
3.2.2 Input features and NN architecture.
In our study, three kinds of features are considered to classify
the images according to the feasibility of the mesh selection:

• Image: raw features corresponding to the activation of
individual pixels in the mesh selection image;

Possible 
inputs Locals Globals

Conv
6 channels
Kernels 5×5

AvgPool
Kernels 2×2

Conv
16 channels
Kernels 5×5

Image

Convolutional block

Linear
128 outputs

 

Convolutional
block

Linear
128 outputs

Linear
128 outputs

ON
OFF

ON
OFF

ON
OFF

Linear
1 output

Linear
32 outputs if 2 OFF

64 ouputs otherwise

Feasibility
probability P

Figure 3: Common architecture of designed neural networks

• Locals: features of a set of predefined slices of the
grid. Globally, we consider successive slices of height
h separated by r rows, h and r being two para-
meters of the method. These slices are defined as
Slicek·r+1,k·r+h = [k · r + 1..k · r + h] × [1..W ] for
different values of k, so as to cover the whole grid.
For each slice Slicek·r+1,k·r+h, we compute two fea-
tures: nMeshesInSlicek that represents the number of
meshes activated in the slice, and dispersionInSlicek
that approximates the total maneuver time required to
successively visit the columns where meshes are ac-
tivated in the slice. On the last point, if we denote
by Columnsk = [c1, . . . , cQ] the indices of the suc-
cessive columns where meshes are activated, we have
dispersionInSlicek =

∑
i∈[1..Q−1] TI _ttCols(ci+1−

ci)whereTI _ttCols(δ) stands for a Time-Independent
approximation on the minimum transition time re-
quired by any maneuver traversing δ columns; such
a transition time is non-linear in δ, especially for small
maneuvers requiring an acceleration phase for the satel-
lite;

• Globals: features representing global metrics over the
set of selected meshes. Two global features are ex-
ploited: nActive , the total number of meshes activ-
ated in the grid, and costMST , the cost of a minimum
spanning tree covering all the activated meshes, given
that the cost of an edge between two activated meshes
i and j is defined from a Time-Independent approx-
imation TI _tt(i, j) of the (time-dependent) transition
time between i and j. Note that the cost of a min-
imum spanning tree is also used as an efficient lower
bound in works on traveling salesman problems with
time windows [6].

Figure 3 displays the architecture shared by all neural net-
works designed in this work. The first feature to point out is
that as a binary classifier, it returns a single number between
0 and 1 (thanks to the sigmoid activation function) embody-
ing probability ; in this case, it is a feasibility probability
for a given set of meshes. For the inputs, the three kinds of
features listed before can be activated or deactivated, which
gives us eight configurations ranging from a case where the
neural network is empty to a case where all the features are
used.

CNIA

©AFIA 2025 16



3.2.3 Feasibility Classifier and Generation of Training
Instances.

To train the NN classifier, we first build a set of feasible
mesh selections Pmax that are maximal in terms of inclu-
sion. This means that for each maximal set P ∈ Pmax, each
mesh selection P ′ ⊆ P is feasible and the scheduling al-
gorithm estimates that it is not possible to activate one more
mesh in P while keeping the feasibility of the selection.
The examples provided in Figures 2(a) à 2(c) are maximal
positive instances obtained from a realistic time-dependent
maneuver model. On this point, the maximal instances built
are actually approximately maximal in the sense that the
feasibility of a mesh selection is tested based on an approx-
imate greedy algorithm that inserts the observations one by
one in the current sequence of visits, each time at a position
that is considered as the best one. Other efficient scheduling
algorithms could be used [18], but it is worth mentioning
that determining whether a single mesh can be added to a
mesh selection while preserving the scheduling feasibility is
NP-hard, due to the NP-hardness of the Traveling Salesman
Problem with Time Windows [19]. This is why we only
use approximate scheduling algorithms to estimate whether
a set of mesh activations is maximal.
Then, for each maximum instance P ∈ Pmax, we generate
N positive (resp.) instances by randomly deactivating (resp.
activating) meshes. To better approximate the feasibility-
infeasibility frontier, the number of positive (resp. negative)
instances generated is higher for small numbers of meshes
deactivations (resp. activations). Details about the instance
generation protocol are given in the experimental section.
All the positive and negative instances generated are used
to train the neural network, together with all the maximum
instances.

3.3 Learning capacity constraints
We now describe how the areas A and the bounds
{Capacitya , a ∈ A} used in Equation (3) are defined.
We recall that H and W respectively denote the height
and width of the grid of meshes. The areas manipu-
lated correspond to slices of meshes of various heights.
More precisely, for each h ∈ [1..H], we consider a slice
Slice1,h = [1..h]× [1..W ] covering h successive rows and
the entire grid width. Then, we solve an EOSP as defined
in Definition 1 for a set M containing one candidate ob-
servation i per mesh in [1..h] × [1..W ], with a unit reward
Rw i = 1. The best total reward TotalRw∗h found for area
a = Slice1,h is then used to define capacity Capacitya, that
is Capacitya = TotalRw∗h. Due to the invariance of the
problem along the grid rows, reward TotalRw∗h is exploited
to define a maximum capacity not only over slice Slice1,h,
but also over all slicesSlicek+1,k+h = [k+1..k+h]×[1..W ]
of height h for k ∈ [0..H − h]. Note that for h = H , total
reward TotalRw∗H gives the maximum number of meshes
that can be selected over the whole grid.
From a theoretical point of view, the previous process guar-
antees that any solution of an EOSP problem defined over
the grid must satisfy the capacity bounds, otherwise the op-
timal rewards found above would not be optimal. However,

one difficulty is that solving the previous EOSP problem in
NP-hard, because it contains the standard Traveling Sales-
man Problem with Time Windows as a special case [19].
As a result, finding the optimal total reward TotalRw∗h is
not necessarily easy for large grid slices.
To overcome this difficulty, we exploit two main ideas.
First, we use an incomplete LNS solver instead of a com-
plete search engine to optimize the total reward. This
LNS solver is run during an arbitrary CPU time set to h
minutes. This implies that the capacities computed are
not guaranteed to correspond to actual hard constraints, but
it is worth mentioning that LNS is a state-of-the-art in-
complete method for Time-Dependent Orienteering Prob-
lems with Time Windows [20]. Second, when optimizing
the total reward for slice Slice1,h+1, we reuse the solution
found for slice Slice1,h. Basically, the best solution found
for a slice Slice1,h selects customers within column range
[cminh, cmaxh]. In practice, these customers are always
placed around the ground track of the satellite because such
customers have time windows that are large and contain the
windows of customers placed near the borders of the grid.
To simplify the resolution for height h+1, we consider only
the customers located in area [1..h+1]× [cminh, cmaxh].
For high values of h, this heuristic approach strongly sim-
plifies the problem because the number of columns to take
into account is quickly reduced to only 3 or 4.

4 Integrating the Learned Model into
a Scheduler

This section describes how to exploit such trained models
within an EOSP solver. We first recall conventional meth-
ods.

4.1 Greedy Scheduler
In order to solve a planning and scheduling problem such
as EOSP or TD-OPTW, greedy algorithms are candidates
of choice. Basically, greedy algorithms tackle problems by
making the choice that seems the best at each decision step.
While this usually fails to lead to the globally optimal solu-
tions, it often creates solutions that have a quite good quality
[3]. In the Space domain, for operational satellites, greedy
algorithms are the baseline when it comes to scheduling
tasks, because (i) they are fast (polynomial time in gen-
eral), (ii) they can be guided by many efficient heuristics
exploiting information about the observation tasks and the
available time windows.
In the case of EOSP, Algorithm 1 sketches a greedy al-
gorithm, looping over candidate observations. At each step,
the idea is to select the best observation that can be added
to the current schedule and to insert this observation at its
best possible position in the sequence of observations. The
process continues until all the observations are scheduled or
there is no more place left in the current solution.
Selecting the next observation to schedule and its inser-
tion position is a decision that strongly impacts the qual-
ity of the final solution. For this, the algorithm relies on
two subfunctions that instantiate specific greedy heurist-
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Algorithm 1 : GreedySch
Input : An EOSP p
Output : An admissible solution σ
σ ← []
continue ← true
while |σ| ≠ |M | and continue do

i← selectObs(σ,M)
if i ̸= ∅ then σ ← scheduleObs(i, σ, M)
else continue ← false

return σ

Algorithm 2 : Generic LNS
Input : A problem p
Input : An admissible solution s
Output : An admissible solution s∗

s∗ ← s
while stop criterion is not met do

s′ ←repair(destroy(s))
if accept(s′,s) then s← s′

if
∑

i∈s′ Rwi >
∑

i∈s∗ Rwi then s∗ ← s′

return s∗

ics. Function selectObs() first selects an observation
from set M given the current solution σ. Here, we con-
sider that the best observation is the observation i ∈ M
that is not already contained in σ and maximizes the ra-
tio between the reward Rw i and the additional time ∆i

required to maneuver between its predecessors and suc-
cessors σk and σk+1 at the best feasible insertion position
in σ. By denoting as sσk

the earliest start time of observa-
tion σk in the current schedule and by si = max(Si, sσk

+
tt(σk, i, sσk

)) the earliest time at which observation i can
be performed after σk, this additional maneuver time is
∆i = tt(σk, i, sk)+ tt(i, σk+1, si)− tt(σk, σk+1, sk). The
observation selection heuristic then chooses an observation
in argmax{Rwi

∆i
| i ∈ M, i ̸∈ σ}, the idea being to favor

observations that have the best "reward over maneuver time"
ratio given the current schedule, or in other words the best
yield. Function scheduleObs() positions the observa-
tion selected at the right place in the schedule. Note that
selectObs() and scheduleObs() can be optimized
by sharing some computations and data, but we omit these
details for sake of conciseness.

4.2 Large Neighborhood Search (LNS)
LNS is a metaheuristic method employed in optimization
problems, particularly those involving combinatorial op-
timization [17]. It is an advanced version of the simpler
local search technique. Local search begins with an initial
solution to a problem, followed by an exploration of "neigh-
boring" solutions that are generated by making minor ad-
justments to the current solution. The aim is to discover a
solution that optimizes a specific objective function (e.g.,
minimizing expenses or maximizing productivity). How-
ever, local search can become trapped in local optima, where

all surrounding solutions are dominated by the current one.
LNS addresses this limitation by examining a much larger
set of neighboring solutions. In this extended neighbor-
hood, the solution modifications can be more significant,
potentially involving larger alterations of the current solu-
tion. This wider search allows LNS to potentially escape
from local optima and discover superior solutions overall.
An LNS algorithm for the EOSP is sketched in Algorithm 2.
It mainly alternates between destroy() and repair()
operations to find a better solution. The destroy() op-
eration consists in deactivating some meshes from the cur-
rent solution, and the repair() operation consists in re-
filling the solution plan through mesh activations. To decide
whether the next destroy and repair operations have to work
on the new solution obtained, we use function accept()
that can be implemented in different ways. The simplest
choice is to accept any solution after the repair process.
In our investigations we consider two LNS solvers:

LNS for Selecting Observations (LNSSel): in this case,
solutions are subsets of M , function destroy() re-
moves a portion of observations from the current solu-
tion with a priority for the deactivation of the obser-
vations that have a small ratio between the reward and
the distance to the set of activated meshes, and function
repair() adds as many observations as possible in
a greedy manner while checking the feasibility with
feasibilityNN . Since checking the feasibility using
the surrogate is very fast, we can also afford multiple
restarts until reaching a given time limit. A restart is
performed after a fixed number of LNS iterations, and
to perform a restart we generate a new initial solution
containing 15 randomly chosen observations, enriched
with as many observations as possible, in a greedy
manner.

LNS for solving an EOSP (LNSSch): in this case, solu-
tions are sequences of observations from M . Function
destroy() randomly removes observations from
the current sequence with a priority to observations
close to the ones that just got removed, while function
repair() adds and schedules as many observations
as possible in a greedy manner, by calling the transition
function. Here, each observation activation involves
more computations than in LNSSel.

4.3 Using the Trained Models when Solving
EOSP

Figure 4 illustrates our hybrid approach. It is composed of an
offline phase and an online phase. During the offline phase,
feasibility classifier is trained, and capacity constraints are
determined, as explained in Section 3. The online phase
first selects a subset of good candidate observations M ′ us-
ing an LNS based on our feasibleNN model and capacity
constraints. Then, this subset is used as an input by an LNS-
based scheduler, whose initial point is obtained by a greedy
algorithm that attempts to schedule as many observations
from M ′ as possible. This algorithm is developed to answer
two objectives. (i) The first objective is to take advantage of
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Selection (LNSSel)

maximize
∑

i∈M

Rw i · xi

• feasibilityNN

• capacity constraints

observation
requests M

selected
requests M ′

Feasibility
network training

Capacity
bounds training

maximal
instances

Scheduling (LNSSch)
• initiate with GreedySch

• time-dependent scheduling

• heuristic-based

• post-insertion of remaining
requests

final
schedule

Offline Online

Figure 4: HySSEO components: (i) training on maximal instances is performed offline; (ii) from the initial set of observation
requests M , the selection component selects a subset M ′ by using the trained feasibility model and capacity constraints; (iii)
finally M ′ is used in priority by an LNS-based scheduler, that could add more requests from M if there is room for.

the surrogate feasibility function feasibilityNN and capa-
city constraints to quickly compute good-quality solutions
by exploring many observation selection strategies, instead
of directly using complex time-dependent scheduling opera-
tions. (ii) The second objective is to challenge the robustness
of the surrogate model feasibilityNN , by first searching for
an optimal set of selected meshes M ′ ⊆ M according to
this model and then checking, based on the standard LNS
algorithm for EOSP, whether all meshes in M ′ can actu-
ally be simultaneously observed. From a machine learning
point of view, this objective is more challenging than just
classifying some randomly generated instances.

5 Experimental Evaluation
Now, we provide an experimental analysis on both the pre-
cision of the learned classifier and its capacity to select
good sets of candidate observations within an EOSP solv-
ing process. The EOSP solvers are implemented in Java and
executed on 20-core Intel(R) Xeon(R) CPU E5-2660 v3 @
2.60GHz, 62GB RAM, Ubuntu 18.04.5 LTS, with an Open-
JDK 11.0.9 JVM. The machine learning models have been
developed and pre-trained using pytorch library in Python
3.11 [14]. These models have been serialized in ONNX
and then loaded and called by our solvers using the ONNX
Runtime for Java [4].

5.1 Generation of the positive and negative
instances

From each maximal set of meshes P ∗ ∈ Pmax, we generate
35 positive instances by deactivating m meshes belong-
ing to P ∗ (random choice of the meshes deactivated). To
better approximate the feasibility-infeasibility frontier, we
generate more positive instances for small values of m: we
generate K1 = 6 random positive instances for m = 1, and
for m ∈ [2, 10], we generate Km = round(5/6 · Km−1)
positive instances. Additionally, we generate K>10 = 6
positive instances where more than 10 meshes are deactiv-
ated. Similarly, for each maximal instance P ∗ ∈ Pmax,
we generate 35 negative instances by randomly activating at
least one mesh that does not belong to P ∗ (random choice
of the meshes activated). Again, to better approximate the
feasibility-infeasibility frontier, we generate more negative
instances for small values of m, using the values of Km

introduced before. For last, each instance belongs to one
out of five archetypes: dense instances show a huge amount
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Figure 5: Classification results for five classifiers (Image,
G, {G,L5}, {G,L13}, and CC) on five types of instances
(dense, mixed, sparse, flat and borders). On each graph,
each dot corresponds to a test instance classified by the
model, green if correctly classified and red otherwise. Neg-
ative instances are represented by crosses and positive in-
stances by pluses. The x-axis is for the instance number
while the y-axis is the amount of activated meshes in the
instance.

of activated meshes that are close to each other, implying
small maneuvers; mixed instances have many isolated ac-
tivated meshes with a few clusters of close meshes; sparse
instances only have isolated meshes, and therefore a smal-
ler amount of observable meshes due to higher maneuver
durations; flat instances show meshes displayed mostly hori-
zontally, which is less easy to capture for the EOS; borders
instances are characterized by a high amount of meshes
near the borders of the meshing, which have smaller vis-
ibility time windows. We aim to cover realistic cases and
distinguish the ease of observing a whole set of POIs based
on the geometry of the instance.

5.2 Precision of the learned classifier
As explained in Section 3.2.2, several NN models have
been designed for different input features. Figure 5 shows
the results of several such models. Models Image and G
take as input only the corresponding features described in
Section 3.2.2. {G,L5} and {G,L13} are based on global
and local features computed according to the description of
Section 3.2.2. {G,L5} considers successive slices of height
h = 5 separated by r = 1 row, while {G,L13} considers
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Table 1: Error rates for the classifiers and each instance type: dense (D), mixed (M), sparse (S), flat (F), borders (B).
NN model Image G {G,L5} {G,L13} CC

Instance type D M S F B D M S F B D M S F B D M S F B D M S F B
Error rate (%) 25 24 25 21 20 4.6 19 11 11 9.8 6.6 11 12 13 13 6.6 9.1 12 12 13 42 45 46 45 46
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Figure 6: Error rates of designed neural networks for differ-
ent numbers of meshes added (positive value) or removed
(negative values) from maximal instances.

successive slices of height h = 13 separated by r = 6
rows, implying much less NN inputs. Finally, a classifier
based only on the capacity constraints (CC) claims that
an instance is feasible if and only if it satisfies these con-
straints. The error rates of all these models are shown in
Table 1, which indicates that models with global features
perform best. Models with the image input do not show
good performance in the current architecture, which is why
our study is focused on the three other NN models. In ad-
dition, since capacity constraints are necessary feasibility
conditions, they classify instances poorly on their own. On
this point, only a minor part of the negative instances in
the dataset are well classified by the CC approach, since
activating less than 10 additional meshes rarely leads to a
violation of the capacity constraints. Figure 6 provides the
error rates of the models as a function of the number of
meshes activated and deactivated in the positive and negat-
ive instances respectively. It shows that the G and {G,L5}
models appear to be slightly more robust while {G,L13}
gives fewer false positives. Finally, the CC classifier re-
turns no false negative. This makes sense since it classifies
the instances based on necessary feasibility conditions, and
it returns only false positives. Consequently, only the three
most promising models are kept for testing in our HySSEO
method.

5.3 Performances of HySSEO
Table 2 shows the results of the runs performed to evaluate
the online algorithm. The learned model used in the LNS-
Sel part of HySSEO varies between G, {G,L5}, {G,L13},
and all of the feasibility checks used in this part also verify
the capacity constraints learned offline. As preliminary
results have shown that neural networks alone are not suffi-
ciently constrained on dense instances and may return large
sets of observations whose cardinality exceeds the capacity
constraints, models G, {G,L5}, and {G,L13} are combined
with CC in all of our tests. A last HySSEO algorithm is
used to be compared with and does not include any NN: it
only checks the capacity constraints. The algorithms are run
for 1 and 5 minutes in order to compare their ability to con-
verge faster or produce better results with enough time. For
a fixed timespan, in the HySSEO algorithms, 16% of that
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Figure 7: Average inference time (in ms) for each number  
of activated meshes in the current solution.
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Figure 8: Average insertion time (in ms) of an observation
in the current schedule as a function of its current size.

timespan is used by LNSSel, 34% is used by LNSSched 
on the set of observations returned by LNSSel, and the re-
maining 50% of the computation time is used to optimize 
the insertion of other remaining requests. Table 2 shows 
the performance of the algorithms with mean ± std on 100 
instances equally composed of dense, mixed and sparse in-
stances, with 200 observation requests. The optimality gap 
is obtained by comparing to an LNSSched algorithm work-
ing on the full set of requested observations during a longer 
computation time of 1 hour. In the table, nSites is the num-
ber of observations involved in the final schedule, and LNS1 
(resp. LNS2) refers to the first ( resp. the second) use of 
LNSSched in HySSEO. The results show that the baseline 
LNS is beaten on average by all of our HySSEO algorithms, 
regardless of the allowed computation time. In addition, ex-
cept for dense instances where CC + {} is highly efficient, 
using one of our three neural networks to compute feasibil-
ity checks improves the solution quality. In the experiments, 
the capacity constraint checks tend to return much too large 
request sets on mixed and sparse instances since it is blind 
with regards to the actual maneuver times required within a 
slice of meshes. However, we can note that configuration CC 
returns the best solutions after the first LNSSched, which is 
quite natural since it is easier to obtain a good solution when 
requests are less filtered. On the other hand, for the three 
NN-based HySSEO algorithms, the post-insertion process 
has a higher impact since the initial LNSSel phase is more 
constrained in this case. These three NN-based approaches 
show similar results in terms of solution quality. Figures 7
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Table 2: Scheduling performance metrics.
Instance

type
1 minute 5 minutes

LNS CC+{G} CC+{G,L5} CC+{G,L13} CC+{ } LNS CC+{G} CC+{G,L5} CC+{G,L13} CC+{ }

Dense

nActive n/a 61.6± 13.6 59.6± 11.3 60.6± 12.5 62.0± 14.2 n/a 61.5± 13.5 60.1± 11.8 60.6± 12.6 62.1± 14.2

nSitesLNS1 n/a 42.0± 9.0 41.8± 8.7 42.1± 9.0 41.5± 8.8 n/a 42.4± 8.9 42.4± 9.0 42.4± 9.4 41.9± 8.9

gapLNS1(%) n/a 7.6± 3.9 8.3± 3.6 7.7± 4.2 7.2± 4.0 n/a 5.9± 2.7 6.6± 2.7 6.6± 3.5 6.1± 3.1

nSitesLNS2 47.2± 9.1 45.6± 9.1 45.9± 8.6 45.7± 9.2 45.6± 8.9 47.8± 9.0 46.8± 9.1 46.9± 9.0 47.0± 9.1 46.7± 8.7

gapLNS2(%) 5.5± 3.6 3.6± 2.7 3.9± 2.0 3.5± 2.2 3.3± 2.0 2.8± 2.2 2.0± 1.4 1.9± 1.5 2.0± 1.3 1.8± 1.5

Mixed

nActive n/a 66.5± 4.9 59.3± 3.5 56.8± 4.0 97.5± 0.7 n/a 67.4± 4.0 60.2± 3.4 58.1± 4.2 97.5± 0.7

nSitesLNS1 n/a 46.4± 5.3 47.5± 3.8 47.4± 5.2 46.9± 2.7 n/a 46.5± 5.5 47.9± 4.0 48.3± 4.5 48.1± 2.9

gapLNS1(%) n/a 18.8± 6.8 17.3± 6.7 17.8± 6.9 10.0± 3.9 n/a 17.6± 6.7 14.8± 5.7 15.3± 5.7 7.0± 3.2

nSitesLNS2 52.1± 3.3 54.0± 2.9 53.9± 3.0 54.1± 3.0 51.8± 2.8 53.4± 2.7 54.8± 2.6 54.3± 2.9 54.7± 2.7 53.5± 2.4

gapLNS2(%) 7.4± 3.9 4.8± 2.5 4.8± 2.4 4.4± 2.3 5.4± 3.2 4.0± 3.4 1.7± 1.5 2.2± 1.6 2.0± 1.6 2.4± 2.2

Sparse

nActive n/a 49.2± 1.7 48.9± 2.1 46.3± 2.1 97.8± 0.4 n/a 49.1± 1.3 49.5± 2.2 46.7± 2.6 97.7± 0.5

nSitesLNS1 n/a 39.3± 4.2 43.1± 3.0 42.6± 2.8 43.5± 1.6 n/a 39.6± 3.8 43.9± 3.0 43.6± 2.9 44.7± 1.9

gapLNS1(%) n/a 18.1± 7.6 13.1± 4.6 16.1± 4.6 7.7± 3.0 n/a 16.2± 7.1 11.1± 4.3 13.3± 3.8 5.2± 2.9

nSitesLNS2 46.8± 1.6 47.2± 1.7 47.5± 1.7 47.9± 1.9 46.5± 1.5 47.5± 1.4 47.7± 1.6 48.0± 1.3 48.2± 1.5 47.4± 1.8

gapLNS2(%) 6.6± 2.7 3.1± 2.0 4.3± 2.0 5.0± 2.5 5.0± 2.4 3.7± 2.0 2.1± 1.3 2.0± 1.7 2.5± 1.9 2.6± 2.1

et 8 display the average inference time for feasibility checks
in LNSSel and the average insertion time of a request into
the current schedule in LNSSched, respectively. As ex-
pected, our learned model allows us to check the feasibility
of a set of requests much faster than the feasibility of an
actual observation insertion into a schedule. Note that the
first kind of checks slightly increases with the number of
activated meshes due to the operations required to compute
features such as costMST , while the second kind of checks
is much slower since it requires testing each insertion posi-
tion in the worst case. In Figure 8, the behavior around 60
requests is due to the different kinds of instances involved
in our dataset. More precisely, for many instances, the max-
imum number of selectable observations is around 60, and
in this case testing all the possible insertion positions is
long, while for other instances (typically the dense ones),
the maximum number of selectable observations is much
higher, and in this case finding a feasible insertion position
is not that hard.

6 Conclusion
This paper proposes a novel approach to approximate, using
a neural network, a feasibility constraint for a set of obser-
vation tasks by a satellite. The main idea is to map the
feasibility check to a classification task, based on local and
global features of the set of POIs. We evaluated the classific-
ation performance of several combinations of features, and
used them to select good subsets of candidate observation
tasks upstream of a conventional scheduling process based
on greedy search and large neighborhood search. Com-
bined with this classifier we also propose approximate ca-
pacity constraints, to help the NN discriminate unfeasible
observation sets. The resulting feasibility classifiers have a
small error rate, even on very hard instances, and HySSEO
is better than baseline methods in terms of solution qual-
ity. Computing local features for feasibility does not seem
to improve the solution quality, and combining global fea-
tures and capacity constraints is sufficient to provide results
among the best.
One of the next steps is to apply this hybrid AI approach

to plan the observations of several satellites. In this case,
the problem to be solved is similar to a team orienteer-
ing problem. The latter is much harder to solve since it
involves decisions on the allocation of observation tasks to
the satellites, instead of just observation selection decisions.
On this line, we believe that the techniques proposed and
tested in a mono-satellite context can be highly relevant in
multi-satellite scenarios, to explore large sets of observation
dispatching decisions contrarily to traditional EOS planning
methods that are slowed down by the computation of can-
didate maneuvers for many candidate observation insertion
positions across all the satellites of the constellation. In an-
other direction, we are also considering using our feasibility
model as a constraint in constraint programming or linear
programming frameworks, as in the Empirical Model Learn-
ing approach, which consists in encoding neural networks
into linear constraints, so as to approximate non-linear or
costly constraints [13].
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Résumé
Ce papier est un résumé de l’article "Learning Valid Dual
Bounds in Constraint Programming : Boosted Lagran-
gian Decomposition with Self-Supervised Learning" publié
à AAAI 2025. La décomposition lagrangienne relaxe les
problèmes d’optimisation en sous-problèmes plus simples
pour améliorer les algorithmes de séparation et d’éva-
luation en permettant le calcul d’une borne duale. Toute-
fois, en programmation par contraintes, l’optimisation des
multiplicateurs de Lagrange est coûteuse en raison de la
complexité de résolution des sous-problèmes. Nous pro-
posons une approche d’apprentissage auto-supervisé uti-
lisant des réseaux de neurones pour générer ces multipli-
cateurs et obtenir des bornes plus serrées. Cela réduit le
nombre d’itérations nécessaires et accélère les solveurs.
Notre méthode démontre une bonne généralisation sur des
problèmes comme le sac à dos multidimensionnel.

1 Introduction
L’optimisation combinatoire est utilisée dans divers do-
maines comme l’aérospatial, la planification des transports,
l’ordonnancement et l’économie. Un défi majeur est l’ex-
plosion combinatoire : le nombre de solutions possibles
croît exponentiellement avec la taille du problème, rendant
la résolution de problèmes à grande échelle difficile. La pro-
grammation par contraintes (CP) est un outil versatile qui
permet de traiter des problèmes combinatoires complexes, y
compris ceux avec des contraintes non linéaires, grâce à des
techniques de recherche et de propagation [7]. Cependant,
contrairement à la programmation en nombres entiers, la
programmation par contraintes ne dispose pas d’un méca-
nisme efficace pour obtenir des bornes duales, limitant ainsi
sa compétitivité sur de nombreux problèmes [2, 1, 8, 3]. Cet
article propose une approche pour combler cette lacune en
développant une méthode générale et efficace de bornage
dual pour la programmation par contraintes.

2 Décomposition lagrangienne en CP
Un problème d’optimisation sous contraintes (COP) est dé-
fini par un ensemble de variables discrètes X , leurs do-

maines de valeurs D(X), un ensemble de contraintes C
limitant les affectations possibles, et une fonction objectif
f(X) à optimiser. Une solution faisable est une affectation
des valeurs de D(X) à X respectant toutes les contraintes.
Une solution optimale est une solution faisable qui maxi-
mise (ou minimise) la fonction objectif. La formulation ma-
thématique d’un COP inclut généralement m contraintes
qui définissent l’espace des solutions admissibles.

max
X∈D(X)

{
f(X)

∣∣∣∣∣
m∧

i=1

Ci(X)

}
(1)

La notation Ci(X) indique que la contrainte Ci s’applique
aux variables X . La décomposition lagrangienne (LD)
consiste à relaxer le problème afin d’obtenir une borne su-
périeure valide et, idéalement, serrée. Pour ce faire, les va-
riables impliquées dans chaque contrainte sont dupliquées,
à l’exception de celles de la première contrainte. On obtient
alors la borne duale suivante :

B(µ) = max

{
f(X1)+

m∑

i=2

µi · (X1−Xi)

∣∣∣∣
m∧

i=1

Ci(Xi)

}

(2)
où les µi sont les multiplicateurs de Lagrange. Le problème
résultant est une relaxation du problème initial, fournis-
sant une borne duale B(µ), qui correspond à une borne
supérieure dans un problème de maximisation. Chaque
contrainte Ci ayant un ensemble de variables distinct,
les sous-problèmes peuvent être résolus indépendamment,
simplifiant ainsi la résolution. Ainsi, Une borne duale valide
est obtenue en résolvant m sous-problèmes plus simples,
mais la qualité de cette borne dépend fortement des multi-
plicateurs de Lagrange utilisés. Trouver ces multiplicateurs
optimaux est le principal défi de la décomposition lagran-
gienne, car l’équation associée n’est pas différentiable. La
méthode la plus courante pour les ajuster est l’optimisation
par sous-gradient, qui les met à jour de manière itérative à
partir d’une valeur initiale arbitraire [9].

µt+1
i = µt

i + α(Xt
1 −Xt

i ) ∀i ∈ {2, . . . ,m} (3)
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Hà et al. (2015) [4] ont proposé d’intégrer cette procé-
dure dans la phase de recherche d’un solveur de program-
mation par contraintes (CP), en appliquant la décomposi-
tion lagrangienne (LD) et l’optimisation par sous-gradient
à chaque nœud de l’arbre de recherche. Cependant, cette ap-
proche est très coûteuse en temps, car chaque itération du
sous-gradient nécessite de résoudre chaque sous-problème,
qui peuvent être NP-difficile. Nous proposons d’accélérer
considérablement ce processus en utilisant de l’apprentis-
sage automatique.

3 Notre Approche
La borne calculée dans l’Équation (2) possède deux pro-
priétés importantes : (1) elle peut être paramétrée à l’aide
des multiplicateurs de Lagrange µ et (2) elle est toujours
valide, c’est-à-dire qu’elle ne sous-estimera jamais le profit
réel. Ces propriétés ouvrent la voie à une approche basée
sur l’apprentissage pour calculer cette borne. Inspirés par
Parjadis et al. (2024) [6], nous proposons d’entraîner un
modèle Ωθ : G(V,E) → R|V | capable de prédire directe-
ment tous les multiplicateurs µ pour un problème d’optimi-
sation combinatoire (COP) donné sous forme de graphe G.
Ce graphe est constitué d’un ensemble de nœuds V (un par
multiplicateur) et d’arêtes E reliant les noeuds partageant
la même variable ou la même contrainte. Le modèle Ωθ

est calibré par un ensemble de paramètres différentiables
θ. L’objectif est d’éliminer les itérations du sous-gradient
en apprenant directement les multiplicateurs qui produisent
une borne serrée, ce qui permet d’accélérer l’exécution et
d’améliorer le filtrage. La différentiabilité du modèle est es-
sentielle, car la borne est calculée via une optimisation ba-
sée sur le gradient. L’objectif est de trouver des paramètres
θ minimisant la borne. Grâce à la deuxième propriété, la
borne obtenue a la garantie d’être valide, indépendamment
de la précision du modèle. Ce travail introduit ainsi une mé-
thode générique d’apprentissage de bornes duales valides
pour tout type de COP discret, ce qui est un atout majeur
étant donné les difficultés à obtenir des garanties en optimi-
sation combinatoire avec l’apprentissage automatique [5].
La minimisation de la borne en fonction des multiplicateurs
µ et son gradient sont ainsi formulés :

min
θ
B(µ) 7−→ ∇θB(µ) avec µ = Ωθ(G) (4)

En appliquant la règle du chaînage on obtient alors :

∇θB(µ) =
〈
(X1−Xi)·

∂µi

∂θ
, . . .

〉
∀i ∈ {2, . . . ,m} (5)

Nous proposons d’utiliser une approche d’apprentissage
auto-supervisé pour paramétrer le modèle Ωθ. La procé-
dure d’entraînement est formalisée comme suit. En en-
trée, elle reçoit un ensemble de données D composé de
graphes G(V,E) représentant des instances d’un problème
d’optimisation combinatoire (COP). Ces instances peuvent
provenir de données historiques ou être générées synthéti-
quement, et leurs caractéristiques dépendent du problème

traité. À chaque itération, une étape d’optimisation LD est
réalisée, et tous les sous-problèmes sont résolus via une
procédure dédiée afin d’obtenir les valeurs optimales de Xi

pour les multiplicateurs µ actuels. Ensuite, la borne et son
gradient sont calculés, suivis d’une mise à jour par descente
de gradient. Cela ajuste les valeurs des multiplicateurs pour
l’itération suivante, modifiant ainsi les solutions optimales
des variables Xi. Finalement, les paramètres θ du réseau de
neurones entraîné Ωθ sont retournés.

4 Expérimentation
La méthode est testée sur deux problèmes d’optimisation
combinatoire difficiles : le problème du sac à dos multi-
dimensionnel et le problème de planification des horaires.
Nous testons différentes méthodes :

— CP : Une approche pure de programmation par
contraintes sans décomposition lagrangienne ni ap-
prentissage.

— CP+SG : Le même modèle CP, amélioré avec
la décomposition lagrangienne et l’optimisation
par sous-gradient, comme proposé par Hà et al.
(2015) [4].

— CP+Learning(all) : Le modèle CP avec décompo-
sition lagrangienne, utilisant les bornes apprises au
lieu du sous-gradient, avec l’apprentissage appliqué
à chaque nœud de l’arbre de recherche.

— CP+Learning(all)+SG : Similaire à l’approche
précédente, mais les bornes apprises sont encore
améliorées par l’optimisation sous-gradient. Le mo-
dèle entraîné Ωθ est appelé à chaque nœud de l’arbre
de recherche pour obtenir les bornes.

— CP+Learning(root)+SG : Le modèle Ωθ est utilisé
uniquement au nœud racine, la borne résultante ser-
vant de valeur initiale pour amorcer l’optimisation
sous-gradient dans les autres nœuds.

Les résultats obtenus confirment que l’on obtient en
moyenne des bornes de meilleures qualités et que notre mo-
dèle a une bonnne capacité à s’adpater à des instances dont
la distribution n’a pas été rencontrée durant la phase d’en-
traînement.

5 Conclusion
L’article propose une méthode innovante pour améliorer
l’efficacité de la décomposition lagrangienne dans la pro-
grammation par contraintes. Il utilise un réseau de neu-
rones pour apprendre automatiquement des multiplicateurs
lagrangiens, permettant de produire des bornes duales ser-
rées sans nécessiter de bornes étiquetées. Cette approche
auto-supervisée permet soit de remplacer entièrement les
itérations de sous-gradient, soit de les amorcer afin d’accé-
lérer la convergence. Les expériences montrent que la mé-
thode réduit le temps d’exécution tout en conservant des
bornes de qualité. De plus, un ajustement fin permet une
meilleure généralisation à des instances hors distribution.
Ces résultats ouvrent des perspectives prometteuses pour
appliquer cette technique à des problèmes combinatoires où
la programmation par contraintes est performante.
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Résumé
Les Transformers permettent de générer rapidement toute
forme de données, structurées ou non. Si ces données sont
toujours plausibles, elles sont parfois incohérentes. Or, la
nature séquentielle du processus de génération amène à la
pérpétuation ou l’accumulation d’erreurs facilement détec-
tables lorsqu’un schéma de données est disponible. Cet ar-
ticle présente une méthode de génération et de validation
conjointe reposant sur des grammaires à base de clauses
de Horn (Definite Clause Grammars) issues de la program-
mation logique.

Mots-clés
Transformer, encodeur-décodeur, langue contrôlée, Pro-
log.

Abstract
Transformers can quickly generate any form of data, struc-
tured or not. These data are always plausible but sometimes
inconsistent. The sequential nature of the generation proce-
dure leads to the accumulation of errors that could easily
be detected if a data schema is available. This article in-
troduces a joint generation and validation method relying
on Definite Clause Grammars, closely related to logic pro-
gramming.

Keywords
Transformer, Encoder-Decoder, Controlled Language, Pro-
log.

1 Introduction
Les grands modèles de langage (Large Language Models,
LLM) permettent un rapprochement sans précédent entre
langue naturelle et données structurées, manipulables par
une machine. Leur architecture est ajustée pour générer,
par exemple, du code Python, des requêtes SQL ou des
données au format JSON. Les LLM à la base des chat-
bots d’OpenAI, Google ou Mistral peuvent aussi transcrire
des connaissances en un graphe RDF syntaxiquement cor-
rect, au format Turtle. Cependant, il est rare que ces mo-
dèles respectent des contraintes usuelles associées au lan-
gage, comme le respect d’un vocabulaire pré-existant pour
la génération de prédicats.
On cherche par exemple à transformer le paragraphe suivant
(tiré de la fiche Wikipédia de la ville de Saint-Étienne) en
triplets RDF.

Saint-Étienne, appelée « Sainté » en langage fa-
milier, renommée Armeville à la Révolution fran-
çaise, est une commune française située au sud-
ouest de Lyon (60 km environ), au sud-est de
Clermont-Ferrand (90 km environ) et dans le
quart-sud-est de la France, en région Auvergne-
Rhône-Alpes. C’est le chef-lieu du département
de la Loire.

En réponse au prompt ‘Traduis ce paragraphe en triplets
RDF.’, le chatbot de Mistral génère les triplets suivants :

@prefix ex: <http://example.org/> .

ex:Saint-Étienne a ex:Commune ;
ex:nomFamilier "Sainté" ;
ex:ancienNom "Armeville" ;
ex:situéeÀ ex:Sud-Ouest_de_Lyon,

ex:Sud-Est_de_Clermont-Ferrand,
ex:Quart-Sud-Est_de_la_France ;

ex:région ex:Auvergne-Rhône-Alpes ;
ex:chefLieuDe ex:Département_de_la_Loire .

ex:Sud-Ouest_de_Lyon ex:distance "60 km" .
ex:Sud-Est_de_Clermont-Ferrand ex:distance "90 km" .

Le résultat paraît satisfaisant mais il ne réutilise aucun
vocabulaire connu. Si l’on veut contraindre la génération
en indiquant la liste des propriétés de schema.org comme
seules propriétés autorisées, on obtient le résultat suivant :

<Saint-Étienne> a <Commune> ;
<alternateName> "Sainté" ;
<alternateName> "Armeville" ;
<addressLocality> "Saint-Étienne" ;
<addressRegion> "Auvergne-Rhône-Alpes" ;
<addressCountry> "France" ;
<geo> <Point> .

<Point> <latitude> 45.4397 ;
<longitude> 4.3871 .

<Saint-Étienne> <distance> <Distance_Lyon> .
<Distance_Lyon> <value> 60 ;

<unitCode> "km" .
<Saint-Étienne>

<distance> <Distance_Clermont-Ferrand> .
<Distance_Clermont-Ferrand> <value> 90 ;

<unitCode> "km" .
<Saint-Étienne> <isPartOf> <Loire> .
<Loire> a <Department> .
<Saint-Étienne> <isPartOf> <France> .
<France> a <Country> .

Le prompt utilisé dans ce cas était ‘Traduis ce paragraphe
en triplets RDF en utilisant uniquement les propriétés sui-
vantes : liste des propriétés de schema.org 1.’. Ce graphe

1. https://schema.org/version/latest#propaz
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obtenu sous contrainte est de nettement moins bonne qua-
lité. Il ajoute des informations qui ne sont pas dans le texte
original (coordonnées géographiques) et ne respecte pas
la sémantique des propriétés de schema.org. La propriété
distance, par exemple, doit être suivie d’un littéral asso-
ciant un nombre à une unité de mesure (comme "60 km").
Il est relativement facile de vérifier ces contraintes a poste-
riori, une fois les triplets disponibles, mais étant donné la
structure formelle de schema.org, la génération par le LLM
pourrait aussi être guidée par une validation à la volée des
triplets générés, permettant au LLM de générer des don-
nées structurées de meilleure qualité. C’est ce que propose
cet article.
On s’intéresse en fait à n’importe quel modèle d’appren-
tissage générant une séquence de symboles (tokens) à par-
tir d’un autre ensemble de symboles ; des modèles dési-
gnés comme sequence-to-sequence, principalement basés
sur l’architecture Transformer [18]. Les symboles d’en-
trée peuvent être du texte, comme dans l’exemple ci-dessus
mais ils peuvent aussi être la discrétisation d’une série tem-
porelle ou d’un signal audio. Les modèles de transcription
(speech-to-text) comme Whisper [13] peuvent par exemple
être utilisés dans un contexte précis, dans lequel la langue
est contrôlée, comme lors de la transcription de commandes
vocales. Les résultats présentés en fin d’article montrent
que la validation à la volée de la transcription textuelle
d’une commande permet de diminuer la taille du modèle
génératif, sans en réduire les performances.
Les modèles génératifs produisant des séquences sont itéra-
tifs : ils produisent les symboles l’un après l’autre. La mé-
thode proposée ici est simple, elle consiste à valider chaque
symbole généré selon une grammaire pré-définie et à appli-
quer un algorithme de retour sur trace (backtracking) lors-
qu’un symbole n’est pas accepté par la grammaire. La sec-
tion suivante (section 2) présente un formalisme de gram-
maire lui-même construit sur l’idée de retour sur trace : les
grammaires à base de clauses de Horn. La section 3 pré-
sente ensuite les détails de l’approche de génération et vali-
dation conjointe, symbole par symbole. La section 4 donne
les résultats d’une évaluation de l’approche dans deux cas
de figure : la transcription de commandes simples et la re-
formulation de descriptions issues de Wikipédia dans une
langue contrôlée. Un rapide aperçu de l’état de l’art sur la
génération contrainte termine l’article (section 5).

2 Schémas et grammaires
Toute donnée structurée s’exprime dans un langage forma-
lisé par une grammaire. Lorsqu’un schéma est disponible
pour cette donnée, on peut y associer une autre grammaire
plus contraignante. On s’intéresse donc ici à la spécification
et l’utilisation de grammaires pour la génération séquen-
tielle de texte.
Il existe de nombreux formalismes pour spécifier une gram-
maire. Le plus connu est certainement la forme de Backus-
Naur mais le formalisme qui nous intéresse ici est celui qui
s’inscrit dans l’histoire de Prolog : les grammaires à base de
clauses de Horn (Definite Clause Grammars, DCG). Dans

leur ouvrage de référence The Art of Prolog, Sterling et
Shapiro en donne l’exemple suivant [17, p. 257] :

% grammar rules

sentence --> noun_phrase, verb_phrase.

noun_phrase --> determiner, noun_phrase2.
noun_phrase --> noun_phrase2.

noun_phrase2 --> adjective, noun_phrase.
noun_phrase2 --> noun.

verb_phrase --> verb.
verb_phrase --> verb, noun_phrase.

% vocabulary

determiner --> [the]; [a].
adjective --> [decorated].
noun --> [pieplate]; [surprise].
verb --> [contains].

Les grammaires DCG ont leur propre syntaxe mais elles
peuvent être traduites simplement en Prolog. La première
règle de cette grammaire correspond par exemple à la règle
Prolog suivante :

sentence(S, S0) :-
noun_phrase(S, S1),
verb_phrase(S1, S0).

où les deux arguments de chaque prédicat sont des listes. La
seconde liste est toujours le suffixe de la première, de façon
à ce que les deux ensemble représentent une liste par dif-
férence, un concept couramment utilisé en programmation
logique.
Une fois la grammaire transformée en programme logique,
Prolog peut être utilisé pour la validation d’une séquence de
symboles. Le fait suivant, qui inclut une phrase complète,
sera vrai car la phrase est reconnue par la grammaire :

sentence(
[the, pieplate, contains, a, surprise],
[]

).

et toute phrase qui n’est pas dans le langage conduirait à un
echec de la résolution Prolog. La résolution Prolog permet
aussi de décider si une séquence donnée est le début d’une
phrase reconnue par la grammaire, comme ci-dessous :

sentence(
[the, pieplate | Tail],
[]

).

On peut ainsi utiliser Prolog pour générer l’ensemble des
phrases du langage bien que dans cet exemple, la résolution
ne terminerait pas du fait de la récursivité des règles pour
noun_phrase et noun_phrase2. L’exemple est repré-
sentatif de nombreuses grammaires qui reconnaissent un
nombre infini de phrases — celles formalisant les langues
naturelles, par exemple.
Les modèles de génération sequence-to-sequence par
Transformer peuvent eux aussi générer des phrases d’un
langage-cible, avec une probabilité associée, sans pour au-
tant garantir que toutes les phrases générées appartiendront
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bien au langage. En combinant la génération par Transfor-
mer avec une validation Prolog, on peut garantir que la gé-
nération est contrôlée et espérer que les phrases générées
soient parmi les plus probables dans le langage-cible.

3 Détail de l’approche
L’approche présentée dans cet articule suppose l’existence
d’un modèle sequence-to-sequence pré-entraîné et d’une
grammaire DCG, que l’on peut respectivement décrire à tra-
vers les fonctions GENERATE et VALIDATE. Dans une confi-
guration où une séquence d’entrée I et une séquence de sor-
tie O sont utilisées par le modèle 2, la fonction GENERATE
produit à partir de ces deux séquences un vecteur donnant la
probabilité qu’un symbole t soit le suivant dans la séquence
O, pour chacun des symboles du langage. La signature de
la fonction est donc GENERATE : T l × T l → R|T |, où T
est l’ensemble des symboles définis dans le langage et l est
la longueur maximale d’une séquence. On suppose qu’une
séquence incomplète est complétée par un symbole spécial
(padding). La fonction VALIDATE retourne simplement vrai
ou faux selon si une séquence quelconque est un préfixe va-
lide. Sa signature est VALIDATE : T l → {true, false}.
La fonction GENERATE est itérative : elle ne génère qu’un
seul symbole à la fois. Elle permet une validation à chaque
symbole et un retour sur trace si la validation échoue. On
peut donc combiner génération et validation avec retour sur
trace, dans l’algorithme ci-dessous :

function GENERATE_AND_VALIDATE(I , O)
P = GENERATE(I , O)
tokens = FILTER(O, P )
sorted = SORT(tokens, P )
for all t ∈ sorted do

O′ = O + t
if VALIDATE(O′) then

O′′ = GENERATE_AND_VALIDATE(I , O′)
if O′′ is complete then

return O′′
end if

end if
end for
return ∅

end function
La fonction GENERATE_AND_VALIDATE appelle d’abord
GENERATE, puis trie les symboles du plus probables au
moins probables. Dans cet ordre, chacun des symboles t
est testé avec VALIDATE, qui vérifie que la séquence O + t
est reconnue par la grammaire. Si ce n’est pas le cas, on
teste le symbole suivant, moins probable. Si, au contraire,
la séquence est valide, la procédure continue récursivement,
jusqu’à qu’un symbole spécial de fin de génération soit at-
teint ou que l’ensemble des symboles aient été testés. Dans
ce dernier cas, un retour sur trace s’effectue.
Sans condition d’arrêt particulière, cet algorithme génère

2. dans cette configuration, les modèles ont deux parties : en encodeur
et un décodeur. On trouve aussi des modèles qui n’incluent qu’un déco-
deur, comme les modèles de la famille des Generative Pretrained Trans-
formers (GPT) [14, 1], pour lesquels on définit alors I = ∅.

l’ensemble des phrases possibles du langage, en nombre
potentiellement infini. Les algorithmes classiques de géné-
ration ont des conditions d’arrêt supplémentaires, comme
une taille maximum pour la séquence de sortie O. Ici, on
considère une forme générique de contrôle de la terminai-
son de l’algorithme, en y ajoutant une fonction FILTER.
Cette fonction réduit l’ensemble des symboles à explorer
sur la base de la séquence disponible O et des probabili-
tés retournées par GENERATE. On peut par exemple définir
FILTER(O,P ) = ∅ lorsque la longueur de O atteint une
valeur maximum. On peut aussi écarter les symboles avec
une faible probabilité. Une pratique courante lors de la gé-
nération de séquences consiste à sélectionner le plus petit
ensemble de symboles Tp dont la somme des probabilités
dépasse la valeur p [6]. Une autre approche, évaluée dans
la section suivante, consiste à écarter les symboles dont la
probabilité ne serait pas supérieure à celle d’un tirage aléa-
toire :

FILTER(O,P ) = {t | pt >
1

|T | } (1)

Le principal défaut de l’approche par retour sur trace est
qu’il nécessite de générer et valider l’ensemble des sé-
quences possibles avant d’échouer complètement. Lorsque
le modèle génératif est sous-optimal et génère des sé-
quences quasi-aléatoires, le temps de calcul peut alors être
prohibitif, voire infini si aucun filtrage des symboles n’est
effectué et que la grammaire reconnaît une infinité de sé-
quences. Ce semi-déterminisme est une propriété héritée de
Prolog et de la méthode de résolution pour le raisonnement.
Cependant, lorsque la distribution de probabilité de P est
obtenu par application de la fonction SOFTMAX, un filtrage
basé sur les valeurs de probabilité permet d’élaguer effica-
cement la majorité des branches à explorer.
L’enjeu du fitrage de symbole est donc plutôt de ne pas fil-
trer trop de symboles, pour permettre au modèle génératif
de générer des séquences peu probables mais correctes du
point de vue de la grammaire. L’évaluation de la section
suivante montre que le filtrage défini par l’équation 1 est
suffisamment permissif.

4 Évaluation
On évalue l’approche dans deux configurations. On évalue
d’abord la transcription d’un signal audio en texte avec le
modèle Whisper. Cette évaluation permettra de démontrer
l’intérêt d’une génération contrôlée lorsque le modèle est
imprécis. Whisper, en effet, est un modèle multilingue qui
a été entraîné avec plus ou moins de paramètres sur des en-
registrements fortement dominés par l’anglais. Si un enre-
gistrement est en français, les variantes de Whisper avec de
nombreux paramètres sont relativement précises mais elles
sont trop coûteuses pour une transcription en temps réel sur
un CPU. À l’inverse, les variantes avec peu de paramètres
s’exécutent rapidement mais elles produisent souvent des
termes qui ne sont même pas dans le vocabulaire français.
Lorsque le langage est contrôlé, une validation symbole par
symbole devrait permettre de générer des séquences cor-
rectes, même pour les variantes de Whisper avec peu de
paramètres.
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La deuxième configuration évaluée dans l’article est celle
d’une génération de texte à partir de texte, dans le but de re-
formuler (et simplifier) le texte d’origine. On suppose ici
que le texte-cible est dans une langue contrôlée qui sert
d’intermédiaire à une représentation formelle, comme At-
tempto Controlled English (ACE), dont toutes les phrases
valides peuvent être réécrites en axiomes OWL ou en règles
SWRL [8]. La reformulation est une tâche que peuvent exé-
cuter des modèles comme Text-to-Text Transfer Transfor-
mer (T5) [15] ou BART [9]. Ces modèles se distinguent
des GPT —famille à laquelle appartiennent les modèles
Mistral [7] — par le fait que la séquence d’entrée est trai-
tée séparément de la séquence de sortie (dans une archi-
tecture de type encodeur-décodeur). De nombreuses ex-
périences autour de ces modèles montrent qu’ils sont ca-
pables d’atteindre de bonnes performances avec peu de
paramètres pour différentes tâches, dont la reformulation.
Comme avec Whisper, on cherche donc à démontrer que
la validation symbole par symbole permet une génération
rapide sur CPU de données structurées (par le biais d’une
langue contrôlée).
D’autres configurations auraient pu être testées, notamment
avec un GPT, pour évaluer l’importance de passer par une
langue contrôlée dans la génération. Des tests préliminaires
suggèrent en effet que T5 et BART ne peuvent pas géné-
rer efficacement une structure JSON ou des triplets RDF,
la probabilité d’occurrence de symboles comme ‘"’ ou ‘<’
étant trop faible quelque soit la séquence d’entrée. Un GPT,
en revanche, est typiquement entraîné avec un corpus de
texte plus diversifié et peut donc théoriquement générer di-
rectement des données structurées, au prix d’une génération
plus lente. Ce type d’évaluation n’est pas considéré ici mais
fera l’objet de travaux futurs.

4.1 Transcription
Pour évaluer Whisper, on prend comme cas d’usage l’en-
voi de commandes vocales en français à un robot mobile
autonome. Les commandes envoyées sont par exemple ‘à
gauche’ ou ‘va vers la porte et arrête-toi’. On évalue deux
variantes de Whisper, tiny et small, sur un jeu de données
composé de 46 commandes vocales de 3s chacune, enre-
gistrées par un micro d’ordinateur. Elles ont été enregis-
trées par quatre personnes différentes (trois femmes, un
homme). Dans cette expérience, la grammaire utilisée est la
plus simple possible. Elle ne reconnaît que quatre phrases :
‘en avant’, ‘en arrière’, ‘à gauche’, ‘à droite’. Parmi les 46
commandes enregistrées, 16 sont conforme à cette gram-
maire.
Pour mesurer la qualité des différents modèles considérés,
on interprète la tâche comme une tâche de classification, ce
qui permet de calculer une précision et un rappel. Lorsque
les deux variantes de Whisper génèrent du texte sans vali-
dation, le résultat est un vrai positif lorsque la séquence de
sortie est exactement celle attendue, à la ponctuation près,
et qu’elle est conforme à la grammaire. Lorsque la géné-
ration est accompagnée d’une validation, on considère une
génération en deux étapes : si la séquence générée est recon-
nue par la grammaire, elle est prise telle quelle ; si elle n’est

Params Précision Rappel F1

tiny 39M 0.28 0.29 0.28
small 244M 0.70 0.69 0.69

tiny + cmd 39M 0.48 0.93 0.63

TABLE 1 – Évaluation de variantes de Whisper avec une
grammaire simple de commandes vocales (cmd)

pas reconnue par la grammaire, est prise la séquence ob-
tenue par génération gloutone (sans validation) par le mo-
dèle d’origine. Par exemple, lorsque la séquence attendue
est ‘avance tout droit’, le modèle tiny avec validation génère
‘à d’ puis renvoie ∅. Par défaut, on prend alors la séquence
générée par le modèle tiny seul (à savoir ‘Avons-tu droit ?’,
qui est un vrai négatif).
Le tableau de résultats (table 1) montre qu’une validation
par Prolog bénéficie nettement au modèle tiny. Sans aug-
menter le nombre de paramètres du modèle et sans ré-
entraînement, sa précision passe de 28% à 48% et son score
F1 approche celui du modèle small, avec 6 fois moins de
paramètres.

4.2 Reformulation
Pour évaluer les capacités de reformulation d’un modèle
sequence-to-sequence, un autre protocole expérimental est
nécessaire. La transcription est une opération fonction-
nelle : il n’existe qu’une seule transcription possible pour
un enregistrement audio donné, à la ponctuation près. Ce
n’est pas le cas lorsqu’on reformule du texte. De nom-
breuses structures de phrases différentes peuvent avoir la
même sémantique et donc être considérées comme des
reformulations l’une de l’autre, même dans une langue
contrôlée. La procédure d’évaluation la plus évidente
consisterait donc à éliminer les variations de formulation
en transformant en données structurées la séquence de sor-
tie du modèle et à comparer sémantiquement les structures
de données. Si une ontologie existe pour ces données, des
équivalences sémantiques peuvent être inférées automati-
quement. Le travail d’ingénierie pour aboutir à ce résultat
étant conséquent, l’évaluation faite ici a est simplifiée. Elle
ne présente que des résultats préliminaires.
Le langage ACE est un bon candidat pour la génération
de données structurées. Au-delà du fait qu’il existe une
transformation d’ACE vers les langages usuels du Web sé-
mantique, l’outil d’analyse syntaxique développé par ses
concepteurs se base en effet sur une grammaire DCG, qui
pourrait être utilisée telle quelle pour la validation. Une éva-
luation complète avec ACE n’a pas encore été faite mais les
résultats préliminaires présentés ci-dessous suggèrent que
cette langue contrôlée est suffisamment proche de la langue
naturelle pour l’envisager comme intermédiaire.
On choisit comme modèle le successeur de T5, FLAN-T5,
entraîné sur une plus grande variété de tâches de généra-
tion (comme l’explication ou le raisonnement) [3]. Comme
séquence d’entrée, cinq descriptions en anglais issues de
Wikipédia ont été sélectionnées, parmi celles incluses dans
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le jeu de données T-Rex. T-Rex a été construit dans le but
d’entraîner des modèles de générations de triplets RDF à
partir de texte [4]. Les cinq descriptions ont été choisies
au hasard, en vérifiant qu’elle décrivent des entités de type
différent : une personne, une organisation, un pays, un nom
commun et un produit manufacturé. Ces descriptions ont
été reformulées manuellement dans la langue ACE puis va-
lidées par son outil d’anayse syntaxique 3. Elles sont re-
portées dans un tableau, table 2. Les descriptions d’ori-
gine incluses dans T-Rex, elles, ne respectent pas la syntaxe
d’ACE.
À partir d’une séquence d’entrée issue d’une description
Wikipédia et d’une séquence de sortie en ACE, on peut es-
timer la difficulté pour FLAN-T5 à générer la séquence de
sortie. Pour ce faire, on collecte le rang de chaque symbole
de la séquence selon les probabilités P estimées par le mo-
dèle. Il existe différentes variantes de FLAN-T5. On évalue
ses deux versions les plus petites, small (80M paramètres)
et base (250M paramètres). Étant donnée une séquence
décrivant David Oliver Huffman, par exemple, FLAN-T5
small donne la probabilité la plus élevée au symbole ‘Da-
vid’ pour commencer la génération (rang 0, voir table 2).
À l’inverse, au dixième symbole (toujours ‘David’ mais en
début de seconde phrase), le modèle donne une probabilité
trop faible pour être traitée par l’algorithme selon l’équa-
tion 1 (rang -1). La séquence complète ne pourrait donc pas
être générée. C’est aussi le cas pour la deuxième séquence,
décrivant BMW, mais pas pour les trois suivantes (Kaza-
khstan, moine et Thalia). La variante FLAN-T5 base, elle,
peut générer les cinq séquences.
Il apparaît aussi dans ces résultats préliminaires que le mo-
dèle génère difficilement certains termes, comme ‘comes’,
‘year’ ou ‘transportation’. Si l’on compare à une généra-
tion directe en triplets RDF, ces termes correspondent à la
génération d’un prédicat étant donné un sujet (⟨s, ?, ?⟩) et
d’un objet étant donné un sujet et un prédicat (⟨s, p, ?⟩). Or,
dans un graphe RDF, il existe rarement une solution unique
à ces requêtes. Il n’est donc pas étonnant que le rang de
ces symboles particulièrement soit élevé. En revanche, il
est intéressant de noter que la méthode de filtrage décrite
par l’équation 1 permet de conserver ces symboles impor-
tants pour la qualité des données générées, malgré leur rang
élevé.

5 État de l’art
La génération de texte avec des modèles pré-entraînés peut
se faire selon différentes approches. Étant donné que la
fonction GENERATE renvoie une distribution de probabi-
lités plutôt qu’un unique symbole, un choix doit être fait
à chaque étape pour générer une séquence entière. L’ap-
proche la plus évidente est gloutone : elle consiste à sélec-
tionner le symbole avec la plus haute probabilité. Il a cepen-
dant été démontré qu’elle ne permet pas de reproduire fidè-
lement la langue naturelle, beaucoup plus variée [6]. Pour
pallier ce problème, il est possible de générer non pas une
mais plusieurs séquences entières en parallèle et d’en choi-

3. https://github.com/Attempto/APE/

sir une après génération (par exemple, celle avec la plus
grande probabilité cumulée). Pour cela, on peut choisir les
k symboles les plus probables à chaque étape [5] ou les
symboles dont la somme des probabilités dépasse un seuil
p [6]. Ces différentes approches peuvent être combinées à
un tirage aléatoire de symboles pour plus de diversité dans
la génération. À titre d’exemple, la bibliothèque logicielle
d’HuggingFace implémente huit stratégies différentes pour
la génération de texte 4. Elles ont toutes en commun de ne
pas s’appuyer sur des connaissances ou un schéma connus
a priori, contrairement à l’approche présentée dans cet ar-
ticle.

D’autres approches cherchant à contraindre syntaxique-
ment ou sémantiquement la sortie d’un modèle ont été pro-
posées. Ces approches sont basées sur un ré-entraînement
du modèle, soit en fixant le format des séquence d’entrée
pendant l’apprentissage [10], soit en modifiant les para-
mètres d’apprentissage [16]. Il est aussi courant de régu-
lariser la fonction de coût de l’apprentissage du modèle,
approche qui a démontré son efficacité dans la génération
directe de données structurées [11]. REBEL, un modèle
de génération de triplets RDF à partir de texte, est le pro-
duit d’un ré-entraînement de BART sur des données is-
sues de T-Rex [2]. Contrairement à ces approches par ré-
entraînement, l’approche par génération et validation peut
intégrer des modèles pré-entraînés « sur étagère ».

Pour finir, certains travaux dans le domaine de l’intégra-
tion neuro-symbolique ont un lien direct avec la question
traitée dans cet article. DeepProbLog, notamment, est un
outil qui combine modèles d’apprentissage et programma-
tion logique [12]. Le programme Prolog suivant, incluant
le prédicat nn issu de DeepProbLog, permet théoriquement
de générer et valider des séquences symbole par symbole,
avec retour de trace :

seq2seq(I, O, N) :- sentence(O, []).
seq2seq(I, O, N) :-
% generation
nn(I, O, Token, N),
% validation
append(O, [Token|Tail], Op),
sentence(Op, []),
% recursive call
Np is N+1, seq2seq(I, Op, Np).

Le prédicat nn permet de faire appel à un modèle pré-
entraîné, dont on suppose ici qu’il énumère les symboles
possibles du plus probable au moins probable, étant donné
une séquence d’entrée I et une séquence (partielle) de sor-
tieO. Cependant, les détails d’implémentation de DeepPro-
bLog font qu’un tel programme ne pourrait pas être exécuté
en pratique, du fait que le moteur d’inférence de DeepPro-
bLog cherchera à énumérer toutes les instanciations pos-
sibles de seq2seq avant de calculer leur probabilité —
instanciations qui peuvent être en nombre infini.

4. https://huggingface.co/docs/transformers/
generation_strategies
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Entité Rang [small,base]

David Oliver Huffman _David [0,1], _Oliver [0,0], _H [0,0], uff [0,0], man [0,0], _is [2,7], _an [3,0],
_actor [2,1], . [1,5], _David [-1,19], _Oliver [0,0], _H [0,0], uff [0,0], man

[0,0], _comes [89,123], _from [0,0], _the [0,1], _USA [31,314], . [0,0]

BMW _BMW [4,0], _is [1,3], _ [0,0], a [0,0], _company [11,2], . [40,12], _BMW [-1,3],
_produces [3,3], _luxury [10,11], _vehicles [0,0], . [0,1], _The [2,2], _year

[232,17], _of [1,1], _creation [13,4], _of [2,2], _BMW [6,0], _is [0,0], _1916
[0,4], . [0,0]

Kazakhstan _Kazakhstan [0,0], _is [0,0], _ [3,2], a [0,0], _country [0,0], . [26,17], _It

[1,1], _is [2,0], _located [0,1], _in [0,0], _Central [0,0], _Asia [0,0], _and

[0,0], _Eastern [0,0], _Europe [0,0], . [0,0]

Monk _A [12,1], _mon [0,0], k [0,0], _is [0,0], _ [0,0], a [0,0], _religious [2,2],
_person [0,1], . [1,1]

Thalia _Th [175,518], alia [0,0], _is [1,16], _an [2,2], _aircraft [0,15], _for [15,24],
_transportation [93,8], . [2,2], _It [1,1], _is [1,1], _used [1,6], _in [0,0],
_Japan [5,1], _during [2,13], _World [0,0], _War [0,0], _II [0,0], . [0,0]

TABLE 2 – Rang de chaque symbole lors de la génération d’une séquence pré-définie dans la langue contrôlée ACE avec les
variantes small et base du modèle FLAN-T5 (le caractère _ encode un espace)

6 Conclusion
Les résultats préliminaires présentés dans cet article sont
prometteurs. Ils indiquent que la génération de texte avec
des modèles sequence-to-sequence de petite taille, com-
binée à une validation symbole par symbole, permettrait
d’obtenir des données structurées de qualité, une pers-
pective intéressante pour le domaine de l’ingénierie des
connaissances.

Il reste à confirmer ces résultats dans des expériences plus
poussées, dans lesquelles seraient produits des triplets RDF
selon un vocabulaire connu. Par ailleurs, l’approche devrait
être comparée à une génération par GPT qui produirait di-
rectement des données structurées.

Références
[1] Tom B. Brown, Benjamin Mann, Nick Ryder, Mela-

nie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gret-
chen Krueger, Tom Henighan, Rewon Child, Adi-
tya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens
Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Lan-
guage models are few-shot learners. In Hugo Laro-
chelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-
Florina Balcan, and Hsuan-Tien Lin, editors, Ad-
vances in Neural Information Processing Systems 33 :
Annual Conference on Neural Information Processing

Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020.

[2] Pere-Lluís Huguet Cabot and Roberto Navigli. RE-
BEL : relation extraction by end-to-end language ge-
neration. In Marie-Francine Moens, Xuanjing Huang,
Lucia Specia, and Scott Wen-tau Yih, editors, Fin-
dings of the Association for Computational Linguis-
tics : EMNLP 2021, Virtual Event / Punta Cana,
Dominican Republic, 16-20 November, 2021, pages
2370–2381. Association for Computational Linguis-
tics, 2021.

[3] Hyung Won Chung, Le Hou, Shayne Longpre, Bar-
ret Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-
bert Webson, Shixiang Shane Gu, Zhuyun Dai, Mi-
rac Suzgun, Xinyun Chen, Aakanksha Chowdhery,
Alex Castro-Ros, Marie Pellat, Kevin Robinson, Da-
sha Valter, Sharan Narang, Gaurav Mishra, Adams Yu,
Vincent Y. Zhao, Yanping Huang, Andrew M. Dai,
Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Ja-
cob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le,
and Jason Wei. Scaling instruction-finetuned language
models. J. Mach. Learn. Res., 25 :70 :1–70 :53, 2024.

[4] Hady ElSahar, Pavlos Vougiouklis, Arslen Remaci,
Christophe Gravier, Jonathon S. Hare, Frédérique La-
forest, and Elena Simperl. T-rex : A large scale align-
ment of natural language with knowledge base triples.
In Nicoletta Calzolari, Khalid Choukri, Christopher
Cieri, Thierry Declerck, Sara Goggi, Kôiti Hasida, Hi-
toshi Isahara, Bente Maegaard, Joseph Mariani, Hé-
lène Mazo, Asunción Moreno, Jan Odijk, Stelios Pi-
peridis, and Takenobu Tokunaga, editors, Proceedings

IC

©AFIA 2025 32



of the Eleventh International Conference on Lan-
guage Resources and Evaluation, LREC 2018, Miya-
zaki, Japan, May 7-12, 2018. European Language Re-
sources Association (ELRA), 2018.

[5] Angela Fan, Mike Lewis, and Yann N. Dauphin. Hie-
rarchical neural story generation. In Iryna Gurevych
and Yusuke Miyao, editors, Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics, ACL 2018, Melbourne, Australia, July 15-
20, 2018, Volume 1 : Long Papers, pages 889–898.
Association for Computational Linguistics, 2018.

[6] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. The curious case of neural text degene-
ration. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020.

[7] Albert Q. Jiang, Alexandre Sablayrolles, Arthur
Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de Las Casas, Florian Bressand, Gianna Len-
gyel, Guillaume Lample, Lucile Saulnier, Lélio Re-
nard Lavaud, Marie-Anne Lachaux, Pierre Stock, Te-
ven Le Scao, Thibaut Lavril, Thomas Wang, Timothée
Lacroix, and William El Sayed. Mistral 7b. CoRR,
abs/2310.06825, 2023.

[8] Tobias Kuhn. The understandability of OWL state-
ments in controlled english. Semantic Web, 4(1) :101–
115, 2013.

[9] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. BART :
denoising sequence-to-sequence pre-training for natu-
ral language generation, translation, and comprehen-
sion. In Dan Jurafsky, Joyce Chai, Natalie Schluter,
and Joel R. Tetreault, editors, Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, ACL 2020, Online, July 5-10, 2020, pages
7871–7880. Association for Computational Linguis-
tics, 2020.

[10] Bill Yuchen Lin, Wangchunshu Zhou, Ming Shen,
Pei Zhou, Chandra Bhagavatula, Yejin Choi, and
Xiang Ren. Commongen : A constrained text gene-
ration challenge for generative commonsense reaso-
ning. In Trevor Cohn, Yulan He, and Yang Liu, edi-
tors, Findings of the Association for Computational
Linguistics : EMNLP 2020, Online Event, 16-20 No-
vember 2020, volume EMNLP 2020 of Findings of
ACL, pages 1823–1840. Association for Computatio-
nal Linguistics, 2020.

[11] Tengfei Ma, Jie Chen, and Cao Xiao. Constrained ge-
neration of semantically valid graphs via regularizing
variational autoencoders. In Samy Bengio, Hanna M.
Wallach, Hugo Larochelle, Kristen Grauman, Nicolò
Cesa-Bianchi, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 31 : An-
nual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, December 3-8, 2018,
Montréal, Canada, pages 7113–7124, 2018.

[12] Robin Manhaeve, Sebastijan Dumancic, Angelika
Kimmig, Thomas Demeester, and Luc De Raedt. Neu-
ral probabilistic logic programming in deepproblog.
Artif. Intell., 298 :103504, 2021.

[13] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. Ro-
bust speech recognition via large-scale weak super-
vision. In Andreas Krause, Emma Brunskill, Kyun-
ghyun Cho, Barbara Engelhardt, Sivan Sabato, and
Jonathan Scarlett, editors, International Conference
on Machine Learning, ICML 2023, 23-29 July 2023,
Honolulu, Hawaii, USA, volume 202 of Proceedings
of Machine Learning Research, pages 28492–28518.
PMLR, 2023.

[14] Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. Language models
are unsupervised multitask learners. OpenAI blog,
1(8) :9, 2019.

[15] Colin Raffel, Noam Shazeer, Adam Roberts, Kathe-
rine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits
of transfer learning with a unified text-to-text transfor-
mer. J. Mach. Learn. Res., 21 :140 :1–140 :67, 2020.

[16] Lei Sha. Gradient-guided unsupervised lexically
constrained text generation. In Bonnie Webber, Tre-
vor Cohn, Yulan He, and Yang Liu, editors, Procee-
dings of the 2020 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2020, On-
line, November 16-20, 2020, pages 8692–8703. Asso-
ciation for Computational Linguistics, 2020.

[17] Leon Sterling and Ehud Y Shapiro. The art of Prolog :
advanced programming techniques. MIT press, 1994.

[18] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kai-
ser, and Illia Polosukhin. Attention is all you need.
In Isabelle Guyon, Ulrike von Luxburg, Samy Ben-
gio, Hanna M. Wallach, Rob Fergus, S. V. N. Vish-
wanathan, and Roman Garnett, editors, Advances in
Neural Information Processing Systems 30 : Annual
Conference on Neural Information Processing Sys-
tems 2017, December 4-9, 2017, Long Beach, CA,
USA, pages 5998–6008, 2017.

IC

33 ©AFIA 2025





40 ans de recherche en logique possibiliste - Une vue d’ensemble

Didier Dubois1, Henri Prade1

1 IRIT, CNRS & Université Toulouse III - Paul Sabatier, 118 route de Narbonne,
31062 Toulouse cedex 9, France

{didier.dubois, henri.prade}@irit.fr

Résumé
Les premiers éléments de logique possibiliste datent de 40
ans. Cette logique manipule des formules logiques clas-
siques associées à des pondérations prenant des valeurs
dans un ensemble linéairement ordonné ou plus générale-
ment dans un treillis. Au cours des décennies, la logique
possibiliste a connu de nombreux développements tant au
niveau théorique qu’au niveau appliqué. L’ambition de cet
article est de passer en revue ces développements tout en
exposant les idées principales qui les sous-tendent.

Mots-clés
théorie des possibilités, logique, incertitude, préférence.

Abstract
The first elements of possibilistic logic date back 40 years.
This logic handles classical logic formulas associated with
weights taking values in a linearly ordered set or more ge-
nerally in a lattice. Over the decades, possibilistic logic has
undergone numerous developments at both theoretical and
applied levels. The goal of this article is to review all these
developments while exposing the main ideas behind them.

Keywords
possibility theory, classical logic, uncertainty, preference.

1 Introduction
La logique possibiliste est issue de la théorie des possibi-
lités. Cette théorie offre un cadre pour la représentation de
l’incertitude épistémique due à une information incomplète.
Cette théorie a été d’abord proposée par un économiste, G.
L. S. Shackle [80], qui a introduit un calcul de degrés de sur-
prise potentielle (qui sont des degrés d’impossibilité) ; elle
a été redécouverte indépendamment par L. A. Zadeh [84]
qui s’est concentré sur l’idée de possibilité graduelle en re-
lation avec la modélisation de l’information linguistique, et
finalement développée dans [45] en utilisant conjointement
la double paire de mesures de possibilité et de nécessité as-
sociées à une distribution de possibilité.
La logique possibiliste [41] (dans sa forme de base)
manipule des formules logiques classiques associées à
des bornes inférieures de mesures de nécessité entendues
comme des niveaux de certitude. La règle du modus ponens
prend alors, sémantiquement, la forme :

N(p)≥α,N(p→ q)≥β ⇒ N(q)≥min(α, β),

où N est une mesure de nécessité, p et q sont des formules
logiques, et α, β ∈ [0, 1]. Cela correspond à l’intuition (re-
montant à Théophraste [77]) selon laquelle la force d’une
conclusion reflète la force de la prémisse la plus faible.
Cette règle d’inférence pondérée apparaît pour la première
fois en 1982. 1 Cependant, ce n’est qu’au milieu des années
1980 que les premiers éléments d’une logique possibiliste à
part entière ont commencé à être développés [59, 39].
Les informations incomplètes sont présentes partout et il est
important de gérer correctement l’incertitude épistémique.
Comme nous le verrons, la logique possibiliste, en strati-
fiant la connaissance en niveaux de certitude, offre un cadre
simple, proche de la logique classique, pour traiter l’incerti-
tude et l’incohérence, mais la logique possibiliste peut aussi
prendre d’autres formes, comme les réseaux ou les matrices
possibilistes. De plus, la logique possibiliste hérite sa poly-
valence de la puissance de représentation de la théorie des
possibilités.
Cet article propose une vue d’ensemble - aussi complète
que possible en 10 pages - des travaux sur la logique possi-
biliste depuis 40 ans. Il y a déjà eu plusieurs synthèses sur
le sujet depuis [47] qui sont maintenant en partie dépassées.
Certaines se concentrent sur les relations avec la logique
modale [51], d’autres offrent une perspective plus appli-
quée [52]. En outre, il existe aussi des introductions plus
longues et plus détaillées (mais désormais incomplètes)
[41, 48]. Le présent article, avec une structure renouvelée,
offre un nouveau regard sur la logique possibiliste.
L’exposé est organisé en deux parties principales. La pre-
mière partie présente les principaux aspects théoriques et
insiste sur les questions de représentation. La seconde par-
tie passe en revue une série de domaines de recherche
en IA auxquels la logique possibiliste a été appliquée et
peut encore contribuer. Plus précisément, la première par-
tie, après un rappel sur les mesures de possibilité et de né-
cessité, présente la syntaxe, la sémantique et la théorie de
la preuve de la logique possibiliste de base où seules des
contraintes de la forme N(p) ≥ α sont traitées. Puis, les
principales caractéristiques du calcul matriciel possibiliste
et des réseaux possibilistes (de type bayésien) sont présen-
tées. Ensuite, divers types d’extensions de la logique possi-

1. [Prade, Thèse d’Etat, 1982] ; [Prade, IJCAI’1983,130-136] (éq. 56).
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biliste sont passés en revue : i) pour traiter l’incohérence ;
ii) pour prendre en compte des niveaux de certitude sym-
boliques (dont la valeur précise reste inconnue) ; iii) pour
introduire de nouveaux types de poids afin de traiter le
temps, le multi-sources, les agents, les raisons argumenta-
tives, ou les niveaux de certitude mal connus, grâce à l’uti-
lisation de fonctions de possibilité et de nécessité générali-
sées prenant leurs valeurs sur un treillis booléen ou sur un
treillis distributif pseudo-complémenté plutôt que sur une
échelle linéaire ; iv) pour faire face à l’information bipo-
laire (c’est-à-dire ayant des composantes positives et né-
gatives) grâce à la notion de possibilité garantie, une autre
fonction d’ensemble de la théorie des possibilités ; v) pour
gérer non seulement les conjonctions, mais aussi les néga-
tions et les disjonctions des contraintes présentes en logique
possibiliste de base. La première partie se termine par une
brève discussion sur le lien avec deux calculs proches : les
fonctions de classement de Spohn et la logique de Mar-
kov. La deuxième partie passe en revue l’utilisation de la
logique possibiliste dans le raisonnement par défaut, la ré-
vision des croyances, la fusion d’informations, les logiques
de description, la programmation logique, la modélisation
des préférences et la décision, l’argumentation et l’appren-
tissage automatique. Une sous-section est également consa-
crée à des applications en base de données, en raison de
leurs liens étroits avec la représentation des connaissances.

2 Questions théoriques et représen-
tationnelles

Cette première partie traite des bases de la logique possibi-
liste et des cadres de représentation associés, avant de pré-
senter diverses extensions de la logique possibiliste, et enfin
de discuter des relations avec d’autres cadres.

2.1 Théorie des possibilités
En théorie des possibilités, les informations disponibles
sont représentées par des distributions de possibilité. Une
distribution de possibilité est une application π d’un en-
semble U , compris comme un ensemble d’états, de valeurs
ou d’alternatives, mutuellement exclusifs (dont l’un est le
monde réel, si U est exhaustif), dans une échelle totalement
ordonnée S bornée, dont le plus grand élément est noté 1
et le plus petit 0. Différents types d’échelles peuvent être
utilisés depuis une échelle finie S = {1 = λ1 > . . . λn >
λn+1 = 0} dans le cas qualitatif, jusqu’à l’intervalle uni-
taire S = [0, 1] dans le cas quantitatif, voir [50] pour
d’autres options. π(u) = 0 signifie que u est rejeté comme
impossible ; π(u) = 1 signifie que l’état u est entièrement
possible. Plus π(u) est grand, plus u est possible. La cohé-
rence de l’état épistémique décrit par π est exprimée par la
condition de normalisation ∃u, π(u) = 1 qui garantit qu’au
moins un u est entièrement possible. Si l’information est
sans incertitude, mais peut-être imprécise, π est la fonction
caractéristique d’un sous-ensembleE de U et π(u)∈{0, 1}.
L’information complète correspond aux situations où E est
un singleton. L’échelle S est supposée équipée d’une bijec-
tion inversant l’ordre λ ∈ S 7→ 1− λ ∈ S.

Une mesure de possibilité Π et une mesure de nécessité
duale N sont associées à une distribution de possibilité π :
∀A ⊆ U ,
Π(A)=supu∈A π(u);N(A)=1−Π(Ac) = infu/∈A 1−π(u)
avec Ac = U \ A. Lorsque la distribution de possibilité
se réduit à un sous-ensemble classique E ⊆ U , on a : i)
Π(A) = 1 siA∩E ̸= ∅, et 0 sinon ; ii)N(A) = 1 siE ⊆ A,
et 0 sinon. Π(A) (resp. N(A)) évalue à quel point l’événe-
ment A est cohérent avec π (resp. est impliqué par π). Par
normalisation, Π(U) = N(U) = 1 et Π(∅) = N(∅) = 0.
Les mesures de possibilité sont caractérisées par la pro-
priété de « maxitivité » Π(A∪B) = max(Π(A),Π(B)), et
les mesures de nécessité sont « minitives » : N(A ∩ B) =
min(N(A), N(B)). En raison de la normalisation de π,
min(N(A), N(Ac)) = 0 et max(Π(A),Π(Ac)) = 1, ou
de manière équivalente Π(A) = 1 lorsque N(A) > 0, à sa-
voir que quelque chose de quelque peu certain doit être en-
tièrement possible, c’est-à-dire cohérent avec l’information
disponible. De plus, on ne peut pas être quelque peu certain
à la fois de A et de Ac, sans être incohérent. Nous n’avons
que N(A ∪ B) ≥ max(N(A), N(B)), ce qui va bien avec
l’idée qu’on peut être certain de l’événement A ∪ B, sans
être vraiment certain d’événements plus spécifiques comme
A ou comme B. La possibilité et la nécessité se différen-
cient d’une probabilité P , qui est auto-duale, et telle que
P (Ac) = 0 ⇒ P (A) = 1, tandis que N(Ac) = 0 ̸⇒
N(A) = 1 (mais Π(Ac) = 0⇒ Π(A) = 1).
Les énoncés qualifiés en termes de certitude de la forme «A
est certain au degré α » sont représentés par la contrainte
N(A) ≥ α. La plus grande distribution de possibilité π,
donc la moins restrictive, qui obéit à cette contrainte est
donnée par [45] : π(A,α)(u) = 1 si u ∈ A, π(A,α)(u) = 1−
α sinon. Si α = 1 on obtient la fonction caractéristique de
A. Si α = 0, on obtient l’ignorance totale. C’est un élément
clé de la sémantique de la logique possibiliste.

2.2 Logique possibiliste de base
Une formule de logique possibiliste de base (LPB en
abrégé) est une paire (p, α) où p est une formule en lo-
gique classique et α un niveau de certitude dans S \ {0},
considéré comme une borne inférieure d’une mesure de né-
cessité : (p, α) signifie sémantiquement N(p) ≥ α. En rai-
son de la minitivité des mesures de nécessité, une base en
LPB, c’est-à-dire un ensemble de formules de LPB, peut
être mise sous une forme clausale équivalente.
Aspects syntaxiques Nous nous intéressons ici au cas où p
dans (p, α) est une proposition ; pour la logique possibiliste
du premier ordre (de base), voir [41].
Axiomes et règles d’inférence. Les axiomes de LPB [41]
sont ceux de la logique propositionnelle, où chaque schéma
d’axiomes a une certitude 1. Ses règles d’inférence sont :
- si β ≤ α alors (p, α) ⊢ (p, β) (diminution de la certitude)
- (¬p ∨ q, α), (p, α) ⊢ (q, α), ∀α ∈ (0, 1] (modus ponens).
De plus, la règle d’inférence suivante est valide :
- (¬p ∨ q, α), (p ∨ r, β) ⊢ (q ∨ r,min(α, β)) (résolution)
La règle d’inférence suivante d’affaiblissement de la for-
mule, est aussi valide, en conséquence de laα-β-résolution :
- si p ⊢ q alors (p, α) ⊢ (q, α), ∀α ∈ (0, 1].
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Inférence et cohérence. Soit K = {(pi, αi), i = 1, ...,m}
un ensemble de formules en LPB. Prouver K ⊢ (p, α)
revient alors à prouver K, (¬p, 1) ⊢ (⊥, α) par applica-
tion répétée de la règle de résolution. De plus, notons que
K ⊢ (p, α) ssi Kα ⊢ (p, α) ssi (Kα)

∗ ⊢ p, où Kα =
{(pi, αi) ∈ K,αi ≥ α} et K∗ = {pi | (pi, αi) ∈ K}.
Les niveaux de certitude stratifient la base de connais-
sancesK en coupes de niveaux imbriquéesKα, c’est-à-dire
Kα ⊆ Kβ si β ≤ α. Une conséquence (p, α) de K ne peut
être obtenue qu’à partir de formules dans Kα.
Le niveau d’incohérence de K est défini par inc(K) =
max{α|K ⊢ (⊥, α)}. Les formules (pi, αi) dans K telles
que αi > inc(K) sont à l’abri de l’incohérence. En effet,
si α > inc(K), (Kα)

∗ est cohérent, et K∗ cohérent ⇔
inc(K) = 0.
La complexité de l’inférence en LPB reste similaire à celle
de la logique classique [68].
Aspects sémantiques. La sémantique du LPB [41] s’ex-
prime en termes de distributions de possibilité, et de me-
sures de nécessité sur l’ensemble Ω des interprétations ω
du langage. La base K est sémantiquement associée à la
distribution de possibilité, qui est un ensemble flou d’inter-
prétations :

πK(ω)=minmi=1max([pi](ω), 1−αi)
où [pi] est la fonction caractéristique des modèles de pi, à
savoir [pi](ω) = 1 si ω ⊨ pi et [pi](ω) = 0 sinon. Ceci
est en accord avec la qualification en termes de certitude :
Intuitivement, cela signifie que toute interprétation qui est
un contre-modèle de pi, est d’autant moins possible que pi
est plus certain ; πK est obtenu comme la conjonction basée
sur min des distributions de possibilité représentant chaque
formule. Comme attendu, NK(pi) ≥ αi pour i=1,. . .,m, où
NK est défini à partir de πK . L’implication sémantique est
définie par K ⊨ (p, α) ssi ∀ω, πK(ω) ≤ π{(p,α)}(ω). LPB
est sain et complet [41] par rapport à cette sémantique :

K ⊢ (p, α) ssi K ⊨ (p, α).
De plus, nous avons inc(K) = 1 − maxω∈Ω πK(ω), qui
reconnaît le fait que la normalisation de πK est équivalente
à la cohérence classique de K∗.
En probabilités, la seule utilisation de la règle de résolution
(localement optimale) Prob(¬p ∨ q) ≥ α, Prob(p ∨ r) ≥
β ⊢ Prob(q ∨ r) ≥ max(0, α+β− 1), ne peut pas assurer
la complétude d’une contrepartie probabiliste de LPB.

2.3 Forme matricielle
Une règle « si p alors q » est représentée plus naturellement
en termes de conditionnement plutôt qu’en utilisant l’impli-
cation matérielle de la logique qui permet la contraposition.
Le conditionnement en théorie des possibilités obéit à :

Π(p ∧ q) = Π(q | p) ⋆Π(p)
où ⋆ est min ou le produit, selon que l’on choisit d’être
dans un cadre qualitatif ou quantitatif. 2 Pour ⋆ = min, la
solution la plus grande et la moins restrictive de l’équation
ci-dessus est Π(q | p) = Π(p ∧ q) si Π(p ∧ q) < Π(p),
Π(q | p) = 1 sinon. Pour ⋆ = produit, le conditionnement
(quantitatif) ressemble à un conditionnement probabiliste :

2. Dans ce dernier cas, la possibilité et la nécessité peuvent être inter-
prétées comme une probabilité supérieure et inférieure, voir, e.g., [53].

Π(q | p) = Π(p∧q)
Π(p) pour Π(p) ̸= 0 et correspond à la règle

de conditionnement de Dempster dans la théorie de Shafer
[81]. La nécessité conditionnelle est définie par dualité :
N(q|p) = 1−Π(¬q|p).
En utilisant la possibilité conditionnelle qualitative, un cal-
cul matriciel (voir [44][53] pour des études approfondies)
peut être développé en utilisant le produit matriciel max-
min ⊗ (en notant que Π(q) =max(Π(p∧q),Π(¬p∧q))) :[
Π(q)
Π(¬q)

]
=

[
Π(q|p) Π(q|¬p)
Π(¬q|p) Π(¬q|¬p)

]
⊗
[
Π(p)
Π(¬p)

]
. ⊗ pré-

serve la normalisation : ∀r,max(Π(r),Π(¬r)) = 1.
Un tel produit matriciel peut être appliqué à un ensemble
de m règles incertaines en parallèle de la forme “si a1i (x)
est P 1

i et · · · et aki (x) est P k
i alors bi(x) est Qi” (i =

1, · · · ,m) qui relie des variables appartenant aux valeurs
d’attributs d’un élément x, et où les P j

i et Qi sont des sous-
ensembles classiques dans les domaines d’attributs corres-
pondants. Il a été montré que le résultat de leur application
conjointe (incluant la fusion des résultats obtenus à partir
de chaque règle) peut être mis sous la forme d’un produit
matriciel min-max [53] ; voir [5] pour le cas général. Le
résultat de ce produit min-max est une distribution de pos-
sibilité sur une collection d’alternatives mutuellement ex-
clusives (induite par des conclusions pondérées sur les Qi).
De plus, la vision conditionnelle peut être étroitement liée
à la LPB, puisque N(q|p) = N(¬p ∨ q) si N(q|p) > 0.

2.4 Réseaux possibilistes
Comme pour les distributions de probabilité conjointes, une
distribution de possibilité conjointe associée à des variables
ordonnées X1, . . . , Xn peut être décomposée en termes
de distributions de possibilité conditionnelle à l’aide d’une
règle de chaînage, en utilisant ⋆ = min, ou ⋆ = produit :
π(X1,..., Xn)=π(Xn|X1,..., Xn−1)⋆...⋆π(X2 |X1)⋆π(X1)
De la même manière que pour les réseaux bayésiens, une
forme d’indépendance permet de simplifier la décomposi-
tion. Cependant, il existe plusieurs définitions de l’indépen-
dance possibiliste conditionnelle entre variables en théo-
rie des possibilités qualitatives, l’une étant symétrique :
Π(x, y|z) = min(Π(x|z),Π(y|z)) et une autre, plus forte,
étant asymétrique : Π(x|z) = Π(x|z, y). Dans le cadre
quantitatif, l’indépendance basée sur le produit entre va-
riables (∀x, y, z, Π(x|y, z) = Π(x|z) où Π(y, z) > 0) est
symétrique car elle est équivalente à ∀x, y, z, Π(x, y|z) =
Π(x|z)·Π(y|z). Il existe des algorithmes efficaces pour l’in-
férence dans les réseaux possibilistes. [9], [69].
Les réseaux possibilistes et les bases LPB sont des repré-
sentations compactes des distributions de possibilité. Une
caractéristique remarquable de ce cadre est que les réseaux
possibilistes peuvent être directement traduits en bases LPB
et vice-versa, que le conditionnement soit basé sur le mini-
mum ou sur le produit [14].
Des formats de représentation hybrides ont été introduits
où des bases en LPB sont associées localement aux nœuds
d’une structure graphique plutôt que des tables de possibi-
lités conditionnelles [31].
Ainsi, le cadre de la LPB offre de multiples formats de re-
présentation équivalents : ensemble de formules logiques
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priorisées, réseaux possibilistes, mais aussi ensemble de
conditionnels de la forme Π(p ∧ q) > Π(p ∧ ¬q) (⇔
N(q|p) > 0), tous sémantiquement équivalents à des pré-
ordres sur les interprétations (c’est-à-dire à des distributions
de possibilité). Il existe des algorithmes permettant de tra-
duire un format dans un autre [14].
Par ailleurs, les réseaux possibilistes ont été étudiés du
point de vue du raisonnement causal, en utilisant le concept
d’intervention, qui revient à imposer les valeurs de certaines
variables afin de révéler leur influence sur d’autres [11].

2.5 Gestion des incohérences
Le niveau d’incohérence inc(K) d’une base K en LPB
fournit un outil pour gérer les incohérences. Cependant, la
LPB souffre d’un « effet de noyade » puisque toutes les
formules en dessous de inc(K) sont perdues même si elles
ne participent pas à une sous-base incohérente minimale. Il
existe différentes manières d’élargir l’ensemble des consé-
quences qui peuvent être déduites de K [21].
Une façon de le faire tout en préservant un ensemble cohé-
rent de conséquences est la suivante. Étant donnée une base
K en LPB, on construit sa complétion paraconsistante Ko

constituée de formules bi-pondérées : pour chaque formule
(p, α) deK, on calcule un triplet (p, β, γ) où β (resp. γ) est
le degré le plus élevé avec lequel p (resp. ¬p) est soutenu
dans K (p est dit soutenu dans K au moins au degré β s’il
existe une sous-base cohérente de (Kβ)

∗ qui prouve p).
Le sous-ensemble des formules de la forme (p, β, 0) dans
Ko ne sont pas paraconsistantes et conduisent à des conclu-
sions sûres. Nous pouvons toujours obtenir un ensemble
plus large de conclusions cohérentes à partir de Ko comme
suit. Nous avons besoin de deux évaluations : i) le ni-
veau d’infaillibilité d’un ensemble cohérent S de formules :
UD(S) = min{β | (p, β, γ) ∈ Ko et p ∈ S} ; ii) le ni-
veau d’insécurité d’un ensemble cohérent S de formules :
US(S) = max{γ|(p, β, γ) ∈ Ko et p ∈ S}. Alors une in-
férence ⊢SS , nommée relation de conséquence soutenue de
manière sûre, est définie par Ko ⊢SS q si et seulement ∃
un sous-ensemble minimal cohérent S qui implique clas-
siquement q tel que UD(S) > US(S). On peut montrer
que l’ensemble {q | Ko ⊢SS q} est classiquement cohé-
rent. Voir [49] pour les détails, les discussions et d’autres
approches de la gestion de l’incohérence dans le cadre de
la LPB, y compris la logique quasi-possibiliste où l’utilisa-
tion de la résolution après l’introduction d’une disjonction
est interdite (pour éviter le sequitur ex falso quodlibet).

2.6 Logique possibiliste symbolique
Il peut y avoir plusieurs raisons pour gérer les niveaux de
certitude des formules en LPB de manière symbolique : no-
tamment pour garder une trace de l’impact de certains ni-
veaux dans le calcul, ou parce que leur valeur est incon-
nue. Dans ce dernier cas, les valeurs des niveaux de certi-
tude associés aux formules (toujours supposées appartenir
à une échelle totalement ordonnée) sont inconnues, mais
l’ordre relatif entre certaines d’entre elles peut être partiel-
lement connu. Dans [29], cela est codé au moyen d’une lo-
gique propositionnelle typée, où les formules possibilistes

sont des clauses avec des littéraux spéciaux qui font réfé-
rence aux niveaux. Les contraintes sur l’ordre de certains
des niveaux se traduisent en formules logiques du type cor-
respondant et sont rassemblées dans une base de connais-
sances auxiliaire distincte. Le processus d’inférence est ca-
ractérisé par l’utilisation de « variables d’oubli » pour gérer
les niveaux symboliques, et ainsi un processus d’inférence
est obtenu au moyen d’une compilation en DNF des deux
bases de connaissance [29].
Lorsque l’ordre des poids est complètement connu, ce co-
dage offre un moyen de compiler une base de connaissance
possibiliste afin de pouvoir en traiter l’inférence en temps
polynomial [30].
Dans une approche [35] qui rejoint la précédente pour trai-
ter les connaissances partielles sur la valeur relative des ni-
veaux de certitude, deux méthodes d’inférence syntaxique
sont proposées : l’une calcule le degré de nécessité d’une
formule possibiliste en utilisant la notion de sous-base mi-
nimale incohérente, tandis que l’autre s’inspire des ATMS,
en utilisant les nogoods et les labels.

2.7 Extensions de la logique possibiliste ba-
sées sur des treillis

Il existe plusieurs extensions de la logique possibiliste où
les poids sont des niveaux de certitude combinés avec des
ensembles tels que des périodes de temps [40], des en-
sembles de sources, ou des groupes d’agents [8, 54] qui
conduisent à utiliser des structures de treillis distributif
pseudo-complémenté. Lorsque les ensembles sont rempla-
cés par un singleton unique (c’est-à-dire que nous considé-
rons un instant, une source ou un agent), la logique possibi-
liste de base est retrouvée.
Nous prenons l’exemple de la logique possibiliste multi-
agents pour expliquer l’idée. Les formules (proposition-
nelles) sont désormais associées à un sous-ensemble
d’agents : chaque formule (p,A) signifie que au moins tous
les agents deA croient que p est vrai. Une telle pondération
booléenne introduit une différence notable : le supremum
de deux sous-ensembles propres peut être l’univers entier
(tandis que le supremum de deux niveaux non maximum
n’est jamais le niveau maximum dans une échelle totale-
ment ordonnée). C’est pourquoi la règle explicite de ren-
forcement (p,A), (p,B) ⊢ (p,A ∪ B) est nécessaire, au
niveau syntaxique, à côté de règles d’inférence sur l’affai-
blissement du sous-ensemble, le modus ponens et la réso-
lution. Les théorèmes de correction et de complétude sont
valides par rapport à une sémantique en termes de fonc-
tions de possibilité et de nécessité à valeurs ensemblistes :
Π(p) =

⋃
w⊨p π(w) où π(w) est le sous-ensemble maxi-

mal des agents qui trouvent l’interprétation ω possible, et
N(p) = [Π(¬p)]c = ⋂w⊨¬p[π(w)]

c (où c désigne la com-
plémentation d’ensemble).
Nous avons maintenant deux types de normalisation
conduisant à une vision plus riche de la / (l’in)cohérence :
l’une qui signifie que chaque agent trouve au moins un ω
possible (∀a,∃ω, a ∈ π(ω), c’est-à-dire qu’aucun agent
n’est incohérent. Cette condition est plus faible que la
condition ∃ω,π(ω) = All (All est l’ensemble de tous
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les agents), ce qui signifie qu’il existe une interprétation
que tous les agents croient possible, exprimant une condi-
tion de cohérence collective. Par exemple, la base K =
{(p,A), (¬p,Ac)} viole la dernière condition, mais pas la
première.
Cela s’étend au cas général où les propositions sont à la
fois associées à un niveau de certitude et à un ensemble
d’agents. Les formules sont alors de la forme (p, α/A) où
A est un sous-ensemble d’agents et α ∈ (0, 1], qui se lit
« au moins tous les agents de A sont certains de p au moins
au niveau α ». La sémantique est alors en termes de fonc-
tions de possibilité et de nécessité floues : Le poids symbo-
lique α/A représente un ensemble flou d’agents a avec des
degrés d’appartenance α si l’agent a ∈ A, et 0 sinon.
Une logique de raisonnement sur les raisons [54] gère des
paires de la forme (p, x) où p et x sont deux formules lo-
giques propositionnelles exprimées dans deux langages dis-
tincts, p est appelé une affirmation et x une raison. La for-
mule (p, x) se lit donc “x est une raison pour p”. (p, x) est
plus faible que (¬x ∨ p, 1) (le premier n’entraîne pas le se-
cond). La vérité de (p, x) signifie que toutes les situations
où x est vrai sont des raisons de croire p. La sémantique de
cette logique est isomorphe à celle de la logique multi-agent
précédente ; une extension peut prendre en compte la force
des raisons [54]. Cette logique des raisons s’apparente à la
logique des “supporters” [67], mais est un peu plus simple.
La logique possibiliste basée sur les intervalles [26, 28] est
une autre extension basée sur un treillis de la logique possi-
biliste, où les valeurs possibles de niveaux de certitude mal
connus sont restreintes par des intervalles.
Mentionnons enfin une manière de conserver une struc-
ture ordonnée linéairement tout en enrichissant l’échelle.
En LPB, seul le plus petit poids des formules utilisées dans
une preuve est conservé ; aucune différence n’est faite par
exemple entre une preuve avec une seule prémisse faible et
une preuve avec plusieurs prémisses faibles de même force.
Cela peut être capturé en utilisant une nouvelle règle de ré-
solution (¬p∨ q, α̃) ; (p∨ r, β̃) ⊢ (q∨ r, α̃β) où α̃ et β̃ sont
des listes de poids, et α̃β est la liste obtenue par concaténa-
tion. Nous pouvons ensuite classer les preuves en fonction
de leur force en utilisant un classement lexicographique des
listes (une fois qu’elles ont été complétées par des 1 pour
les rendre de longueur égale) ; ceci est décrit dans [52].

2.8 Logique possibiliste bipolaire
En théorie des possibilités, il existe deux autres fonc-
tions d’ensemble : i) une mesure de possibilité garantie
ou de possibilité forte (voir, par exemple, [48]) : ∆(A) =
infu∈A π(u) qui estime dans quelle mesure tous les états
dans A sont possibles selon les observations. ∆(A) peut
être utilisé comme un degré de support garanti pour A, et
son dual ∇(A) = 1 − ∆(Ac) = supu ̸∈A 1 − π(u) éva-
lue le degré de nécessité potentielle ou faible de A, car il
vaut 1 dès qu’un état u hors de A est impossible. Les fonc-
tions ∆ et ∇ sont décroissantes par rapport à l’inclusion
(en complet contraste avec Π et N qui sont croissantes).
Elles satisfont les propriétés caractéristiques ∆(A ∪ B) =
min(∆(A),∆(B)) et ∇(A ∩B) = max(∇(A),∇(B)).

Ainsi la contrainte ∆(p) ≥ γ, notée syntaxiquement [p, γ],
exprime que tout modèle de p est au moins possible au
degré γ. Ceci peut être représenté par l’ensemble flou
δ[p,γ](ω) = 0 if ω |= ¬p, and δ[p,γ](ω) = γ if ω |= p.
Un ensemble de contraintes P = {[qj , γj ]|j = 1, k} est
alors représenté par la distribution de possibilité δP (ω) =
maxj=1,k δ[qj ,γj ](ω) en cumulant les possibilités garanties.
Notons que δP est obtenu comme la combinaison disjonc-
tive basée sur le max de la représentation de chaque formule
dans P . Ceci contraste avec πK (dans la section 2.2) ob-
tenu comme une combinaison conjonctive basée sur le min.
Ainsi, une distribution de possibilité peut être représentée
“par en haut” au moyen de contraintes basées sur la néces-
sité, et “par en bas” au moyen de contraintes basées sur la
possibilité garantie. Au niveau syntaxique, les contraintes
basées sur la nécessité sont naturellement associées à une
décomposition en CNF pondérée, tandis que les contraintes
basées sur ∆ conduisent à une décomposition en DNF pon-
dérée. Cette dernière est régie au niveau de l’inférence par
le pendant suivant de la règle de résolution

[¬p ∧ q, γ], [p ∧ r, γ′]) ⊢ [q ∧ r,min(γ, γ′)].
Une contrainte [p, γ] basée sur ∆ correspond naturellement
à l’expression d’une information positive, c’est-à-dire que
les interprétations qui sont des modèles de p sont possibles
au moins au degré γ, tandis qu’une contrainte (p, α) basée
sur N correspond à une expression négative indiquant que
les contre-modèles de p sont quelque peu impossibles (leur
possibilité est au plus 1 − α). Ainsi, plus d’informations
positives augmentent δP en rendant plus d’interprétations
réellement possibles, tandis que plus d’informations néga-
tives diminuent πK en restreignant davantage les mondes
possibles [17].
On peut utiliser soit des formules basées sur ∆, soit des
formules basées sur N pour représenter les informations
disponibles, selon ce qui semble le plus pratique. Quand il
est judicieux de faire la distinction entre les informations
positives et les informations négatives (par exemple, des
exemples réels de prix et des prix non-interdits par la ré-
glementation), nous devons conserver séparément la base
de connaissance K et la base de connaissance P , chacune
sémantiquement associée à leurs distributions respectives
(censées satisfaire la condition de cohérence δP ≤ πK) ;
voir [38], [18] pour des cadres de gestion de ce dernier cas.

2.9 Logique possibiliste généralisée
En LPB, seules les conjonctions de formules de logique
possibiliste sont autorisées. Mais comme (p, α) est séman-
tiquement interprété comme N(p) ≥ α, une formule possi-
biliste peut être manipulée comme une formule proposition-
nelle qui est vraie (si N(p) ≥ α) ou fausse (si N(p) < α).
Les formules possibilistes peuvent alors être combinées
avec tous les connecteurs propositionnels, y compris la dis-
jonction et la négation. Il s’agit de la logique possibiliste
généralisée (LPG) [57, 51]. La LPG est une logique propo-
sitionnelle à deux niveaux, dans laquelle les formules pro-
positionnelles sont encapsulées par des opérateurs modaux
pondérés interprétés en termes de mesures de nécessité et
de possibilité.
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La LPG utilise une échelle finie de degrés de certitude
Λk = {0, 1k , 2k ,...,1} (k ∈ N \ {0}) ; Λ+

k = Λk \ {0}. Le
langage de la LPG, Lk

N, est construit sur un langage pro-
positionnel L comme suit : i) Si p ∈ L, α ∈ Λ+

k , alors
Nα(p) ∈ Lk

N ; ii) si φ ∈ Lk
N,ψ ∈ Lk

N, alors ¬φ et φ ∧ ψ
sont aussi dans Lk

N. Ici, Nα(p) représente (p, α), la nota-
tion soulignant la proximité avec la logique modale. Ainsi,
un agent affirmant Nα(p) a un état épistémique tel que
N(p) ≥ α > 0. Ainsi, ¬Nα(p) signifie N(p) < α, ce qui
est équivalent àN(p) ≤ α− 1

k et donc Π(¬p) ≥ 1−α+ 1
k .

En particulier, Π1(p) ≡ ¬N 1
k
(¬p) si k > 1. Ainsi, en

LPG, on peut faire la distinction entre l’absence de certi-
tude suffisante que p est vrai (¬Nα(p)) et l’affirmation plus
forte que p est quelque peu certainement faux (Nα(¬p)).
La sémantique de la LPG est comme en LPB définie en
termes de distributions de possibilité normalisées sur des in-
terprétations propositionnelles, où les degrés de possibilité
sont dans Λk. Toute distribution de possibilité à valeurs sur
Λk telle queN(p) ≥ α est un modèle d’une formule Nα(p)
de la LPG. Mais, l’ensemble des distributions de possibilité
satisfaisant une formule de LPG n’a pas toujours un plus
grand élément, comme c’était le cas en LPB.
La LPG peut être considérée comme un fragment de la lo-
gique modale KD, sans modalités imbriquées, mais les mo-
dalités y sont graduées. Voir [57] pour son axiomatique,
les résultats de correction et complétude, et l’étude de sa
complexité. La LPG est un puissant cadre unificateur pour
divers formalismes de représentation des connaissances, y
compris la logique possibiliste avec des formules partiel-
lement ordonnées, ou une logique d’assertions condition-
nelles. Le raisonnement sur l’ignorance explicite, ou cer-
taines tâches de raisonnement sur plusieurs agents, telles
que le problème des “enfants couverts de boue” (“muddy
children”), peuvent également être traités en LPG [52].
De même, une logique possibiliste multi-agents généralisée
qui permet la disjonction et la négation de ses formules de
base a été récemment étudiée [54]. Une construction simi-
laire s’applique également à la logique des raisons.

2.10 Relations avec d’autres cadres
Les fonctions de rang (“ranking functions”) de Spohn [82]
sont similaires aux mesures de possibilité mais elles sont
évaluées sur des entiers positifs. Elles utilisent donc des
échelles différentes pour évaluer la (im)plausibilité, ce qui
rend leurs pouvoirs expressifs quelque peu différents. En
effet, il n’y a pas de côté logique pour les fonctions de clas-
sement puisqu’il n’y a pas de contrepartie au modus ponens
pondéré, et le conditionnement de Spohn, basé sur l’addi-
tion, s’inspire des probabilités infinitésimales, tandis que
la logique possibiliste n’utilise que des opérations idempo-
tentes telles que max et min [50].
La logique de Markov [78] utilise des formules pondérées
pour encoder de manière compacte une distribution de pro-
babilité, mais les pondérations ne sont pas faciles à inter-
préter. Cependant, on peut toujours construire une base lo-
gique possibiliste qui capture exactement un réseau logique
de Markov ; voir [65], [57].

3 Applications
La logique possibiliste a trouvé des applications dans de
nombreux domaines de recherche en IA. En raison de l’es-
pace limité, nous n’avons pu sélectionner qu’un petit échan-
tillon de références pour chaque application.

3.1 De la gestion de l’incertitude au raisonne-
ment par défaut

La LPB a été conçue à l’origine pour propager l’incertitude
dans des moteurs d’inférence pour les systèmes experts, en
tirant parti du format matriciel [60].
La capacité de LPB à gérer l’incohérence, en utilisant le
niveau d’incohérence d’une base de connaissances, est ex-
ploitée dans le raisonnement par défaut, une fois les règles
par défaut traduites en formules possibilistes. Une règle par
défaut “généralement, si p alors q”est représentée par la
condition Π(p ∧ q) > Π(p ∧ ¬q) ⇐⇒ N(q|p) > 0
Ainsi, N(q|p) > 0 exprime que dans le contexte où p est
vrai, avoir q vrai est strictement plus possible que q faux.
Comme pour les probabilités, ce conditionnement n’est pas
monotone. On peut avoir que N(q|p) > 0, alors que la
conclusion opposée N(¬q|p ∧ p′) > 0 est vraie dans le
contexte plus restreint p ∧ p′.
Ensuite, à partir de la plus grande distribution de pos-
sibilité sous-jacente à un ensemble cohérent de défauts
Π(pi ∧ qi) > Π(pi ∧ ¬qi) pour i = 1, n, il est possible de
stratifier l’ensemble des défauts selon leur spécificité (les
défauts les plus spécifiques reçoivent les niveaux les plus
élevés), puis de les coder par des formules de logique pos-
sibiliste [20] : chaque défaut est transformé en une clause
possibiliste (¬ai∨bi, N(¬ai∨bi)), où N est calculé à par-
tir de la plus grande distribution de possibilité induite par
l’ensemble des contraintes modélisant la base de règles par
défaut. Ce codage tire parti du fait que lorsque de nou-
velles informations sûres sont reçues, le niveau d’incohé-
rence de la base ne peut pas diminuer, et s’il augmente
strictement, certaines inférences qui étaient sûres aupara-
vant sont maintenant noyées dans le nouveau niveau d’in-
cohérence de la base et ne sont donc plus possibles, d’où un
mécanisme de conséquence non monotone. Il a été prouvé
que cette approche est en plein accord avec une approche
basée sur les postulats du raisonnement non monotone [19].
Cela est également équivalent à une modélisation proba-
biliste des conditionnelles en termes d’un type spécial de
distributions de probabilités appelées probabilités à grandes
marches [22].

3.2 Révision de croyances
Le raisonnement non monotone et la révision des croyances
sont étroitement liés, de sorte que la LPB trouve également
une application en révision des croyances. En effet, les re-
lations de nécessité comparative (qui peuvent être codées
par des mesures de nécessité) ne sont rien d’autre que les
relations d’enracinement épistémique [46] qui sous-tendent
les processus de révision des croyances bien conduits [61].
Cela permet au cadre de la LPB de fournir des opérateurs de
révision syntaxique qui s’appliquent aux bases de connais-
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sances possibilistes, y compris dans le cas d’entrées incer-
taines [24, 76]. En LPB, l’enracinement épistémique est
rendu explicite par les niveaux de certitude des formules.
En outre, dans un processus de révision, on s’attend à ce
que toutes les formules indépendantes de la validité des in-
formations d’entrée restent dans l’état révisé de croyance ;
cette idée peut recevoir une signification précise en utilisant
une définition de l’indépendance causale possibiliste entre
les événements [37].

3.3 Fusion d’informations
La combinaison des distributions de possibilité peut être
effectuée de manière équivalente en termes de bases de
LPB : La contrepartie syntaxique de la combinaison point
par point de deux distributions de possibilité π1 et π2 en
une distribution π1 ⊛ π2 par tout opérateur de combinai-
son monotone ⊛ tel que 1 ⊛ 1 = 1, peut être calculée,
suivant une idée proposée pour la première fois dans [33].
A savoir, si la base LPB K1 est associée à π1 et la base
K2 à π2, une base LPB K1⊛2 sémantiquement équiva-
lente à π1 ⊛ π2 est donnée par : {(pi, 1 − (1 − αi) ⊛
1) s.t. (pi, αi) ∈ K1}∪{(qj , 1−1⊛(1−βj)) s.t. (qj , βj) ∈
K2} ∪ {pi ∨ qj , 1 − (1 − αi) ⊛ (1 − βj)) s.t. (pi, αi) ∈
K1, (qj , βj) ∈ K2}. Pour ⊛ = min, on obtient K1⊕2 =
K1∪K2 avec πK1∪K2

=min(π1, π2) comme attendu (com-
binaison conjonctive). Pour ⊛ = max (combinaison dis-
jonctive), on a Γ1⊕2={(pi∨qj ,min(αi, βj)) s.t. (pi, αi) ∈
K1, et (qj , βj) ∈ K2}. Avec des opérateurs ⊕ non idem-
potents, certains effets de renforcement peuvent être obte-
nus. Voir, par exemple [63], pour une étude sur les opéra-
teurs de fusion en LPB. En outre, cette approche peut éga-
lement être appliquée au codage syntaxique de la fusion de
bases logiques classiques basées sur la distance de Ham-
ming (où les distances sont calculées entre chaque interpré-
tation et les différentes bases en logique classique, donnant
ainsi naissance à des équivalents de distributions de possi-
bilité) [15]. Dans [27] une représentation basée sur ∆ est
utilisée ; voir [32] pour un exemple illustratif.

3.4 Logique de description
La gestion possibiliste de l’incertitude en logique de des-
cription a été proposée pour la première fois dans [75]. Elle
présente des avantages informatiques, en particulier dans le
cas de la famille possibilistic DL-Lite où l’extension de la
puissance expressive de DL-Lite se fait sans coûts de calcul
supplémentaires [12] ; il est alors facile d’utiliser l’opéra-
tion min pour la fusion de bases DL-Lite possibilistes.
Une méthode polynomiale pour calculer une réparation
possibiliste unique pour une ABox pondérée partiellement
pré-ordonnée qui peut être incohérente par rapport à la
TBox a été proposée dans [7].

3.5 Programmation logique
Différentes propositions ont été faites pour une gestion pos-
sibiliste de l’incertitude en programmation logique et en
programmation par ensembles-réponses [2, 71, 72, 62, 6].
En outre, une application remarquable de la LPG est
sa capacité à coder des programmes par ensembles-

réponses (ASP), en utilisant une échelle à 3 valeurs Λ2 =
{0, 1/2, 1}. Ce qui permet de faire la distinction entre les
propositions dont on est totalement certain et les proposi-
tions qu’on considère seulement comme plausibles, et d’ex-
pliciter en LPG la sémantique épistémique de règles avec
négation par échec. Par exemple, la règle ASP r ← p∧not q
est codée par N1(p)∧Π1(¬q)→ N1(r) en LPG. Voir [57].

3.6 Bases de données
Le calcul de provenance, basé sur deux opérations formant
un demi-anneau, combine et propage des annotations as-
sociées à des données. Ce calcul, lorsqu’il est basé sur les
opérations max et min, correspond exactement à l’évalua-
tion des requêtes lorsque les données sont étiquetées avec
des niveaux de certitude, comme en LPB [55].
La LPB présente un intérêt pour la conception de bases de
données où la présence de certains tuples dans la base de
données peut n’être possible que dans une certaine mesure,
et où les dépendances fonctionnelles sont incertaines [70].
Le même genre d’idée a été appliqué au nettoyage possibi-
liste de données [64].

3.7 Préférences et décision qualitative
Une formule de LPB (p, α) peut représenter un objectif p
avec un niveau de priorité α. Des préférences telles que “Je
préfère p à q et q à r” (où p, q, r peuvent ne pas être mu-
tuellement exclusifs) peuvent être représentées par la base
possibiliste P = {(p ∨ q ∨ r, 1), (p ∨ q, 1− γ), (p, 1− β)}
avec γ < β < 1, comme un ensemble d’objectifs plus ou
moins impératifs. D’autres formats tels que les condition-
nels, les réseaux possibilistes, la représentation basée sur
∆ sont également intéressants pour représenter les préfé-
rences [23]. De plus, l’expression des préférences peut être
bipolaire : énoncé de situations qui sont plus ou moins for-
tement rejetées, et de situations qui sont garanties satisfai-
santes à un certain degré [16]. Mentionnons l’équivalence
représentationnelle [13] entre la logique de choix qualitatif
QCL [34] et la logique des possibilités garanties. De telles
préférences sont également intéressantes pour l’expression
de requêtes flexibles à une base de données [58].
Les réseaux possibilistes (basés sur le produit) ont été utili-
sés pour représenter des préférences conditionnelles possi-
bilistes avec des pondérations symboliques [10]. Les inter-
prétations (correspondant aux différentes alternatives) sont
alors comparées en termes de vecteurs symboliques ex-
primant la satisfaction ou la violation des formules asso-
ciées aux différentes préférences, en utilisant des relations
d’ordre appropriées. La représentation obtenue est compa-
tible avec celle des CP-nets, dont elle fournit une bonne
approximation [83].
La théorie des possibilités fournit un cadre pour la décision
qualitative sous incertitude où des critères de décision pes-
simistes et optimistes ont été axiomatisés [56]. La contre-
partie de ces critères, lorsque la connaissance et les préfé-
rences sont sous la forme de deux bases en LPB distinctes,
est donnée par les définitions [42] :
- l’utilité pessimiste u∗(d) de la décision d est le maximum
α ∈ S s.t. Kα ∧ d ⊢PL Pν(α),
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- l’utilité optimiste u∗(d) de d est le maximum ν(α) ∈ S
s.t. Kα ∧ d ∧ Pα ̸≡ ⊥,
où S est une échelle totalement ordonnée finie bornée, ν
une bijection inversant l’ordre de cette échelle ; Kα est un
ensemble de formules logiques classiques rassemblant les
connaissances certaines à un niveau au moins α, et où Pβ

est un ensemble de formules logiques classiques consti-
tué d’un ensemble d’objectifs dont le niveau de priorité est
strictement supérieur à β. Une décision pessimiste optimale
assure la satisfaction de tous les objectifs de Pν(α) avec une
priorité aussi basse que possible, en utilisant seulement une
partie Kα de la connaissance qui a une grande certitude.
Une décision optimiste optimale maximise la cohérence de
tous les objectifs plus ou moins importants avec tous les
éléments de connaissance plus ou moins certains.

3.8 Argumentation
Un langage de programmation logique possibiliste et ré-
futable qui combine des caractéristiques de la théorie de
l’argumentation et de la programmation logique, intégrant
également le traitement possibiliste de l’incertitude, a été
proposé dans [1].
La logique possibiliste peut être utilisée pour représenter les
états mentaux des agents (croyances éventuellement impré-
gnées d’incertitude et objectifs prioritaires), pour réviser les
bases de croyances et pour décrire la procédure de décision
pour sélectionner une nouvelle offre dans une négociation
basée sur l’argumentation [3].
La logique des raisons [54] qui traite les formules (p, x)
exprimant que “x est une raison pour p”, où la négation peut
être appliquée à p, x et (p, x), offre un cadre riche pour le
raisonnement argumentatif.

3.9 Apprentissage automatique
L’étude de l’apprentissage des théories logiques possibi-
listes [73], a montré que de nombreux résultats d’apprentis-
sage en temps polynomial pour la logique classique peuvent
être transférés à l’extension possibiliste respective. La lo-
gique possibiliste bipolaire offre un cadre gradué pour éten-
dre le cadre d’apprentissage de l’espace des versions [74].
La LPB peut également être appliquée à la programmation
logique inductive (ILP). En effet, avoir un ensemble stratifié
de règles logiques du premier ordre comme hypothèses en
ILP est intéressant pour l’apprentissage à la fois de règles
couvrant les cas normaux et de règles plus spécifiques pour
les cas exceptionnels [79], [66].
Une cascade de produits min-max de matrices représentant
des règles possibilistes de type si-alors présente une res-
semblance structurelle avec un réseau neuronal min-max.
Une telle cascade peut être montrée comme étant équiva-
lente à un réseau neuronal min-max, chaque produit matri-
ciel correspondant à une couche et la fonction d’activation
utilisée étant l’identité ;voir [5] pour plus de détails.[4] offre
une approche neuro-symbolique possibiliste très complète.

3.10 Autres applications
D’autres applications peuvent être trouvées, comme la mo-
délisation des désirs à l’aide de fonctions ∆ [43], ou l’ex-

pression des buts des agents en logique possibiliste dans des
jeux booléens lorsque les agents peuvent avoir une connais-
sance incomplète des préférences des autres [36].
Une autre application est le codage des politiques d’accès
de contrôle [25]. Une description formelle des politiques de
sécurité est nécessaire pour vérifier si les propriétés de sécu-
rité sont satisfaites ou non. Les règles de contrôle d’accès,
garantissant les propriétés de confidentialité et d’intégrité,
sont codées en termes de bases de connaissances stratifiées.
La stratification reflète la hiérarchie entre les rôles et est
utile pour gérer les conflits.

4 Conclusion
Cet article a passé en revue un grand nombre de travaux sur
le développement de la logique possibiliste et ses applica-
tions. La logique possibiliste est bien adaptée à la représen-
tation d’informations incomplètes et de croyances accep-
tées plus ou moins ancrées. Elle reste proche de la logique
classique et offre un cadre riche, simple et polyvalent pour
la représentation de l’information et le raisonnement qua-
litatif sur l’incertitude. La théorie des possibilité, comme
celle des probabilités, mérite qu’on s’y intéresse !
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Résumé
La réduction du coût de calcul des réseaux neuronaux pro-
fonds est essentielle pour la détection d’objets en temps
réel. Pourtant, les récents progrès reposent surtout sur le
matériel plutôt que sur l’optimisation des modèles. Cela
se remarque notamment dans les dernières architectures
YOLO, où la vitesse prime sur la légèreté.
Pour répondre à ce défi, nous introduisons deux contribu-
tions majeures. D’abord, LeNeck, un cadre de détection ra-
pide et précis, réduisant le nombre de paramètres. Ensuite,
LeYOLO, un modèle optimisé pour YOLO, combinant com-
pacité et haute précision. Ces solutions sont idéales pour
les dispositifs à faible consommation, y compris les micro-
contrôleurs.

Mots-clés
Vision par ordinateur, Optimisation des réseaux de neu-
rones, Architecture de réseaux de neurones, Microcontrô-
leur.

Abstract
Reducing the computational cost of deep neural networks
is essential for real-time object detection. However, recent
progress has been based mainly on hardware rather than
model optimization. This is particularly noticeable in the
latest YOLO architectures, where speed precedes lightness.
To address this challenge, we are introducing two signifi-
cant contributions. Firstly, LeNeck is a fast and accurate
detection framework that reduces the number of parame-
ters. Secondly, LeYOLO is a model optimized for YOLO
that combines compactness and high precision. These so-
lutions are ideal for low-power devices, including micro-
controllers.

Keywords
Computer vision, Neural Network Optimization, Neural
Network Architecture, Microcontrollers.

1 Introduction
Un calcul efficace, un traitement en temps réel et une exé-
cution à faible latence sont essentiels pour les dispositifs
edge alimentés par l’IA, y compris les drones autonomes,
les systèmes de surveillance, l’agriculture intelligente et les
caméras intelligentes. Bien que le cloud computing offre

une alternative pour exécuter des modèles puissants, il pré-
sente des inconvénients tels que la latence, les contraintes
de bande passante et les risques de sécurité [1, 43, 39].
Dans les applications pratiques de détection d’objets, les
avancées de l’apprentissage profond se sont principalement
concentrées sur l’optimisation de la vitesse pour les GPU à
haute performance, souvent au détriment de l’efficacité sur
le matériel à faible puissance.
Initialement introduit par Joseph Redmon et al. [25], les
modèles YOLO sont connus pour leur vitesse d’inférence
en détection d’objets. Ces modèles ont connu des améliora-
tions architecturales significatives au fil des ans, tirant parti
des puissances de calcul modernes.
Malgré leur vitesse inhérente, il y a eu un mouvement no-
table dans le développement des modèles YOLO ces der-
nières années. Avec les rapides avancées des capacités des
GPU et les nouvelles innovations matérielles, l’accent s’est
déplacé des modèles légers à ceux privilégiant la vitesse
d’inférence [15, 17, 37, 14, 38]. En conséquence, les mo-
dèles YOLO sont devenus nettement plus rapides malgré
l’augmentation des paramètres et des FLOP 1.
Notre travail met en évidence le fait que, malgré leur vitesse
impressionnante sur les GPU, les modèles YOLO ont du
mal avec le matériel sans accélération pour l’IA tel que les
microcontrôleurs et les micro-ordinateurs embarqués. Par
exemple, sur les microcontrôleurs STMicroelectronics - lar-
gement utilisés dans la robotique et les applications IoT -
les modèles YOLO modernes prennent plus d’une seconde
par inférence sur les puces les plus puissantes (Section 4,
Tableau 4), les rendant inadaptés aux applications en temps
réel. Sur les microcontrôleurs moins puissants, des amé-
liorations supplémentaires sont nécessaires pour réduire le
temps d’inférence, un défi que nous abordons dans cette
étude. Ces contraintes posent un défi critique pour les in-
dustries dépendant de l’IA à faible puissance, où l’effica-
cité énergétique, la petite taille du modèle et l’utilisation
optimisée des ressources sont essentielles.
Dans les tâches de classification, les recherches sur l’opti-
misation des comptes de paramètres et des coûts computa-
tionnels ont produit des modèles notables comme Mobile-

1. Nous décrivons les opérations en virgule flottante comme FLOP,
définissant toutes les opérations arithmétiques que le réseau de neurones
nécessite pour effectuer une inférence. Dans notre article, 1 FLOP est en-
viron 2 MADD ou 2 MACC. Ainsi, la variation des benchmarks tels que
MobileNet diffère de leur article original.
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FIGURE 1 – Différence de vitesse (ms) et de précision
(mAP) entre SSDLite et LeNeck sur STM32N6570-DK.

Nets [12, 27, 11] et EfficientNets [30, 31]. Bien que ces mo-
dèles soient remarquables, ils sont principalement reconnus
pour leurs capacités de classification exceptionnelles plutôt
que pour la détection d’objets. Les recherches se sont prin-
cipalement concentrées sur les classificateurs légers, sou-
vent associés à un ajout de détection d’objets comme SSD-
Lite [20, 27]. Bien que les classificateurs à faible nombre de
paramètres combinés avec SSDLite offrent une meilleure
vitesse sur les microcontrôleurs, leur précision est infé-
rieure à celle de YOLO.
Nos recherches ont identifié un écart crucial : il y a peu d’ef-
fort sur l’optimisation des architectures de détection d’ob-
jets qui équilibrent l’efficacité des paramètres et le coût
computationnel tout en maintenant une précision au ni-
veau des YOLO modernes. Cet écart oblige les dévelop-
peurs à choisir entre des modèles YOLO haute performance
mais coûteux en calcul et des alternatives à faible puissance
comme SSDLite, qui sacrifient la précision pour la vitesse.
Notre travail vise à combler cette partie manquante de re-
cherche en introduisant des modèles de détection d’objets
plus efficaces adaptés aux applications d’IA edge.
Cet article introduit deux contributions principales.

1. La première est une alternative à SSDLite appelée
LeNeck qui comble l’écart entre les classificateurs
à faible nombre de paramètres et les petits modèles
YOLO. En utilisant LeNeck au lieu de SSDLite,
nous maintenons une vitesse d’inférence similaire
tout en obtenant une bien meilleure précision (Fi-
gure 1)).

2. La deuxième contribution est LeYOLO - une nou-
velle famille de modèles YOLO légers et efficaces.
LeYOLO correspond à la précision des échelles
YOLO plus petites tout en améliorant considérable-
ment la vitesse d’inférence sur les microcontrôleurs
(Figure 2).

Nos résultats montrent que cette approche rivalise avec les
modèles YOLO à des échelles comparables. Nous démon-
trons qu’il est possible d’optimiser l’architecture des ré-
seaux de neurones pour la détection d’objets grâce à une
nouvelle méthode d’échelle entre les classificateurs légers
et les modèles YOLO.

FIGURE 2 – Comparaison entre LeYOLO et les YOLO mo-
dernes, démontrant une meilleure précision pour moins de
temps d’exécution sur STM32MP257FAI3.

2 Etat de l’art
Notre travail se concentre sur le développement d’une ar-
chitecture optimale pour la détection d’objets en combi-
nant deux approches clés : les détecteurs d’objets optimi-
sés pour la vitesse et les classificateurs à faible coût conçus
pour minimiser le nombre de paramètres en utilisant des
techniques bien établies. LeYOLO et LeNeck intègrent des
éléments connus pour leur efficacité dans la réduction de
paramètres. Plus précisément, nous utilisons des Inverted
Bottleneck, initialement introduits dans MobileNetV2 [27]
et ensuite affinés par EfficientNet [30, 31] et GhostNet
[9, 33]. Les convolutions pointwise [18] et depthwise sont
des composants cruciaux dans l’optimisation de l’architec-
ture, contribuant de manière significative à des modèles
comme MNASNet [29].
L’essor des classificateurs à faible coût a conduit à SSD-
Lite, une variante optimisée de SSD intégrant des convolu-
tions groupées basées sur MobileNets. Initialement conçu
pour réduire les coûts de détection en utilisant VGG [28],
SSDLite partage des similitudes avec les premiers modèles
YOLO [26]. Depuis lors, aucune méthode n’a significative-
ment surpassé SSDLite, bien que SSDLiteX [16] ait tenté
d’améliorer ses performances.
Du côté de YOLO, les recherches ont exploré la réduction
des paramètres dans les architectures principales. Les ef-
forts de tinier-yolo, efficient yolo, mobile densenet et autres
[4, 41, 7, 40] ont intégré des éléments de classificateurs lé-
gers comme les convolutions depthwise et des techniques
plus anciennes telles que les modules fire [13] pour mini-
miser l’utilisation des paramètres.
EfficentDet [40] partage la philosophie centrale de notre
modèle : utiliser des couches à faible coût computation-
nel (concaténation et additions, convolutions depthwise et
pointwise). Cependant, EfficientDet nécessite trop d’infor-
mations sémantiques et trop d’états de blocage (attente des
couches précédentes, graphes complexes), ce qui le rend
difficile à optimiser pour une vitesse d’exécution rapide.
Les auteurs de YOLOF [3] ont opté pour un modèle avec
une seule entrée et une seule sortie dans le Neck 2. Bien

2. Partie du modèle qui partage plusieurs niveaux d’informations sé-
mantiques
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que cette conception soit théoriquement plus rapide et plus
efficace en calcul, l’article YOLOF révèle une baisse signi-
ficative de la précision lors de la comparaison d’un Neck à
sortie unique (Single-in, Single-out - SiSO) avec un Neck à
sorties multiples (Single-in, Multiple-out - SiMO).
Plus récemment, YOLOX [5] et YOLOv9 [38] ont intro-
duit des alternatives légères avec des paramètres réduits.
YOLOX remplace les convolutions standard par des convo-
lutions depthwise de tailles de noyau plus grandes et traite
des entrées d’image plus petites. YOLOv9 contribue de ma-
nière substantielle à l’optimisation des paramètres mais se
concentre sur l’échelle YOLO standard plutôt que sur les
architectures adaptées aux mobiles.
Enfin, Tinyssimo YOLO [24], basé sur les premiers mo-
dèles YOLO [25], se concentre sur la réduction des coûts
computationnels pour permettre la détection d’objets sur les
microcontrôleurs fonctionnant dans la gamme de puissance
des milliwatts. Cependant, il ne parvient pas à atteindre la
précision et l’efficacité même des plus petites variantes de
YOLO ou des classificateurs basés sur SSDLite.

3 Optimisation des détecteurs d’ob-
jets en temps réel pour les micro-
contrôleurs

Les détecteurs d’objets modernes reposent sur des blocs
d’architecture qui exploitent pleinement le matériel mo-
derne. Les convolutions standard et les structures paral-
lèles ou multi-branches sont couramment utilisées. Cepen-
dant, ces conceptions sont trop gourmandes en ressources
pour les microcontrôleurs. Conçu pour être hautement ef-
ficace, le bloc de construction principal de LeYOLO opti-
mise à la fois les paramètres et le mAP (mesure de précision
pour la détection d’objet). Il s’appuie sur une structure bien
connue appelée Inverted Bottleneck, couramment utilisée
dans les réseaux de neurones efficaces comme MobileNets
[12, 27, 11] et EfficientNets [40, 31].
Au lieu d’utiliser de grands filtres coûteux pour traiter
les images, LeYOLO décompose le processus en étapes
plus petites et plus efficaces en utilisant trois couches de
convolution principales. Notre bloc applique une convolu-
tion 1 × 1 qui projette les cartes de caractéristiques des
canaux C de x ∈ RB,C,H,W en un tenseur de dimen-
sion d (où d ≥ C). Ensuite, une convolution depthwise
k × k traite efficacement les caractéristiques spatiales. En-
fin, une autre convolution pointwise 1 × 1 ramène les ca-
naux à leur taille d’origine. Bien que de nombreux articles
utilisant des Inverted Bottleneck modifient la convolution
pointwise finale pour produire un nombre de canaux diffé-
rent de l’entrée, LeNeck et LeYOLO ne suivent pas cette
approche. Au lieu de cela, nous nous appuyons uniquement
sur des convolutions standard séparées lors de la transition
entre les tailles de cartes de caractéristiques après le sous-
échantillonnage. Ces convolutions ajustent intrinsèquement
à la fois le nombre de canaux et la taille de la carte de ca-
ractéristiques, éliminant ainsi le besoin de transformations
supplémentaires au sein du Inverted Bottleneck.

Astuce d’optimisation. Normalement, la première convo-
lution 1 × 1 étend les canaux avant le traitement. Ce-
pendant, si le nombre de canaux n’a pas besoin de chan-
ger (si C == d), nous supprimons la première convolu-
tion pointwise. Ce petit changement réduit considérable-
ment le nombre de calculs, en particulier dans les premières
couches où les images sont grandes.
Impact sur la vitesse et la précision. L’élimination des
calculs inutiles rend le réseau plus rapide et plus efficace
tout en maintenant une haute précision (Section 3.3). Cette
optimisation est particulièrement bénéfique pour l’exécu-
tion de modèles de détection d’objets sur des dispositifs à
faible puissance et à ressources limitées. Pour comparaison,
SSDLite ne commence à partager des informations séman-
tiques qu’au niveau P4 3 tandis que les détecteurs d’objets
classiques et modernes commencent au niveau P3, qui four-
nit des détails spatiaux plus riches mais à un coût computa-
tionnel plus élevé. En réduisant stratégiquement les calculs
redondants dans les premières couches, LeNeck atteint la
même vitesse que SSDLite tout en exploitant le niveau P3
plus informatif, résultant en une meilleure performance de
détection sans surcoût computationnel. Le modèle utilise la
fonction d’activation SiLU σ, comme dans les versions mo-
dernes de YOLO (YOLOv7, YOLOv9) pour une meilleure
performance.
Nous définissons les dimensions d’entrée et de sortie
comme C et la dimension étendue comme d. Pour les filtres
W1 ∈ R1,1,C,d, W2 ∈ Rk,k,1,d, et W3 ∈ R1,1,d,C , notre
approche peut être représentée comme suit :

y =





W3 ⊗ σ[W2 ⊗ σ(W1 ⊗ x)] si d ̸= C

W3 ⊗ σ[W2 ⊗ σ(W1 ⊗ x)] si d = C et W1 = Vrai
W3 ⊗ σ[W2 ⊗ (x)] si d = C et W1 = Faux

(1)

3.1 LeNeck - Détecteur d’objets polyvalent

FIGURE 3 – Différence entre le Neck LeYOLO proposé et
un agrégateur de caractéristiques sémantiques efficace. (a)
Correspond à FPN [6]. (b) Représente PANnet [42]. Enfin,
(c) est notre solution proposée.

Dans la détection d’objets, nous appelons le Neck la partie
du modèle qui agrège plusieurs niveaux d’informations sé-
mantiques, partageant les informations de couches distantes
aux premières couches. Historiquement, les chercheurs ont
utilisé un PANet [42] ou FPN [19] pour partager effica-
cement les cartes de caractéristiques, permettant plusieurs

3. P4 est le niveau sémantique de l’information correspondant à la
taille de l’entrée divisée par 24.
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niveaux de détection en reliant plusieurs informations sé-
mantiques Pi au PANet et leurs sorties respectives comme
illustré dans la Figure 3(a). Pour créer LeNeck, nous avons
identifié un aspect très important dans la composition des
réseaux de neurones profonds. Nous avons remarqué qu’il
y a constamment une répétition significative des couches au
niveau sémantique équivalent à P4. Nous avons trouvé cela
dans tous les MobileNets [12, 27, 11], dans l’optimisation
des Inverted Bottleneck dans EfficientNets [30, 31] et Effi-
cientDet [40], ainsi que dans les architectures plus récentes
avec des mécanismes de self-attention comme MobileViTs
[22, 23, 35], EdgeNext [21], et FastViT [34], qui sont
conçus pour la vitesse. Plus intéressant encore, les modèles
conçus par Neural Architecture Search (NAS) [29, 11, 30]
utilisent également ce schéma. Par conséquent, nous intro-
duisons LeNeck, un agrégateur de caractéristiques séman-
tiques efficace qui utilise le niveau sémantique P4 comme
principal conducteur pour fusionner les informations de P3
et P5 (Figure 3.(i)). Le calcul à P3 et P5 n’est effectué
qu’une seule fois, garantissant l’efficacité (P3 utilise trop
de taille spatiale, et P5 utilise un nombre très étendu de ca-
naux).

Nous réduisons le calcul - en particulier au niveau P3 en rai-
son de la grande taille spatiale - en supprimant la première
convolution pointwise (Figure 3.(ii)). Après une étude com-
parative (Section 3.3) réalisée sur le backbone de LeYOLO
à l’échelle nano, nous avons saisi l’opportunité de suppri-
mer les convolutions pointwise coûteuses en temps puisque
les canaux d’entrée de P3 concaténés avec les caractéris-
tiques suréchantillonnées de P4 résultent en la dimension d
requise par la convolution depthwise intermédiaire de notre
Inverted Bottleneck optimisé présenté dans la section 3.
Chaque nombre de canaux d’entrée, ainsi que le nombre de
canaux étendus du Inverted Bottleneck, ne dépasse jamais
6. L’entrée de P3 est 32C tandis que la dernière couche ca-
chée du Neck de LeYOLO étend les canaux d égale 192.

Comme les convolutions standard ne sont pas très efficace
en nombre de paramètres et de calcul, nous nous limitons à
l’utiliser deux fois. De P3 à P4, et de P4 à P5 pour effectuer
un sous-echantillonage (Figure 3.iii)).

3.2 Backbone de LeYOLO

Notre mise en œuvre implique la minimisation de l’échange
d’informations inter-couches sous la forme de I(X;h1) ≥
I(X;h2) ≥ ... ≥ I(X;hn), avec n égal à la dernière
couche cachée du backbone du réseau de neurones, en ga-
rantissant que le nombre de canaux d’entrée/sortie ne dé-
passe jamais une différence de ratio de 6 de la première
couche cachée à la dernière. De plus, plutôt que d’augmen-
ter la complexité computationnelle de notre modèle comme
[37, 38, 10, 2], nous avons opté pour une mise à l’échelle
plus efficace, intégrant la théorie du goulot d’étranglement
inversé de Dangyoon Han et al. [8] qui stipulait que les
convolutions pointwise ne devraient pas dépasser un ratio
de 6 dans le Inverted Bottleneck.

TABLE 1 – Architecture du backbone de LeYOLO
Input Operator exp size out size NL s

P0 conv2d, 3x3 - 16 SI 2
P1 conv2d, 1x1 16 16 SI 1
P1 bneck, 3x3, pw=False 16 16 SI 2
P2 bneck, 3x3 96 32 SI 2
P3 bneck, 3x3 96 32 SI 1
P3 bneck, 5x5 96 64 SI 2
P4 bneck, 5x5 192 64 SI 1
P4 bneck, 5x5 192 64 SI 1
P4 bneck, 5x5 192 64 SI 1
P4 bneck, 5x5 192 64 SI 1
P4 bneck, 5x5 576 96 SI 2
P5 bneck, 5x5 576 96 SI 1
P5 bneck, 5x5 576 96 SI 1
P5 bneck, 5x5 576 96 SI 1
P5 bneck, 5x5 576 96 SI 1

TABLE 2 – Amélioration de LeNeck et LeYOLO (best of).
Améliorations mAP GFLOP

base (LeYOLO nano) 34.3 2.64
+3x3 32.9 2.877
+5x5 34.9 3.946

+5x5 après P4 34.2 3.19
+Sous-echantillonage 3x3 34.6 3.011

+aucun pw backbone et neck 34.1 2.823
+Ratio d’expansion de 2
au lieu de 3 dans LeNeck 34.3 2.64

3.3 Etude comparative
Une étude comparative en apprentissage automatique est
une méthode de recherche qui teste l’impact de couches, de
caractéristiques ou de techniques spécifiques en les désac-
tivant ou en les remplaçant. L’objectif est d’identifier quels
paramètres sont cruciaux pour la performance du modèle,
guidant le développement d’un détecteur d’objets entière-
ment optimisé. Nous utilisons LeYOLO dans son intégralité
(backbone + LeNeck) pour l’étude comparative afin d’affi-
ner les deux contributions (Tableau 2).
Nous avons d’abord exploré diverses configurations de
taille de noyau. Bien que des noyaux plus grands améliorent
généralement les performances, ils nécessitent également
plus de ressources de calcul. Le choix optimal était une
convolution 5× 5 après le sous-échantillonnage P4.
En suivant les idées de ConvNeXt, nous avons utilisé des
convolutions séparées pour le sous-échantillonnage. Cepen-
dant, l’utilisation d’un noyau 3 × 3 au lieu de 5 × 5 dans
cette configuration a conduit à de meilleurs résultats.
Enfin, nous avons fait deux optimisations critiques : la ré-
duction du ratio d’expansion dans le Inverted Bottleneck
de 3 à 2 et l’élimination de la première convolution point-
wise coûteuse dans les premières couches du backbone et
au niveau P3 dans le Neck. Ces modifications ont consi-
dérablement réduit le coût computationnel du modèle tout
en entraînant une perte de précision de -0,3 mAP, que nous
avons jugée négligeable compte tenu des gains d’efficacité.
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FIGURE 4 – LeYOLO comparé à SSDLite, avec un meilleur ratio paramètre-précision.

4 Résultats experimentaux
Nous entraînons chaque réseau de neurones avec les mêmes
hyperparamètres et techniques d’augmentation de données,
tels que SGD, avec un taux d’apprentissage de 0,01 et un
momentum de 0,9. Nous nous appuyons principalement sur
l’augmentation de données mosaïque ainsi que sur hsv de
{0, 015, 0, 7, 0, 4} et une translation d’image de 0,1. En
ce qui concerne les spécificités de l’entraînement, nous
avons utilisé une taille de batch de 96 sur 4 GPU P100.
La performance est évaluée sur l’ensemble de validation de
MSCOCO en utilisant la précision moyenne (mAP). Pour
LeYOLO, nous offrons une variété de modèles inspirés de
la base architecturale présentée ci-dessus. Une approche
classique implique la mise à l’échelle du nombre de canaux,
de couches et de la taille d’entrée de l’image. Traditionnel-
lement, la mise à l’échelle met l’accent sur les configura-
tions de canaux et de couches, intégrant parfois divers sché-
mas de mise à l’échelle (Tableau 3).

TABLE 3 – Différentes échelles pour l’entrainement de
LeYOLO ainsi que leurs résultats.

Models Nano Small Medium Large
Input spatial size 640 640 640 768
Channels ratio x1 x1.33 x1.33 x1.33

Layer ratio x1 x1 x1.33 x1.33
mAP 34.3 38.2 39.3 41

LeYOLO évolue de la version Nano à la version Large avec
une mise à l’échelle liée à ce qu’EfficientDet a apporté :
répétition des canaux de 1.0 à 1.33, couches de 1.0 à 1.33, et
taille spatiale pour les besoins d’entraînement de 640×640
à 768 × 768. Plusieurs tailles spatiales sont utilisées à des
fins d’évaluation, allant de 320 × 320 à 768 × 768 Nous
évaluons LeYOLO à des tailles spatiales réduites, tous les
résultats étant présentés dans le Tableau 8.
Nous évaluons la vitesse du modèle sur deux microproces-
seurs : STM32MP257FAI3 et STM32N6570-DK. Les deux
utilisent des cœurs Arm Cortex, équilibrant faible consom-
mation d’énergie et capacité de calcul efficace. Ces micro-
contrôleurs peuvent réaliser une inférence en temps réel à
une résolution de 320 × 320 à 640 × 640 le calcul de-

vient plus exigeant, mais LeYOLO traite toujours chaque
inférence en moins d’une seconde, surpassant les modèles
YOLO modernes (Tableau 4).

TABLE 4 – Vitesse d’inférence de LeYOLO (640×640)
et sa précision sur appareil embarqué (Onnx -
STM32MP257FAI3).

Models mAP Speed(ms)
LeYOLO Nano 34.3 596
LeYOLO Small 38.2 877.9
LeYOLO Medium 39.3 1039
YOLOv10 Nano [36] 38.5 1099
YOLOv8 Nano [14] 37.3 1235
YOLOv9 Tiny [38] 38.3 1371

4.0.1 Détection d’objets mobile
LeYOLO surpasse les détecteurs d’objets de type YOLO
sur les dispositifs embarqués ou ceux avec une puissance
de calcul limitée. Nous fournissons un tableau détaillé (Ta-
bleau 8) montrant le nombre de FLOPs, et nous observons
une corrélation entre cette métrique et la vitesse d’exécu-
tion sur les dispositifs à faible ressource de calcul (Tableau
4).

TABLE 5 – Vitesse d’inférence de LeNeck (320x320)
et sa précision sur appareil embarqué (Onnx -
STM32MP257FAI3).

Models SSDLite LeNeck SSDLite LeNeck
Speed(ms) mAP.95

V3-Small 146.2 165.9 16.0 21.3
V3-Large 286.5 292.3 22 28.1

V2-1.0 259.2 256.3 22.1 28.6
MNASNet 0.5 167.7 155.3 18.5 24.6

MNASNet 306.2 262.3 23 28.9
LeYOLO Nano 165.4 25.2

Nous intégrons l’état de l’art des backbones à faible nombre
de paramètres avec LeNeck. Quel que soit le backbone uti-
lisé, tous les nombres de canaux, P3,P4 et P5 spécificités de
répétition restent les mêmes. À P3, la première convolution
pointwise n’est jamais utilisée, comme dans le LeYOLO de
base, ce qui entraîne le premier filtre étant la convolution
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TABLE 6 – Vitesse d’inférence de LeNeck (320x320) et
sa précision sur appareil embarqué (Onnx - STM32N6570-
DK).

Models SSDLite LeNeck SSDLite LeNeck
Speed(ms) mAP.95

V3-Small 46.91 50.19 16.0 21.3
V3-Large 121.6 129.2 22 28.1

V2-1.0 104 103.5 22.1 28.6
MNASNet 0.5 86.31 36.03 18.5 24.6

MNASNet 161.3 53.78 23 28.9

TABLE 7 – Performance de LeNeck comparée à d’autres
modèles de l’état de l’art combinés avec SSDLite sur
MSCOCO.

Models SSDLite LeNeck SSDLite LeNeck
Parameters(M) mAP.95

V3-Small 2.49 1.34 16.0 21.3
V3-Large 4.97 3.33 22 28.1

EfficientDetD0 3.9 3.29 34.6 37.1
V2-0.5 1.54 0.98 16.6 23.3
V2-1.0 4.3 2.39 22.1 28.6

MNASNet 0.35 1.02 0.7 15.6 20.0
MNASNet 0.5 1.68 1.22 18.5 24.6

MNASNet 4.68 2.8 23 28.9

depthwise de la taille exacte du nombre de canaux d’entrée
équivalent du backbone.
LeNeck, en tant que détecteur d’objets général pour les
classificateurs légers, conserve le même nombre de ca-
naux 4 et répétition des couches 5 que la version Nano de
LeYOLO. À partir d’une variété de classificateurs légers
avec un faible nombre de paramètres et de FLOP, LeNeck
a surpassé SSDLite dans tous les aspects de ce que nous at-
tendons d’un modèle à faible coût - meilleure échelle de pa-
ramètres, meilleure précision, et enfin, bonne vitesse d’infé-
rence - avec les résultats de vitesse d’inférence décrits dans
les tableaux 5 - 6 et l’efficacité paramètres-précision décrite
dans le Tableau 7 et la Figure 4.

4.0.2 Microcontrôleurs bas de gamme
Au-delà du traitement en temps réel, nous avons également
benchmarké LeYOLO par rapport aux modèles YOLO mo-
dernes sur divers microcontrôleurs bas de gamme, comme
le montre le Tableau 9, en utilisant la variante LeYOLO-
Small (YOLOv10 n’est pas compatible avec ces types de
microcontrôleurs). Selon le Tableau 8, LeYOLO-Small cor-
respond à YOLOv8 à YOLOv10 en précision. De plus, il
s’avère plus efficace en inférence sur ces microcontrôleurs,
étendant la capacité de YOLO à fonctionner efficacement
sur des dispositifs bas de gamme.

4.1 Analyse plus approfondie
Pour analyser plus en détail les résultats de vitesse, nous
mettons en avant l’objectif de notre Inverted Bottleneck
avec une couche pointwise optionnelle (voir la Section 3

4. de 32 couches à 96 avec une ratio d’expansion de 2
5. répétition l = 3

pour plus d’informations). Dans LeYOLO Small, la convo-
lution pointwise à haute résolution spatiale dans le back-
bone et au niveau P3 dans LeNeck entraîne une améliora-
tion minimale de la précision, comme le montre la Section
3.3. Par rapport à l’Inverted Bottleneck classique, notre so-
lution économise 8.5% de la vitesse d’inférence sur tous
les STM32 benchmarkés dans l’article (Tableau 10-pw).
Contrairement aux architectures YOLO standard, qui re-
posent sur une répétition de couches profondes avec moins
de canaux, LeYOLO obtient une meilleure efficacité en uti-
lisant un ratio d’extension de 2 au lieu de 3 tout en mainte-
nant une profondeur de répétition minimale de 3. Ce choix
de conception améliore la vitesse d’inférence de 17% tout
en préservant la précision, comme le confirme notre étude
expérimentale (Tableau 9-exp x3).
Notre modèle est presque aussi rapide que SSDLite tout en
obtenant une précision significativement meilleure. La lé-
gère différence de vitesse provient de la taille de la carte de
caractéristiques - SSDLite commence à P4, tandis que nous
commençons à P3. Cependant, LeNeck reste suffisamment
léger pour rivaliser avec SSDLite en vitesse. Étant donné
qu’il conserve des informations spatiales plus riches, Le-
Neck fonctionne également mieux pour détecter diverses
tailles d’objets (Tableau 8).

5 Discussions
LeNeck : Compte tenu de l’efficacité coût-efficacité de Le-
Neck, il existe une opportunité significative pour l’expéri-
mentation sur différents backbones de modèles de classifi-
cation de pointe. LeYOLO émerge comme une alternative
prometteuse à SSD et SSDLite. Les résultats prometteurs
obtenus sur MSCoco avec notre solution suggèrent une ap-
plicabilité potentielle à d’autres modèles de classification.
Efficacité computationnelle : Nous avons mis en œuvre
une nouvelle mise à l’échelle pour les modèles YOLO,
prouvant qu’il est possible d’atteindre des niveaux de pré-
cision très élevés tout en utilisant très peu de ressources
computationnelles (FLOP). LeYOLO fournit des résultats
très rapides sur les dispositifs embarqués.

6 Conclusion
Tout au long de cet article, nous avons introduit plusieurs
optimisations clés :

1. Amélioration des performances en aval du clas-
sificateur : Pour un budget de paramètres donné,
LeNeck surpasse SSDLite en réduisant le nombre
de paramètres tout en améliorant la précision sur
MSCOCO. L’intégration de LeNeck avec les back-
bones existants à faible nombre de paramètres amé-
liore la précision et l’efficacité à plusieurs échelles.

2. Une alternative viable aux modèles YOLO de pe-
tite taille : Le backbone optimisé de LeYOLO et
LeNeck surpassent les variantes équivalentes des
YOLO en détection d’objets. Les choix architectu-
raux derrière le backbone de LeYOLO entraînent
une meilleure mise à l’échelle et un meilleur rap-
port précision-paramètres et FLOP.

APIA

©AFIA 2025 50



TABLE 8 – Etat de l’art des détecteur d’objets compatible avec les microcontrôleurs STM32.
Models Input Size mAP mAP50 mAP75 S M L FLOP(G) Parameters (M)
MobileNetv3-S[12] 320 16.1 - - - - - 0.32 1.77
MobileNetv2-x0.5[27] 320 16.6 - - - - - 0.54 1.54
MnasNet-x0.5[29] 320 18.5 - - - - - 0.58 1.68
LeYOLO-Nano 320 25.2 37.7 26.4 5.5 23.7 48.0 0.66 1.1
MobileNetv3[11] 320 22 - - - - - 1.02 3.22
LeYOLO-Small 320 29 42.9 30.6 6.5 29.1 53.4 1.126 1.9
LeYOLO-Nano 480 31.3 46 33.2 10.5 33.1 52.7 1.47 1.1
MobileNetv2[27] 320 22.1 - - - - - 1.6 4.3
MnasNet[29] 320 23 - - - - - 1.68 4.8
LeYOLO-Small 480 35.2 50.5 37.5 13.3 38.1 55.7 2.53 1.9
MobileNetv1[12] 320 22.2 - - - - - 2.6 5.1
LeYOLO-Medium 480 36.4 52.0 38.9 14.3 40.1 58.1 3.27 2.4
LeYOLO-Small 640 38.2 54.1 41.3 17.6 42.2 55.1 4.5 1.9
YOLOv5-n[15] 640 28 45.7 - - - - 4.5 1.9
EfficientDet-D0[32] 512 33.80 52.2 35.8 12 38.3 51.2 5 3.9
LeYOLO-Medium 640 39.3 55.7 42.5 18.8 44.1 56.1 5.8 2.4
YOLOv9-Tiny[38] 640 38.3 53.1 41.3 - - - 7.7 2
LeYOLO-Large 768 41 57.9 44.3 21.9 46.1 56.8 8.4 2.4

TABLE 9 – Vitesse d’inférence et précision de LeYOLO
(640x640) sur des dispositifs embarqués.

Device LeYOLO Small YOLOv8 YOLOv9
Speed (s)

STM32H74l-DISCO 12.3 13.7 13.6
STM32F769l-DISCO 19 21.5 22.1
STM32F746G-DISCO 20 25 24.5
STM32F469I-DISCO 54.6 73.6 72.5

TABLE 10 – Amélioration de la vitesse d’inférence de
LeYOLO Small (640x640)
Device LeYOLO Small pw exp x3

Speed (s)
STM32H74l-DISCO 12.37 13.52 14.87
STM32F769l-DISCO 19.04 20.64 22.68
STM32F746G-DISCO 20 22.36 24.73
STM32F469I-DISCO 54.6 59.23 65.28

3. Vitesse d’inférence améliorée : LeYOLO et LeNeck
obtiennent une meilleure vitesse d’inférence que les
détecteurs d’objets à faible nombre de paramètres
de pointe, grâce à leur architecture optimisée.

Nos contributions sont particulièrement efficaces sur les
dispositifs mobiles, embarqués et à faible puissance, se rap-
prochant d’un équilibre idéal entre l’efficacité des para-
mètres et la performance de détection. La réduction de la
taille du modèle tout en maintenant la précision permet la
détection d’objets directement sur de petits dispositifs avec
une surcharge computationnelle minimale. Ce raffinement
étape par étape rapproche les modèles YOLO des applica-
tions pratiques de l’IA pour le edge.
Nous encourageons une expérimentation plus approfondie
avec notre proposition, en explorant diverses variantes de
jeux de données adaptées aux besoins spécifiques de l’in-

dustrie. Nous visons à fournir une gamme plus large de
comparaisons pour LeYOLO dans des scénarios impliquant
des dispositifs mobiles avec des ressources computation-
nelles très limitées.
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Résumé
En NLP, la gestion des thématiques sous-représentées est
un défi, notamment en apprentissage non supervisé où le
clustering peine à capturer les sujets minoritaires. Pour
y remédier, nous proposons une méthode d’augmentation
des données combinant les modèles de mélange gaussien
(GMMs) et les grands modèles de langage (LLMs). Les
GMMs identifient les clusters sous-représentés, tandis que
les LLMs génèrent des documents synthétiques pour les en-
richir. Nos expériences sur divers ensembles de données
déséquilibrés montrent que cette approche préserve les per-
formances du clustering et améliore l’interprétabilité des
clusters, offrant une solution robuste et évolutive en NLP
non supervisé.

Mots-clés
Augmentation des données, Grands Modèles de Langage,
Modèles de Mélange Gaussien, Apprentissage non super-
visé, Clustering.

Abstract
In NLP, handling underrepresented topics is challenging,
particularly in unsupervised tasks where clustering may fail
to capture minority topics effectively. To address this, we
propose an unsupervised data augmentation method that
combines Gaussian Mixture Models (GMMs) and Large
Language Models (LLMs). GMMs identify underrepresen-
ted clusters, while LLMs generate synthetic documents to
enrich them. Experiments on various imbalanced text da-
tasets show that our approach maintains clustering perfor-
mance and often improves interpretability, providing a ro-
bust and scalable solution for enhancing data representa-
tion in unsupervised NLP.

Keywords
Data Augmentation, Large Language Models, Gaussian
Mixture Models, Unsupervised Learning, Clustering.

1 Introduction
Dans les tâches de NLP non supervisées, la qualité de
la représentation des données est cruciale pour un cluste-
ring efficace. Cependant, les ensembles de données réels
contiennent souvent des concepts sous-représentés, ce qui
entraîne des groupes fortement déséquilibrés, difficiles à
traiter pour la plupart des algorithmes de clustering. Ces

clusters sous-représentés peuvent contenir des informations
significatives qui restent mal capturées par les algorithmes
traditionnels, conduisant ainsi à des clusterings peu perti-
nents ou difficiles à interpréter.
Les techniques classiques d’augmentation de données,
telles que le remplacement de synonymes et l’insertion
aléatoire [23], augmentent la diversité des échantillons,
mais elles s’appliquent de manière uniforme sans corriger
les déséquilibres des données. De plus, de nombreuses ap-
proches existantes reposent sur des données annotées pour
réaliser une augmentation ciblée [2, 10, 8], ce qui les rend
inadaptées aux scénarios d’apprentissage non supervisé où
les étiquettes de classe ne sont pas disponibles.
Les modèles génératifs, en particulier les grands modèles de
langage (LLMs), ont récemment suscité un intérêt croissant
en raison de leur capacité à produire du texte synthétique de
haute qualité en capturant des relations sémantiques com-
plexes au sein des données. Cependant, la plupart des tra-
vaux existants utilisent les LLMs pour une augmentation
uniforme des ensembles de données [25], ce qui ne permet
pas de résoudre le problème du déséquilibre.
Pour surmonter ces limitations, nous proposons une
méthode combinant les modèles de mélange gaussien
(GMMs) [1] et les LLMs pour une augmentation ciblée
des données. Les GMMs analysent la distribution des em-
beddings et identifient les zones sous-représentées, où les
LLMs génèrent ensuite des documents synthétiques pour
améliorer leur représentation. La Figure 1 illustre ce pro-
cessus sur le jeu de données Tweet Emotion : trois tweets
sur l’optimisme sont fournis à un LLM, qui en génère un
nouveau reflétant la même idée. Ce procédé enrichit la di-
versité du corpus et améliore sa représentation.

2 Contexte et travaux connexes
L’augmentation des données est une technique courante
en NLP pour diversifier et accroître la taille des en-
sembles d’entraînement en générant de nouveaux échan-
tillons [15, 2]. En classification de texte, les méthodes tradi-
tionnelles comme le remplacement de synonymes ou l’in-
sertion aléatoire—regroupées sous Easy Data Augmenta-
tion (EDA) [23]—accroissent la variabilité des données
mais n’adressent pas le déséquilibre des classes, étant ap-
pliquées uniformément. Pour corriger ce déséquilibre, des
approches comme le rééchantillonnage et l’apprentissage
sensible aux coûts ont été proposées [3, 10]. Cependant,
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FIGURE 1 – Exemple issu du jeu de données Tweet Emotion : quatre clusters d’émotions (joie en jaune, tristesse en bleu, colère
en rouge, optimisme en violet) où un LLM génère un nouveau tweet sur l’optimisme à partir de trois exemples représentatifs.

elles nécessitent des étiquettes de classe, limitant leur ap-
plicabilité en apprentissage non supervisé. Les modèles gé-
nératifs, tels que les GANs [6, 16] et les LLMs [12, 22],
ont également été explorés pour l’augmentation des don-
nées, mais leur utilisation reste souvent uniforme et non ci-
blée [4]. Malgré ces avancées, peu de travaux combinent le
clustering et les modèles génératifs pour traiter les classes
sous-représentées en apprentissage non supervisé. Nos tra-
vaux comblent cette lacune en s’appuyant sur les GMMs
pour détecter les clusters sous-représentés et sur les LLMs
pour générer des documents synthétiques, sans dépendre de
données annotées.

3 Contribution
Dans cette section, nous présentons notre approche d’aug-
mentation des données textuelles en combinant des tech-
niques d’encodage et des modèles gaussiens paramé-
triques [1]. Notre méthodologie repose sur plusieurs étapes
clés : 1) représentation des documents, 2) clustering avec
l’algorithme d’Expectation-Maximization (EM) [5], 3) gé-
nération de points de données synthétiques, et 4) utilisa-
tion d’un LLM pour l’augmentation des données. Cette ap-
proche est illustrée dans la Figure 2 et L’Algorithme 1.

FIGURE 2 – Flux de travail pour générer des documents
synthétiques. 1) Création d’embeddings, 2) clustering des
embeddings via l’algorithme EM, 3) Génération de points
synthétiques dans les clusters avec les meilleurs ratios vo-
lume/proportion, 4) Utilisation de ces points pour générer
de nouvelles données via un LLM.

3.1 Représentation des documents
Pour le clustering, nous représentons les documents à l’aide
d’un modèle d’encodage basé sur les Transformers, géné-
rant des embeddings qui capturent une information séman-
tique approfondie. Ces embeddings facilitent l’identifica-
tion de connexions subtiles entre documents non étiquetés,
améliorant ainsi la qualité du clustering [11]. Nous appli-
quons également UMAP [13] pour réduire la dimension des
embeddings. Cette technique non linéaire préserve la struc-
ture des données tout en diminuant la complexité compu-
tationnelle, optimisant ainsi l’efficacité des algorithmes de
clustering.

3.2 Clustering ciblé avec les GMMs
clustering avec les modèles de mélange gaussien
(GMM). Dans un GMM fini, les données x1, . . . ,xn sont
supposées être un échantillon de n instances indépendantes
d’une variable aléatoire X dans Rd, où d est la dimension
de l’espace. La densité des données est exprimée comme
suit :

f(xi; Θ) =

g∑

k=1

πkφk(xi|µk,Σk), ∀i ∈ {1, . . . , n} (1)

où Θ = (π1, . . . , πg, µ1, . . . , µg,Σ1, . . . ,Σg),
φk(xi|µk,Σk) est la densité de la k-ième composante
pour l’observation xi avec les paramètres (µk,Σk). Les
πk sont les poids de mélange (avec πk > 0,

∑
k πk = 1),

et g est le nombre de composantes du mélange. Chaque
cluster est ainsi représenté par une distribution gaussienne,
dont les propriétés géométriques (volume, forme, orien-
tation) sont définies par la matrice de covariance Σk [1].
L’estimation des paramètres Θ se fait en maximisant la
log-vraisemblance :

L(X; Θ) =
n∑

i=1

log

(
g∑

k=1

πkφk(xi|µk,Σk)

)
.

L’algorithme EM est utilisé pour maximiser cette fonction
de manière itérative.
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3.3 Augmentation ciblée des données
Génération de points de données synthétiques. Dans
chaque cluster sous-représenté, de nouveaux points de don-
nées sont générés selon la distribution gaussienne associée.
Le nombre de points générés suit une distribution multino-
miale basée sur les poids πk :

P (n1, n2, . . . , ng) =
nsamp!

n1!n2! · · ·ng!
πn1
1 πn2

2 · · ·πng
g .

Ensuite, chaque composante k génère des échantillons se-
lon une loi normale multivariée de paramètres µk et Σk.
Cela garantit que les points synthétiques suivent la struc-
ture des clusters d’origine.
Génération de documents textuels. Pour chaque point gé-
néré, nous identifions ses trois plus proches voisins dans les
données originales, puis un LLM génère un nouveau docu-
ment en combinant leurs contenus, assurant ainsi cohérence
et pertinence sémantique.

Algorithm 1 clustering et génération de documents
1: Entrée : D = {d1, . . . , dn}, g (nombre de composantes), k∗ (nombre de

clusters à augmenter),M (modèle d’encodage),M∗ (modèle instruction-tuné)

2: Xemb ←M(D)
3: XR ← UMAP(Xemb)
4: {C1, . . . , Cg} ← EM(XR)
5: for k ← 1, g do
6: Sk ← Vk

πk
7: end for
8: Trier Ck par Sk et retenir k∗ clusters
9: Générer les nouveaux documents avec le LLM

4 Expériences
Nous évaluons l’efficacité de notre augmentation ciblée via
le clustering, en comparant les performances avant et après
augmentation avec des algorithmes comme KMeans.

4.1 Ensembles de Données
Les jeux de données utilisés dans nos expériences sont dé-
crits dans la Table 1.

Données Nb. Classes Nb. Docs Balance #Tokens
Arxiv 12 7000 6.8× 10−3 10
Biorxiv 26 53787 4.1× 10−4 13
Medrxiv 51 17647 4.9× 10−4 16
Reddit 15 5114 1.2× 10−3 11
Tweet Emotion 4 3257 2.1× 10−1 16

TABLE 1 – Caractéristiques des jeux de données utilisés.
Balance représente le ratio entre les classes minoritaires et
majoritaires et #Tokens indique le nombre moyen de to-
kens.

4.2 Configuration Expérimentale
Nous utilisons le modèle NoInstruct-Small-v0 1, qui génère
des embeddings de dimension 384, sélectionné pour ses
bonnes performances sur MTEB 2. Pour réduiure la com-

1. https://huggingface.co/instructor/
NoInstruct-Small-v0

2. https://huggingface.co/spaces/mteb/
leaderboard

plexité computationnelle, nous appliquons UMAP pour ré-
duire la dimension des embeddings à 10.
Nous ajustons un GMM aux embeddings réduits XR, avec
un nombre de composantes g fixé à ⌈nDocs1/3⌉, sui-
vant [24]. L’utilisation de matrices de covariance complètes
permet à chaque cluster d’avoir sa propre variance.
Processus d’Augmentation Après obtention des clusters
GMM, nous calculons le ratio volume/proportion Sk = Vk

πk

pour chaque cluster, où Vk est le volume et πk son poids.
Les clusters sont triés par ordre décroissant de Sk afin
d’identifier ceux couvrant un grand volume mais conte-
nant peu de points de données. Nous sélectionnons les k∗

clusters ayant les plus hauts Sk pour l’augmentation. Pour
chaque cluster sélectionné, nous générons des embeddings
synthétiques (DA)k. Chaque embedding est associé aux
trois documents les plus proches dans XR, qui sont fournis
au modèle Mistral-7B-Instruct-v0.2 [9] afin de générer de
nouveaux documents textuels. Ces documents (DA)∗ sont
ensuite encodés et ajoutés àXemb, formant ainsi l’ensemble
de données augmenté.

5 Résultats et discussion
Nous évaluons l’impact de notre augmentation des données
selon trois aspects. D’abord, nous analysons la distribution
des clusters pour observer son influence sur l’équilibre et
la répartition des documents dans l’espace latent. Ensuite,
nous comparons les mots-clés afin d’évaluer l’amélioration
de la couverture thématique et de l’interprétabilité des clus-
ters. Enfin, nous mesurons la performance du clustering à
l’aide des métriques NMI [21] et ARI [20].

5.0.1 Comparaison des mots-clés
Pour évaluer l’interprétabilité des classes, nous analysons
la distribution des mots-clés dans les clusters KMeans avant
et après augmentation des données. Les mots-clés sont ex-
traits à l’aide de KeyBERT. Le tableau 2 présente les 12
mots-clés les plus fréquents pour chaque cluster dans les
données augmentées et non augmentées sur plusieurs jeux
de données : Tweet_Emotions, Reddit et les corpus scienti-
fiques (Arxiv, Biorxiv et Medrxiv).
L’analyse révèle l’impact de l’augmentation sur les clus-
ters sous-représentés et sur-représentés selon les domaines.
Dans Tweet_Emotions, le cluster Optimism s’est enrichi de
termes positifs comme happy et smile, tandis que des mots
négatifs tels que nervous et panic ont disparu, affinant ainsi
son orientation. Pour le cluster Anger, de nouveaux termes
comme game et racism reflètent une expression plus large
et intense de la colère, bien que la structure globale du
cluster reste stable, comme attendu pour une catégorie sur-
représentée.
Dans Reddit, le cluster sous-représenté Skincare est devenu
plus précis avec des termes comme cream et toner, tandis
que le cluster sur-représenté Dogecoin a peu évolué, conser-
vant son focus sur doge avec une légère augmentation de
termes comme bought et currency. L’impact est plus va-
riable dans les corpus scientifiques. Dans Arxiv, le cluster
Economics s’est élargi avec des termes comme regression
et sparsity, reflétant un champ méthodologique plus large,

SFC

57 ©AFIA 2025



TABLE 2 – Comparaison des mots-clés et de leurs fréquences dans les clusters sur-représentés (+) et sous-représentés (-),
avant et après l’augmentation des données. Le nombre en bas à droite indique la fréquence du mot. Les mots en gras sont
nouveaux, tandis que les autres sont communs aux deux ensembles et soulignés s’ils ont la fréquence la plus élevée.

Cluster Non Augmenté Augmenté Observations

O
pt

im
is

m
(-

) depression58, life38,day26,
feel24,nervous22, lost21,
panic16,optimism16,despair15,
gloomy15, love14, shy13

depression58,music40, life40,
day36, feel25, lost22,happy22,
love21,optimism17,sober17,
smile16,birthday15

L’augmentation a renforcé les thèmes opti-
mistes et positifs, apportant de la diversité
tout en réduisant l’accent sur les termes
négatifs ou neutres.

A
ng

er
(+

) angry41,bully35,outrage30,
terror28,people26, rage25,
dont24,offended23, revenge17,
irritate17, insult17,hate13

angry41,bully35,terror29,
people28,outrage27,rage25,
insult17,hate13,game10,
play10,revenge9,racism9

Les termes sont restés globalement stables,
mais quelques nouveaux mots ont été ajou-
tés, exprimant une colère plus intense (ex. :
game, racism).

Sk
in

ca
re

(-
) sellus6, farmacy2,moisturizer1,

brand1,moisture1,birthday1,
glossier1,balm1, rituals1,
babor1, small1, look1,

sellus8 skincare6, sale5,
glossier4,cream4, toner4,
balm3, treatments3,dark3,
spot3,sun3, farmacy2,
moisturizer2,

L’augmentation a introduit des termes spé-
cifiques aux soins de la peau (ex. : skincare,
cream, toner) et a légèrement orienté le
focus vers les ventes (sale).

D
og

eC
oi

n
(+

) doge250,bought17,currency11,
market7,coin7,community7,
dollar6

doge254,bought27,currency17,
dollar11,coin11,community11,
price10,market8

Les termes sont restés cohérents, avec de
légères augmentations de fréquence. L’aug-
mentation a légèrement mis l’accent sur les
aspects financiers, sans modifier le focus
principal sur doge.

E
co

no
m

ic
s(

-) sustainable5,inequality4,
frequency4,likelihood3,
dimensional2,regression2
pandemic1,governments1
evolutionary1,strategy1,
approach1,macroecon1

model7,regression5,se-
ries4,dimensional4,lear-
ning3,pandemic3,sparsity2,
sustainable2,approach2,
likelihood1

L’augmentation a ajouté des termes liés aux
méthodes économiques (ex. : series, spar-
sity) et renforcé l’accent sur les applications
statistiques.

C
S

(+
)

learning47,neural21,
networks20,classification17,
adversarial15,deep15,
models14,detection12,
recognition11

learning74,neural43,
detection35,networks31,
deep31,classification30,
recognition27,adversarial22,
models21,

Les termes restent stables, avec un accent
renforcé sur des notions clés en informa-
tique comme learning, neural et detection.

A
B

&
C

(-
) drosophila14,olfactory10,

neurons6,circadian4,
cortex4,pathway3, learning3,
dopaminergic3,model3, light2,
endocrine2

drosophila257,olfactory176,
circadian166,sleep66,clock62,
neurons54, taste47, light30,sen-
sory26,rhythms24,odorant24

Les nouveaux termes comme sleep, clock et
taste élargissent le contexte comportemen-
tal.

N
eu

ro
sc

ie
nc

e(
+) neural69,cortex58, learning39,

visual38,memory30,
auditory25, temporal19,
cortical19, speech17, spatial16,
dynamics15,prefrontal15

neural546,cortex407,visual318,
learning280,brain251,
memory244,cortical195,
auditory168,attention132,
perception121,dynamics119,
speech117

L’accent sur neural et cortex s’intensifie,
tandis que brain et perception élargissent le
focus aux processus cognitifs et sensoriels.

N
eu

ro
lo

gy
(-

) alzheimers35,cognitive14,
disease12,dementia10,brain10,
genetic5, impairment5,
biomarkers4,diagnosis4,
amyotrophic4, trials4, risk4

alzheimers156,parkinsons115,
cognitive115,disease107,
brain97,dementia85,
impairment45,epilepsy44,
genetic30,eeg29,stroke28,
cognition25

Les termes parkinsons et stroke élargissent
le champ aux maladies neurologiques,
tandis que alzheimers et dementia gagnent
en importance, renforçant le focus sur les
maladies dégénératives et la fonction céré-
brale.

E
pi

de
m

io
lo

gy
(+

) sarscov289,covid1928,
antigen22, testing19,
diagnostic16, rtpcr15, saliva14,
rna13,detection10, test9,
nasopharyngeal9,viral8

sarscov2329,antigen125,
covid19104,detection70,
testing70, saliva67,
diagnostic54, rtpcr44, test39,
rna32, tests31,screening30

L’accent sur le diagnostic et les tests se ren-
force avec l’augmentation de termes comme
sarscov2, antigen et covid19. Les ajouts de
tests et screening élargissent les approches
de détection épidémiologique.

alors que le cluster Computer Science est resté stable avec
quelques ajouts mineurs. Dans Biorxiv, le cluster Animal
Behavior and Cognition (A B&C) a introduit des termes
sensoriels comme sleep et taste, suggérant un intérêt accru
pour les mécanismes sensoriels. Le cluster Neuroscience a

vu apparaître de nouveaux termes comme brain, tandis que
des mots-clés centraux tels que cortex ont connu une aug-
mentation significative (de 69 à 546 occurrences), reflétant
l’augmentation proportionnelle des données générées. Dans
Medrxiv, le cluster Neurology a mis en avant des termes
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TABLE 3 – Résultats des performances de clustering (moyenne ± écart-type). Les résultats sont reportés pour les ensembles
de données non augmentés (N.A) et augmentés (A).

Algo. Type Métrique Tweet_Emo. Reddit Arxiv Medrxiv Biorxiv

K
M

ea
ns N.A NMI 20.32 ± 2.28 54.74 ± 1.73 44.22 ± 0.91 30.07 ± 0.21 34.03 ± 0.17

ARI 22.79 ± 6.23 25.69 ± 2.52 32.09 ± 2.26 6.92 ± 0.35 20.09 ± 1.79

A NMI 22.10 ± 3.49 55.08 ± 0.58 44.28 ± 0.57 34.62 ± 0.21 30.39 ± 0.21
ARI 22.81 ± 5.83 29.41 ± 1.78 34.10 ± 1.64 7.22 ± 0.24 20.59 ± 1.49

SK
m

ea
ns N.A NMI 20.85 ± 2.80 55.91 ± 0.83 43.59 ± 0.48 30.03 ± 0.30 34.12 ± 0.16

ARI 19.39 ± 6.72 29.88 ± 1.83 32.75 ± 1.49 7.17 ± 0.44 22.24 ± 2.25

A NMI 22.42 ± 5.04 55.46 ± 1.21 44.42 ± 0.72 30.44 ± 0.29 33.86 ± 0.29
ARI 23.67 ± 9.74 31.53 ± 2.78 33.58 ± 1.60 7.65 ± 0.34 23.36 ± 3.01

comme parkinsons et stroke, renforçant la thématique des
maladies neurologiques, tandis que le cluster Epidemiology
a introduit sarscov2 et testing, soulignant un accent mis sur
le diagnostic et la détection épidémiologique.
Globalement, ces résultats montrent que l’augmentation a
efficacement enrichi les clusters sous-représentés avec des
termes spécifiques et variés, améliorant leur interprétabi-
lité. Les clusters sur-représentés, comme attendu, ont mon-
tré peu de changements structurels.

5.0.2 Distribution des Clusters
La Figure 3 illustre la distribution des documents dans les
clusters pour deux ensembles de données : Reddit et Arxiv.
Ces ensembles, avec un nombre modéré de clusters (15
et 12), permettent une visualisation claire des schémas de
répartition. Les graphiques en barres comparent trois scé-
narios : les étiquettes de classe originales (zigzags bleus),
le regroupement KMeans sur les données non augmentées
(briques rouges) et après augmentation (points roses).
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FIGURE 3 – Répartition des documents dans les clusters
pour les ensembles de données Arxiv (en haut) et Reddit
(en bas).

Dans les étiquettes initiales (zigzags bleus), le déséqui-

libre des ensembles de données est évident, avec certaines
classes surreprésentées et d’autres sous-représentées. Le
KMeans appliqué aux données d’origine (briques rouges)
répartit uniformément les documents, réduisant la domi-
nance des classes surreprésentées sans pour autant refléter
fidèlement le déséquilibre initial.
Après l’augmentation des données (points roses), KMeans
continue d’égaliser la taille des clusters. Cependant, une
tendance importante émerge : les pics des données aug-
mentées (points roses) s’alignent souvent avec les clusters
des classes minoritaires dans la distribution initiale (zigzags
bleus).
En résumé, l’augmentation des données améliore la repré-
sentation des classes minoritaires, confirmant son efficacité
pour corriger le déséquilibre des données.

5.0.3 Performance du clustering
Dans cette section, nous présentons l’analyse des perfor-
mances du clustering, résumée dans le Tableau 3. Les ré-
sultats comparent les métriques de clustering (NMI et ARI)
sur nos cinq ensembles de données, pour deux algorithmes :
KMeans et Spherical KMeans, en utilisant les données
avant et après augmentation. Les métriques, moyennées
sur cinq exécutions, montrent que l’augmentation améliore
souvent les performances, en particulier pour l’ARI, et
maintient des résultats comparables même dans les pires
scénarios, garantissant ainsi que la qualité du clustering
n’est pas compromise.

6 Conclusion
Dans ce travail, nous avons proposé un nouveau cadre
d’augmentation des données intégrant les GMMs et les
LLMs afin de répondre aux défis liés au déséquilibre des
classes dans les tâches de traitement automatique du lan-
gage naturel non supervisées. Notre approche cible spéci-
fiquement les régions sous-représentées des ensembles de
données, en utilisant les GMMs pour identifier avec préci-
sion ces clusters et les LLMs pour générer des documents
synthétiques contextuellement pertinents. À travers des ex-
périences approfondies sur plusieurs ensembles de données
textuelles déséquilibrés, nous avons démontré que notre
méthode maintient les performances du clustering, améliore
la représentation des classes minoritaires et enrichit l’inter-
prétabilité des clusters. Les résultats montrent que l’aug-
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mentation ciblée des données est une stratégie efficace pour
pallier les déséquilibres tout en préservant la qualité des al-
gorithmes de clustering.
Dans cette contribution, nous avons utilisé des GMMs, mais
il serait pertinent d’explorer d’autres modèles de mélanges,
comme les modèles von-Mises Fisher [17, 18] ou les mo-
dèles de blocs latents [7, 14]. Une limitation de l’utilisation
des données générées par des LLMs est le risque de renfor-
cer les biais des ensembles d’entraînement [19]. Bien que
notre approche aligne le texte généré avec les thèmes des
clusters, les travaux futurs devraient évaluer et atténuer ces
biais dans les données synthétiques.
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Résumé
La tendance actuelle de la communauté de programma-
tion par contraintes (PPC) à utiliser largement la techno-
logie SAT (c’est-à-dire la traduction des contraintes et/ou
le raisonnement à partir des clauses) est intéressante (et
s’est avérée efficace dans bon nombre de situations), mais
elle éclipse quelque peu l’intérêt de la PPC. Si l’on consi-
dère les résultats des dernières compétitions XCSP3 (2022,
2023, 2024 ; par exemple, voir www.cril.fr/XCSP24), on
peut observer qu’un solveur PPC “pur” comme ACE peut
être comparativement très efficace pour trouver des bornes
de bonne qualité. En fait, notre position est que “search is
not dead”, une référence à l’exposé invité à la conférence
CP’13 par Peter Stuckey qui affirmait que “search is dead,
long live proof”. Il nous semble que se concentrer unique-
ment sur la preuve dès le début (du processus de résolu-
tion) n’est pas nécessairement la bonne approche, en parti-
culier avec les nouveaux progrès réalisés pour conduire la
recherche de solutions (notamment, le solution-based phase
saving, et les trois heuristiques complémentaires actuelles
basées sur les conflits).

Mots-clés
recherche arborescente, heuristiques, contraintes

Abstract
The current trend in the CP (Constraint Programming)
community to widely use SAT technology (i.e., translating
constraints and/or reasoning from clauses) is interesting
(and has been shown to be effective in a number of situa-
tions) but somewhat detracts from the value of CP. Conside-
ring the results of the last (2022, 2023, 2024) XCSP3 com-
petitions (e.g., see www.cril.fr/XCSP24), one can observe
that a pure CP solver like ACE can be comparatively effi-
cient for finding good quality bounds. Actually, our position
is that "search is reborn", a reference to the invited talk at
the conference CP’13 by Peter Stuckey who claimed that
"search is dead, long live proof". It seems to us that focu-
sing only on proof from the start (of the solving process) is
not necessarily the right approach, especially with the new
advances made in search (notably, solution-based phase sa-
ving, and the three current complementary state-of-the art
conflict-based heuristics).

Keywords
tree search, heuristics, constraints

1 Introduction
La programmation par contraintes (PPC) [18, 12, 11] est
une technologie utile pour modéliser et résoudre des pro-
blèmes combinatoires sous contraintes. D’une part, on peut
utiliser une bibliothèque comme PyCSP3 [16] pour modéli-
ser les problèmes qui se posent dans divers domaines d’ap-
plication (par exemple, l’ordonnancement, la planification,
la cryptographie, la bio-informatique, la chimie organique,
etc.) Les instances de problèmes peuvent alors être direc-
tement générées à partir de modèles et de données parti-
culières. D’autre part, pour résoudre les instances (notam-
ment représentées au format XCSP3 [6, 7]), on peut uti-
liser un solveur de contraintes comme ACE, dont il est
question dans le présent document. ACE est un solveur de
contraintes open-source, développé en Java, qui se foca-
lise sur les variables entières (incluant les variables boo-
léennes ou 0/1), différentes forme de contraintes table, les
contraintes globales les plus importantes, les heuristiques
de recherche état-de-l’art et l’optimisation (mono-critère).

2 Vers une recherche robuste en PPC
ACE est un solveur complet, qui effectue une exploration en
profondeur de l’espace de recherche, avec retours-arrières.
À chaque étape (nœud de l’arbre de recherche), une déci-
sion est prise (une affectation de variable ou une réfuta-
tion de valeur) et un processus de filtrage est exécuté (mé-
canisme de propagation de contraintes). Pour résoudre le
problème de la forte variabilité des distributions de temps
d’exécution [9], la recherche est relancée régulièrement, en
suivant une progression géométrique. L’ordre dans lequel
les variables sont choisies au cours de la construction de
la branche courante de l’arbre de recherche est déterminé
par une heuristique de choix de variables ; une heuristique
générique classique est dom/wdeg [5], combinée à un mé-
canisme simulant une certaine forme de sauts en arrière in-
telligents [15]. L’ordre dans lequel les valeurs sont choi-
sies lors de l’affectation des variables est déterminé par une
heuristique de choix de valeurs ; pour l’optimisation, il est
fortement recommandé d’utiliser d’abord, si disponible, la
valeur de la dernière solution trouvée [20, 8].
Pour l’optimisation (instances du problème COP,
Constraint Optimization Problem), on utilise une stra-
tégie basée sur la mise à jour de la borne chaque fois
qu’une solution est trouvée ; il s’agit d’une sorte de straté-
gie de descente (apparentée au Branch and Bound), dont le
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FIGURE 1 – Illustration de trois moments clés de la collecte d’informations concernant les conflits : ils correspondent au
traitement précoce (Early), intermédiaire (Midway) et tardif (Late) des conflits.

principe est équivalent (dans l’hypothèse d’un problème de
minimisation) à l’ajout d’une contrainte objectif spéciale
obj < ∞ au réseau de contraintes (bien qu’elle soit
initialement trivialement satisfaite), et à mettre à jour la
limite de cette contrainte chaque fois qu’une nouvelle
solution est trouvée. Cela signifie qu’à chaque fois qu’une
solution S est trouvée avec un coût B = obj(S), la
contrainte objectif devient obj < B. Par conséquent, cette
stratégie de descente progressive fournit une séquence de
solutions de plus en plus intéressantes, jusqu’à prouver
l’optimalité de la dernière solution trouvée.
Au moment de la rédaction de ce document, nous pensons
que ACE est un solveur compétitif en raison des ingrédients
suivants :

— redémarrage fréquent de la recherche
— enregistrement des nogoods de la branche courante

au moment du redémarrage [14]
— pondération de contraintes pour la sélection des va-

riables [5, 10, 21, 17, 4]
— raisonnement à partir du dernier conflit [15]
— solution(-based) phase saving [20, 8]

Fait important, dans [4], nous avons montré que trois ma-
nières d’exploiter les conflits pour guider la recherche pré-
sentent des comportements relativement complémentaires.
Cela peut s’expliquer par le fait que les informations sont
extraites à différents moments : au tout début du proces-
sus conduisant à un conflit (c’est-à-dire au moment de la
décision), pendant la propagation de contraintes ou au mo-
ment où le dernier propagateur (algorithme de filtrage) est
sollicité. On peut alors parler d’approches telles que le trai-
tement opérationnel des conflits est early (E), midway (M)
ou late (L). Ceci est illustré par la figure 1 où une nou-
velle décision x = a est prise, lors de la résolution d’un ré-
seau de contraintes P , dans la continuité de deux décisions
prises précédemment v = a et w ̸= b. Dans notre scénario,
l’exécution de la propagation de contraintes ϕ sur (l’état ac-
tuel de) P après avoir assigné la valeur a à x, c’est-à-dire
ϕ(P |x=a), révèle une nouvelle situation conflictuelle (dé-

signée par ⊥). Le traitement précoce de ce nouveau conflit
consiste à considérer la variable x impliquée dans la déci-
sion comme cause principale. C’est le principe de l’heuris-
tique frba/dom [17]. Le traitement intermédiaire de ce
conflit consiste à considérer que toutes les variables ayant
joué un rôle (c’est-à-dire ayant été choisies) au cours de la
propagation ont contribué à l’échec. C’est le principe qui
sous-tend l’heuristique pick/dom [4]. Le traitement tar-
dif de ce conflit consiste à considérer la dernière contrainte
(ici, c2w) provoquant l’échec (c’est-à-dire supprimant la der-
nière valeur d’un domaine) comme l’objet d’intérêt. C’est
le principe de la pondération des contraintes, comme dans
wdeg/dom [5, 10, 21].
L’intérêt (la complémentarité) de ces trois heuristiques est
démontré lors de la compétition XCSP3 2024 (voir [3] et
www.cril.fr/XCSP24), à laquelle deux versions de ACE
[13] ont participé :

— ACE, avec son comportement par défaut (une
seule heuristique de choix de variables est utili-
sée : wdegcacd [21] qui est un raffinement de
dom/wdeg), et la première valeur (i.e., plus petite)
est systématiquement choisie,

— ACE-mix, qui exploite les trois principales heuris-
tiques de choix de variables mentionnées ci-dessus
(ainsi que wdegcacd) et trois heuristiques de choix
de valeurs (sélection de la valeur la plus petite, la
plus grande, ou aléatoirement dans le domaine de la
variable sélectionnée).

Il est clair que ACE-mix bénéficie de la complémentarité
de ces heuristiques puisque cette version obtient de bien
meilleurs scores que ACE dans les différents tracks de la
compétition. Sans surprise, cela montre que la recherche
devient (beaucoup) plus robuste lorsque l’on utilise des
heuristiques complémentaires (ici, basées sur les conflits).
En fait, nous pensons que la tendance actuelle de la commu-
nauté PPC à utiliser largement la technologie SAT (c’est-à-
dire traduire les contraintes en clauses et/ou raisonner à par-
tir de clauses) est intéressante (et s’est avérée efficace dans
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FIGURE 2 – Pour le track COP de la compétition XCSP3 2024, avec une vision orientée preuve, Picat surpasse CPMpy_ortools,
qui lui-même surpasse ACE-mix.

bon nombre de situations), mais qu’elle éclipse quelque peu
la valeur de la PPC. En ce qui concerne les problèmes d’op-
timisation (main track COP), sur le site des résultats de la
compétition XCSP3 2024 (voir www.cril.fr/XCSP24), deux
cactus plots sont visibles :

— un cactus plot, illustré à la figure 2, qui donne une
vue “orientée preuve” des résultats (c’est à dire que
seule les preuves d’optimalité comptent) : les ap-
proches basées sur SAT (et/ou sur la relaxation) sont
très efficaces pour prouver l’optimalité ;

— un cactus plot, illustré à la figure 3, qui donne
une vue “orientée recherche” (c’est à dire que les
preuves d’optimalité sont ignorées) : les approches
basée principalement sur la PPC sont très efficaces
pour trouver des bornes de bonne qualité.

3 Search, Reborn !
Même des versions moins robustes de ACE, comme celles
soumises en 2022 (voir [1] et www.cril.fr/XCSP22) et 2023
(voir [2] et ww.cril.fr/XCSP23), étaient déjà très compéti-
tives pour le main track COP. La vision orienté recherche
montre déjà comparativement les très bonnes performances
de ACE. En fait, notre position est que search is not dead
(ou search is reborn), en référence à la conférence invitée
[19] à CP’13 par Peter Stuckey qui affirmait que “search is
dead, long live proof”. Comme la résolution d’un problème
d’optimisation passe par trois étapes :

— la phase d’accrochage pendant laquelle une pre-
mière solution doit être trouvée,

— la phase de descente pendant la quelle une solution
optimale doit être trouvée, après un cheminement
possiblement très long depuis la première solution,

— la phase de preuve pendant laquelle l’optimalité doit
être prouvée,

il nous semble que se focaliser uniquement sur la preuve
dès le départ n’est pas nécessairement la bonne approche,
surtout avec les nouvelles avancées réalisées pour conduire
la recherche (solution-based saving [20, 8] et les trois heu-
ristiques complémentaires basées sur les conflits). Pour la
phase de descente, la recherche telle qu’elle est effectuée
par un solveur PPC classique peut, sous réserve d’utiliser
des mécanismes de recherche complémentaires, devenir ex-
trêmement compétitive (comme le montre ACE-mix).
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Résumé
Dotés de capacités exceptionnelles pour résoudre une va-
riété de tâches complexes, les grands modèles de lan-
gage (LLMs) ouvrent de nouvelles perspectives pour la
conception de Systèmes Multi-agents et d’Agents Auto-
nomes (SMAA) génératifs, capables de s’adapter à des en-
vironnements ouverts et de simuler des dynamiques sociales
complexes. Cet article propose une analyse approfondie des
LLMs et de leur intégration dans les SMAA, en mettant en
lumière leur potentiel pour surmonter les limites des ap-
proches traditionnelles. Nous examinons les défis liés à la
conception de SMAA génératifs tout en identifiant les ver-
rous technologiques et scientifiques actuels.

Mots-clés
Agent génératif, Architecture d’agents, Grand modèle de
langue

Abstract
Endowed with exceptional capabilities to solve a variety
of complex tasks, Large Language Models (LLMs) open
new avenues for designing generative Autonomous Agents
and Multi-Agent Systems (AAMAS) capable of adapting to
open environments and simulating complex social dyna-
mics. This paper provides an in-depth analysis of LLMs and
their integration into AAMAS, highlighting their potential
to overcome the limitations of traditional approaches. We
examine the challenges associated with the design of gene-
rative AAMAS while identifying current technological and
scientific barriers.

Keywords
Generative Agent, Agent Architecture, Large Language Mo-
del

1 Introduction
Grâce à leur capacité à générer du texte avec fluidité et pré-
cision au point qu’il devient difficile de les distinguer de
ceux rédigés par des humains, les grands modèles de lan-
gage (Large Language Models, LLMs) comme GPT-4 [11],
LLaMA3 [32], ou Mixtral 8x7B [33] s’imposent comme
une voie de recherche particulièrement prometteuse vers
l’intelligence artificielle générale. Ces modèles entraînés
préalablement sur des très grands corpus, possèdent plu-

sieurs milliards de paramètres et, via des ajustements, ont
des capacités surprenantes pour résoudre une grande variété
de tâches dans de nouveaux contextes [37, 41] : dialogue
en langage naturel, génération de code, résolution de pro-
blèmes mathématiques, etc.
Cet article propose une analyse approfondie des récents
développements liés aux Systèmes Multi-agents et Agents
Autonomes (SMAA) qui s’appuient sur les capacités des
LLMs [36, 8]. Nous privilégions le terme « SMAA généra-
tif » plutôt que les expressions « SMAA linguistique » ou
« SMAA basé sur les LLMs », car, selon nous, c’est la ca-
pacité à prédire le jeton le plus probable en fonction d’un
contexte donné qui permet d’envisager de remplacer les
systèmes de production traditionnellement utilisés dans les
architectures d’agent [17]. Nous défendons ici l’idée selon
laquelle les SMAA génératifs ouvrent des perspectives pro-
metteuses pour résoudre des problèmes dans des environ-
nements ouverts et simuler des dynamiques sociales com-
plexes. Les principales contributions de cet article sont :

1. un état de l’art détaillé 1 des LLMs et de leur inté-
gration dans les systèmes multi-agents. Nous pré-
sentons une synthèse des principes fondamentaux
des LLMs, des méthodes d’ajustement et des ou-
tils existants, offrant ainsi une vue d’ensemble des
ressources disponibles 2 pour les chercheurs et pra-
ticiens de la communauté SMA;

2. une discussion des défis spécifiques des SMA géné-
ratifs. Nous examinons les limitations actuelles des
architectures d’agent, tout en mettant en avant le po-
tentiel des LLMs pour dépasser ces limites ;

3. des recommandations pour le développement futur
des SMAA génératifs. Nous identifions les verrous
scientifiques et technologiques pour surmonter les
limites actuelles.

Ces contributions visent à enrichir la compréhension de
cette voie de recherche pour favoriser l’émergence d’une
intelligence artificielle plus générale et plus proche de celle
des humains.

1. Même si nous avons autant que possible privilégié les articles pu-
bliés dans des conférences et revues avec comité de lecture, une part si-
gnificative de la littérature dans ce domaine est diffusée par les auteurs via
des archives ouvertes.

2. Une liste mise à jour de ces ressources est disponible à l’URL sui-
vante : https://gitlab.liris.cnrs.fr/mmorge/llm4aamas
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Plan. La section 2 présente les fondements et les principes
des LLMs. La section 3 évoque les méthodes pour les adap-
ter à une tâche spécifique. La section 4 dénombre quelques
LLMs accessibles. La section 5 décrit les méthodes et stra-
tégies de conception d’instructions (prompt engineering).
La section 6 introduit les constituants des AA propulsés par
des LLMs et la section 7 dénombre quelques outils logi-
ciels pour leur conception. La section 8 présente un état des
lieux des SMA génératifs existants et la section 9 des outils
disponibles pour leur conception. La section 10 discute des
orientations futures.

2 LLM
L’Intelligence Artificielle (IA) consiste en l’analyse, la
conception, l’implémentation et l’optimisation de méthodes
pour donner aux machines la capacité de reproduire/simuler
l’intelligence humaine [26], i.e. la compréhension, l’ap-
prentissage, la prise de décision, la résolution de pro-
blèmes, etc. Au-delà de l’IA faible, jusqu’ici prédominante
et conçue pour accomplir des tâches spécifiques et limitées,
l’IA générale vise à s’adapter à diverses situations.
Parmi les nombreux champs d’étude de l’IA,
l’apprentissage automatique vise à donner aux ma-
chines la capacité d’améliorer leurs performances pour
résoudre des tâches [4] (reconnaissance de la parole,
traduction, perception visuelle, planification de tâches,
prédiction) sans être explicitement programmée pour. En ce
qui concerne l’apprentissage supervisé, la difficulté réside
dans l’estimation à partir d’observations étiquetées d’un
modèle de classification dont l’erreur statistique moyenne
est la plus faible.
Parmi les nombreuses méthodes d’apprentissage adaptées
à différents types de problèmes et de données, les réseaux
de neurones (RN) se distinguent par leur structure com-
posée de nœuds, appelés neurones formels. Ces neurones
utilisent une fonction de transfert pour transformer leurs en-
trées en sorties. Ils sont reliés entre eux par des connexions
qui reflètent leur capacité à s’influencer. Bien que leur ar-
chitecture puisse varier, les réseaux de neurones sont gé-
néralement composés d’au moins trois couches distinctes :
une couche d’entrée, une couche dite cachée et une couche
de sortie. Dans cette configuration, chaque couche reçoit
comme entrées les sorties de la couche précédente. L’entraî-
nement des réseaux de neurones repose le plus souvent sur
la méthode de rétropropagation du gradient, qui ajuste les
poids des connexions en remontant des erreurs de la couche
de sortie vers la couche d’entrée, dans le but de minimiser
les erreurs et d’atteindre une classification aussi proche que
possible de l’optimum [25].
Contrairement aux RNs classiques qui ne comportent géné-
ralement qu’une ou deux couches cachées, les réseaux neu-
ronaux profonds comprennent des centaines de couches
cachées. Ces couches multiples permettent de traiter des
données avec une structure complexe (images, vidéos,
texte, parole) pour extraire des représentations à différents
niveaux d’abstraction à partir de vastes ensembles de don-
nées brutes. Cette approche a permis de diviser par 2 le taux

d’erreur de classification des images dans la base de don-
nées d’images ImageNet [16].
L’identification de relations complexes dans de vastes en-
sembles de données constitue un défi majeur en Traite-
ment Automatique du Langage Naturel (TALN). Les ré-
seaux neuronaux récurrents (RNN) [30], spécialement
conçus pour traiter des données séquentielles, sont capables
de capturer les relations contextuelles entre les éléments
d’un texte, appelés jetons (tokens). Ces réseaux permettent
de construire une représentation globale du sens des mots,
de modéliser des phrases et d’en générer de nouvelles.
Leur flexibilité permet d’aligner des représentations contex-
tuelles, dépassant ainsi les limites de la traduction mot-à-
mot [3]. Contrairement aux RNN, qui suivent un traitement
strictement séquentiel, l’architecture Transformers [35] re-
pose sur un mécanisme d’attention multi-tête. Ce méca-
nisme examine les interactions entre les jetons de manière
combinatoire et indépendante de leur position dans la sé-
quence, permettant ainsi un traitement parallèle de l’en-
semble du texte. Cette approche a marqué une avancée si-
gnificative dans le domaine.
Les modèles Transformers, sont qualifiés de modèles gé-
nératifs, car leur objectif est de prédire le jeton le plus pro-
bable en fonction d’un contexte donné. En particulier, les
modèles de langue visent à modéliser la probabilité géné-
rative de séquences de mots, en attribuant une probabilité
à chaque mot. Sélectionner systématiquement le jeton le
plus probable à chaque étape peut conduire à ignorer des
séquences avec une probabilité globale plus élevée. Pour
remédier à cela, la recherche par faisceau (beam search)
identifie la séquence ayant la plus grande probabilité glo-
bale. Par ailleurs, l’ajustement de la température T permet
de moduler la répartition des probabilités : lorsque T = 1,
la distribution reste inchangée, tandis que lorsque T → 0,
la probabilité du jeton le plus probable se rapproche de 1,
écrasant ainsi les autres options. Malgré son coût calcula-
toire élevé, le processus génératif permet d’accomplir diffé-
rents tâches de TALN telles que la recherche d’informations
dans des documents, la génération de résumé, de traduction,
de contenu ou la reformulation.
La mise à disposition de modèles de langage pré-entraînés
sur de vastes corpus non étiquetés (par exemple, BERT [6])
marque un changement de paradigme [41]. Ces représen-
tations contextuelles des mots, issues du pré-entraînement,
démontrent de grandes capacités à résoudre une variété
de tâches en TALN. Le principe fondamental des mo-
dèles GPT (generative pre-trained transformer) repose sur
la compression des connaissances du monde dans un mo-
dèle Transformer à décodeur unique via la modélisation
du langage, de manière à ce qu’il puisse restituer la sé-
mantique de ces connaissances et servir d’outil polyva-
lent pour résoudre différentes tâches [24]. Lorsque l’échelle
des paramètres dépasse un certain seuil, ces modèles ne se
contentent pas d’améliorer significativement leurs perfor-
mances, mais manifestent également des capacités surpre-
nantes, dites émergentes, absentes des modèles de plus pe-
tite taille (e.g. BERT), pour résoudre des tâches générales
complexes dans une perspective d’IA forte. Ainsi, la com-
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munauté scientifique a introduit le terme de « grand mo-
dèle de langue » (Large Language Model, LLM) pour dé-
signer les modèles de langue pré-entraînés comportant plu-
sieurs milliards de paramètres.
Contrairement aux modèles de langage pré-entraînés anté-
rieurs, les LLMs, qui possèdent un nombre de paramètres
nettement plus élevé, nécessitent un volume de données
d’entraînement plus important couvrant un large éventail
de contenus. Le pré-entraînement établit les bases des ca-
pacités des LLMs. En s’entraînant sur des très grands cor-
pus, les LLMs peuvent acquérir des compétences essen-
tielles en compréhension et génération de langage [1]. À
titre d’exemple, les données issues de wikipédia représente
3 % du jeu de données d’entraînement du modèle GPT3
qui contient 300 milliards de jetons soit 570 Go de texte.
Dans ce paradigme, le modèle pré-entraîné doit être ajusté
(fine-tuning) pour être adapté à une tâche spécifique.

3 Ajustement de LLM
Il y a deux principales méthodes pour ajuster les LLM pré-
entraînés : l’ajustement par instructions (instruction tuning)
et l’ajustement par alignement (alignment tuning). La pre-
mière a pour objectif d’améliorer/débloquer les capacités
des LLMs, tandis que la seconde cherche à aligner leur
comportement sur des valeurs/préférences humaines.
Les LLMs ne répondent pas directement à une invite. Ils
se contentent d’ajouter du texte à celle-ci. L’ajustement
par instructions (instruction tuning) vise à combler l’écart
entre l’objectif initial du modèle — générer du texte —
et les attentes des utilisateurs, qui souhaitent que le mo-
dèle suive leurs instructions et accomplisse des tâches spé-
cifiques. L’ajustement fin (fine-tuning) d’un modèle de lan-
gage pré-entraîné (LLM) requiert bien moins de données
et de ressources de calcul, notamment lorsque des ap-
proches paramétriquement efficaces comme l’adaptation
de faible rang (Low-Rank Adaptation, LoRA) [15] sont
employées. Ce qui distingue l’ajustement par instructions
des autres formes d’ajustement supervisé (Supervised Fine-
Tuning SFT) réside dans la nature des données utilisées. Les
ensembles de données conçus pour l’ajustement par ins-
tructions se composent exclusivement de tâches similaires
aux requêtes que les utilisateurs pourraient formuler. Les
exemples fournis incluent des réponses illustrant les résul-
tats souhaités pour chaque tâche. L’objectif est d’améliorer
la capacité des LLMs à répondre efficacement à des instruc-
tions en langage naturel [37].
L’ajustement par instructions repose sur un entraînement
supervisé à partir de données formatées de démonstra-
tion associant des instructions à des résultats attendus. Par
exemple, dans une tâche de question-réponse, une instruc-
tion telle que « répondez à cette question » est ajoutée pour
contextualiser chaque exemple. L’ajustement par instruc-
tions permet de rendre les modèles plus adéquats et per-
formants face à des requêtes spécifiques en langage naturel,
tout en réduisant la complexité liée à l’ingénierie des invites
(prompts) et à l’utilisation d’exemples (cf. Section 5).
L’ajustement par alignement (alignment tuning) vise à

améliorer les LLMs selon différents critères/valeurs hu-
maines d’alignement (utilité, honnêteté, innocuité, etc.) et
réduire les hallucinations (cf. Section 5). L’apprentissage
par renforcement à partir de retours humains (Reinforce-
ment Learning From Human Feedback, RLHF) utilise des
algorithmes comme l’optimisation de politique proximale
pour adapter les LLMs en fonction des retours humains en
apprenant un modèle de récompense [21]. Cette approche
intègre les humains dans la boucle d’entraînement pour dé-
velopper des LLMs censurés. Cette technique a été large-
ment utilisée pour ChatGPT [23].
En résumé, le développement de modèles GPT combine un
entraînement préalable non supervisé et un ajustement su-
pervisé. Tandis que le SFT adopte une méthode d’optimi-
sation locale (au niveau du jeton) basée sur des données de
démonstration, le RLHF adopte une méthode d’optimisa-
tion globale (au niveau du texte) en impliquant des préfé-
rences/valeurs humaines. Le développement des LLMs ef-
face la distinction entre recherche et ingénierie, car la réso-
lution de problèmes techniques complexes s’impose.

4 LLMs sur l’étagère
Les LLMs sont majoritairement développés par l’indus-
trie 3.
LLaMA3 [32] est un LLM entraîné préalablement sur un cor-
pus multilingue de près de 15 trillions de jetons en utilisant
16 000 GPUs H100. Disponible en plusieurs configurations
comprenant 405 milliards, 70 milliards ou 8 milliards de
paramètres, il peut traiter une fenêtre contextuelle qui at-
teint 128 000 jetons. Pour adapter efficacement LLaMA
aux autres langues que l’anglais, il est souvent nécessaire
d’étendre le vocabulaire original à l’aide d’instructions ou
de données dans la langue cible. Parmi ces modèles éten-
dus, Alpaca 7B [31] est un modèle issu de LLaMA 7B ajusté
à l’aide d’un jeu de 52 000 exemples d’instructions forma-
tées.
DeepSeek-R1 [5] repose sur un ajustement par apprentis-
sage par renforcement sur des tâches nécessitant du raison-
nement et où la récompense est basée sur la cohérence et
l’explicabilité. Ses capacités de raisonnement ont été distil-
lées vers des modèles plus petits de 70 milliards à 1,5 mil-
liards de paramètres grâce à la distillation de connaissances,
permettant ainsi d’obtenir des modèles plus efficaces en
termes de calcul tout en conservant des performances éle-
vées.
Mixtral Small 3 possède la même architecture que
DeepSeek-R1 [33]. Ce modèle économe est capable de
fonctionner en local sur une machine standard.
Contrairement aux modèles précédents qualifiés de « mo-
dèle à poids ouverts », Lucie 7B [11] est un modèle open-
source dont le code et les données d’entraînement sont pu-
bliés. Doté de 6,71 milliards de paramètres, ce modèle ex-
périmental a été entraîné pendant 550 000 heures sur le
superordinateur Jean Zay muni de 512 GPUs H100 avec

3. Par souci de concision, nous n’aborderons ici que quelques LLMs
récents publiquement accessibles aux URLs suivantes :
https://huggingface.co/models,
https://www.nomic.ai/gpt4all et https://ollama.com.
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seulement 3000 milliards de jetons. Sa capacité de contexte
est de 4096 jetons.
GPT-4 [34] est un modèle propriétaire, bien qu’il soit acces-
sible via une API publique payante permettant de l’utiliser
sans avoir à l’exécuter localement. OpenAI n’a pas com-
muniqué publiquement de détails spécifiques concernant
la taille du corpus d’entraînement, les ressources informa-
tiques utilisées et le nombre de paramètres du modèle. La
fenêtre contextuelle peut atteindre 32 768 jetons.

5 Conception d’instructions
Après l’entraînement préalable et l’ajustement du LLM,
la formulation adéquate des instructions en langage natu-
rel (prompt) est essentielle pour résoudre efficacement des
tâches.
La conception d’instructions (prompt engineering) dé-
signe le processus de structuration des requêtes. Les élé-
ments clés pour obtenir des résultats précis incluent : la
description de la tâche, les données d’entrée, les informa-
tions contextuelles (documents, exemples), le formatage
(e.g. markdown) et le style de l’instruction (e.g. attribuer
un rôle au LLM).
Parmi les techniques de prompting, l’apprentissage en
contexte (in-context learning) consiste à fournir au modèle
des informations spécifiques sans nécessiter un nouvel en-
traînement [37, 7]. Selon cette approche, la création d’un
prompt inclut une description précise de la tâche, la sélec-
tion d’exemples de démonstration associant instructions et
résultats attendus, leur combinaison et formatage, et enfin
l’ajout de l’instance de test comme entrée.
La chaîne de pensée (chain-of-thought) est une stratégie
de prompting qui, au lieu de se limiter à des paires entrée-
sortie, intègre des étapes de raisonnement intermédiaires
servant de lien entre les entrées et les sorties [38]. Par
exemple, l’expression « réfléchis étape par étape » peut
améliorer la qualité du résultat. Cette approche n’est effi-
cace que pour des modèles suffisamment grands, qui par-
viennent à donner l’illusion d’un raisonnement.
La génération augmentée de récupération (Retrieval-
Augmented Generation, RAG) est une stratégie de promp-
ting qui consiste à intégrer dans les instructions des infor-
mations pertinentes à partir de sources de données externes
pour améliorer les réponses du modèle à l’aide de connais-
sances spécifiques et/ou récentes [10]. La RAG suit une
procédure standard qui comporte quatre étapes :

1. indexation. Les sources de données (PDF, HTML,
ODS, etc.) sont nettoyées, extraites sous forme de
textes bruts segmentés et plongés sémantiquement
dans un espace vectoriel (word embedding) pour
être stockés dans une base de données vectorielle ;

2. récupération du contexte. Un score de similarité
entre le plongement sémantique de la requête utili-
sateur et les vecteurs des segments du corpus indexé
est calculé. Le RAG récupère les k segments les plus
similaires pour étendre la fenêtre de contexte de la
requête ;

3. construction de la requête. Le prompt doit orien-
ter le modèle à utiliser les informations récupé-
rées en incluant, par exemple, la directive suivante :
« veuillez vous référer aux informations suivantes
pour accomplir la tâche » ;

4. génération de la réponse. Le LLM peut également
être guidé pour vérifier la qualité de la réponse gé-
nérée. Il peut décider de relancer une nouvelle ré-
cupération d’informations si nécessaire, en fonction
des nouvelles sorties.

Injecter des connaissances spécialisées/récentes dans les
LLMs tout en préservant leurs capacités émergentes reste
un défi non trivial.
Bien que les LLMs soient capables de générer des textes
ou du code d’une qualité indistinguable à celle produite par
des humains [39], ces perroquets stochastiques demeurent
sujets à des limitations. Non seulement ils héritent des biais
contenus dans leurs données d’entraînement, mais ils sont
également enclins à produire des informations inexactes,
appelées hallucinations, qui peuvent contredire une source
existante ou ne pas être vérifiables à partir des sources dis-
ponibles. En dépit de leurs avancées, les LLMs rencontrent
des difficultés dans la mémorisation, la génération de don-
nées structurées, ainsi que dans la résolution de tâches com-
plexes de raisonnement. Ils échouent à améliorer le niveau
de confiance en fournissant une réponse correcte tout en
suivant un raisonnement invalide, ou en produisant une ré-
ponse erronée malgré un raisonnement correct. L’agentifi-
cation des LLMs est considérée comme une voie promet-
teuse pour surmonter ces limitations [36].

6 Agent autonome génératif
Un agent autonome est une entité capable de percevoir son
environnement, de prendre des décisions et d’effectuer des
actions pour atteindre des objectifs spécifiques [26]. Sou-
vent développés dans une approche d’intelligence artifi-
cielle faible, ces agents reposent sur des heuristiques inter-
prétables ou des algorithmes d’apprentissage par renforce-
ment. Conçus pour des environnements spécifiques, leur ef-
ficacité se restreint aux situations anticipées par le concep-
teur et elle est limitée dans des environnements ouverts. En
revanche, les LLMs sont considérés comme des outils diffi-
ciles à interpréter mais polyvalents, i.e. capables de réaliser
une grande variété de tâches dans de nouveaux contextes.
Tirer parti des connaissances de sens commun intégrées aux
LLMs représente une solution prometteuse pour doter les
agents autonomes des capacités nécessaires à leur ajuste-
ment à de nouvelles tâches, tout en réduisant la dépendance
à l’ingénierie des connaissances ou à l’apprentissage par
essais-erreurs [36].
Pour réagir de manière autonome dans un environnement,
un agent génératif doit interpréter ses perceptions (e.g. une
demande utilisateur) à partir des connaissances stockées
dans sa mémoire, raisonner et planifier des actions. Il doit
exécuter le plan étape par étape avec l’aide d’outils et affi-
ner le plan en fonction des retours de l’environnement.
Mémoire. Un agent génératif stocke dans :
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— la mémoire de travail, son rôle (ses caractéristiques
et ses objectifs) et ses perceptions en fonction de
leur récence, de leur pertinence et de leur impor-
tance sous forme d’observations en langage naturel
dans la fenêtre de contexte ;

— la mémoire épisodique, les expériences passées dé-
crites en langage naturel dans la fenêtre de contexte
ou encodées dans un espace vectoriel (RAG) ;

— la mémoire sémantique, les faits sur le monde enco-
dés dans un RAG ou dans une base de données ;

— la mémoire procédurale ses paramètres qui peuvent
être ajustés (fine-tuned) pendant la durée de vie de
l’agent.

Ces connaissances peuvent être récupérées, mises à jour
ou inférées. Un agent propulsé par un LLM a la capacité
d’apprendre, i.e. écrire dans sa mémoire à long terme, et de
raisonner, i.e. résumer ses expériences passées stockées en
mémoire en des idées plus larges et abstraites, pour amélio-
rer sa cohérence comportementale.
Planification. La planification permet de résoudre des
tâches complexes, telles que le raisonnement mathématique
ou la gestion de dialogues à plusieurs tours, en les décom-
posant en sous-tâches plus simples, puis en générant un
plan d’action pour traiter ces sous-tâches. Un planificateur
de tâches basé sur un LLM peut tirer parti de la mémoire
pour stocker et récupérer les plans. Cette approche peut
être mise en œuvre à l’aide de modèles comme les LLMs
pour les tâches textuelles, ou à l’aide d’outils spécialisés
tels qu’un interpréteur de code (par exemple, Python) ou
un planificateur externe basé sur PDDL. Ensuite, l’agent exé-
cute ses actions.
Actions. De multiples travaux visent à doter les LLMs de
la capacité à utiliser des outils externes, tels qu’une calcu-
latrice, un calendrier, un SGBD, un interpréteur de code, un
moteur de recherche, un outil de traduction automatique, un
système de questions-réponses, ou un outil d’IA (e.g. [28]).
Ces travaux reposent le plus souvent soit sur un ajustement
supervisé (cf. Section 3), soit sur la conception d’instruc-
tions (cf. Section 5). En revanche, la nature auto-supervisée
de Toolformer permet aux LLMs d’apprendre par eux-
mêmes, sans perdre leur caractère généraliste, comment et
quand utiliser des outils externe via une simple API combi-
nant ainsi le meilleur des deux mondes [27].
Perceptions. Un agent génératif utilise son environnement
– qu’il soit physique, numérique ou dialogique – comme
moyen d’exécution mais également comme source d’infor-
mation. Il reçoit des entrées telles que des requêtes utilisa-
teur ou des états environnementaux, et génère des sorties,
comme des réponses ou des actions. Les signaux de retour,
qu’ils proviennent du modèle lui-même ou de sources ex-
ternes comme des utilisateurs humains, des outils ou des
environnements virtuels [22], permettent à l’agent d’ap-
prendre et s’adapter de manière itérative. Cet ancrage dans
un environnement lui donne la possibilité d’affiner son plan
initial pour obtenir de meilleurs résultats. Par exemple, des
outils comme les interpréteurs de code sont largement em-
ployés dans le cadre des tâches de programmation. Un agent
génératif, s’appuyant sur un VLM (Vision Language Mo-

del), qui perçoit de manière native sur des entrées à la fois
textuelles et visuelles, reproduit sans doute de manière plus
réaliste le comportement d’un humain qui ne lit pas le code
HTML mais voit une page web.
Sumers et al. [29] propose une architecture cognitive inspi-
rée de Soar [17] dont le moteur est un LLM. S’inspirer de
l’histoire riche de l’IA symbolique et des sciences cogni-
tives en reliant des idées établies depuis des décennies aux
recherches de pointe sur les LLMs nous semble être une ap-
proche qui ouvre la voie au développement d’une IA plus
générale et plus semblable à celle des humains.

7 Agent sur l’étagère
LangChain 4 est un cadriciel open-source de conception
d’instructions pour LLMs qui peut être utilisé pour définir
des séquences de raisonnement de haut niveau, des agents
conversationnels, des RAGs, des résumés de documents ou
encore la génération de données synthétiques. LangGraph 5

est une bibliothèque de plus bas niveau pour la conception
d’architecture cognitive d’agent autonome dont le moteur
de raisonnement est un LLM. Elle permet de contrôler fine-
ment le flux de données et l’état de la mémoire persistante.
AutoGPT 6 est une plateforme pour la création, le déploie-
ment et la gestion d’agent génératif. Elle permet aux LLMs
de gérer la mémoire à court et long terme ainsi que d’uti-
liser des outils externes tels que des moteurs de recherche.
AutoGPT décompose la requête en un plan détaillé, exé-
cute ce plan étape par étape avec l’aide d’outils comme des
moteurs de recherche et ajuste le plan restant en fonction
des retours de l’environnement. WorkGPT 7 est un cadriciel
offrant des fonctionnalités similaires.
Les ressources pour concevoir des agents propulsés par
des LLM sont très nombreuses. Awesome LLM-Powered
Agent 8 en dresse une liste impressionnante.

8 SMA génératif
Un Système Multi-Agents (SMA) est composé de multiples
entités de calcul autonomes, appelées agents, en interaction,
situés dans un environnement qui prennent part à une or-
ganisation. Qu’il constitue une méthode distribuée pour la
résolution de problème ou un modèle explicatif d’une dy-
namique sociale, un SMA se caractérise par l’émergence
de processus complexes, impossibles à modéliser par des
équations prédictives ou solvables.
La principale difficulté dans la conception d’un SMA ré-
side dans le fait que les mécanismes internes régissant
les comportements sociaux ne sont pas directement obser-
vables. Les architectures d’agent réactifs s’appuient sur des
règles prédéfinies (e.g. machine à états finis), des équa-
tions symboliques (e.g, modèle de force sociale), des mo-
dèles stochastiques (e.g. SIR) ou des algorithmes d’appren-
tissage par renforcement (e.g. Q-learning). Ces approches

4. https://www.langchain.com
5. https://langchain-ai.github.io/langgraph
6. https://github.com/Significant-Gravitas/AutoGPT
7. https://github.com/team-openpm/workgpt
8. https://github.com/hyp1231/awesome-llm-powered-agent
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montrent leurs limites face à des tâches complexes. À l’in-
verse, les architectures cognitives s’appuient sur des mo-
dèles internes explicites qui imitent la cognition humaine
dans des processus comme la perception, la prise de déci-
sion, l’apprentissage ou la planification. Bien que plus dif-
ficile à concevoir, ces architectures délibératives permettent
des comportements complexes pour capturer la résolution
de problèmes par des humains. Les LLMs permettent d’en-
visager de repenser ces architectures pour surmonter les li-
mites de complexité et d’expressivité.
Les LLMs ont la capacité de simuler une grande diversité
de rôles sociaux afin de générer des représentations plus
nuancées et fidèles des processus décisionnels, des dyna-
miques de communication et des mécanismes d’adaptation
des agents [13]. Les LLMs possèdent la capacité d’émuler
un véritable humain dans certaines expériences en écono-
mie expérimentale ou en psychologie sociale – un « homo
silicus » – (e.g. [20]) et des capacités exceptionnelles dans
des scénarios sans apprentissage préalable (zero-shot) [12].
Les agents propulsés par les LLMs peuvent simuler des
perceptions, des raisonnements et des prises de décision
réalistes, réagir de manière adaptative aux environnements
sans instructions explicites prédéfinies en adaptant leurs ré-
ponses via des mécanismes d’apprentissage contextuel, gé-
nérer de manière autonome des objectifs, interagir et com-
muniquer en langage naturel [8]. Leur intégration enrichit
la fidélité des processus cognitifs et des simulations.
Park et al. [22] étudient les comportements sociaux émer-
gents d’une simulation multi-agents générative dans un en-
vironnement inspiré du jeu The Sims 9. Le comportement
crédible des agents et les dynamiques sociales qui émergent
reposent sur une architecture d’agent permettant aux agents
de :

1. récupérer des événements/interactions pertinentes.
Le comportement de l’agent est guidé par ses ex-
périences passées, i.e. une liste d’objets horodatés
décrits en langage naturel ;

2. réfléchir sur ces souvenirs. Les souvenirs sont syn-
thétisés en inférences de haut niveau, permettant à
l’agent de tirer des conclusions afin d’orienter son
comportement ;

3. planifier et réagir de manière cohérente. Les conclu-
sions tirées des souvenirs, ainsi que le contexte ac-
tuel, sont traduites en plans d’action globaux. Ceux-
ci sont ensuite détaillés en comportements spéci-
fiques et en réactions.

AGENTVERSE [2] est un cadre général multi-agents qui si-
mule les procédures de résolution de problèmes des groupes
humains en quatre étapes : 1) le recrutement d’experts
ajuste la composition du groupe en fonction de l’évolu-
tion de la résolution ; 2) la prise de décision collaborative
consiste à faire participer les agents sélectionnés à des dis-
cussions communes pour élaborer des stratégies de réso-
lution ; 3) l’exécution des actions par les agents dans leur
environnement pour mettre en œuvre les actions planifiées ;

9. https://github.com/a16z-infra/ai-town

4) l’évaluation des écarts entre l’état actuel et les résultats
souhaités. Si l’état actuel n’est pas satisfaisant, un retour
d’information est fourni pour affiner les itérations suivantes.
Les auteurs observent des comportements émergents posi-
tifs et négatifs : des comportements volontaristes assistant
leurs pairs, des comportements de conformité où les agents
déviants s’alignent sur l’objectif commun sous l’effet des
critiques et des comportements destructeurs qui entraînent
parfois des résultats indésirables.
En s’appuyant sur SANDBOX, une plateforme open-source
pour simuler une société humaine, Liu et al. [19] proposent
un cadre d’apprentissage de l’alignement (Stable Align-
ment) qui s’appuie sur des interactions sociales simulées
en trois étapes : imitation, auto-critique et réalignement.
L’émergence de normes sociales est encouragée par l’ins-
tauration de discussions sur des sujets sociétaux controver-
sés ou des questions associées à des risques.
Gao et al. [9] propose un SMA génératif nommé S3 (Social-
network Simulation System) pour simuler les processus de
propagation dans un réseau social. Ce SMA reproduit les
contenus générés par les utilisateurs en tenant compte de
leurs caractéristiques démographiques, du contexte infor-
mationnel et des mécanismes complexes qui gouvernent
la perception cognitive et la prise de décision des utili-
sateurs. Les auteurs combinent l’ajustement supervisé (cf.
Section 3) et la conception d’instructions (cf. Section 5)
pour déduire les caractéristiques démographiques des uti-
lisateurs à partir de données textuelles, avec une attention
particulière portée à la prédiction de l’âge, du genre et de
la profession. Cette approche permet aux LLMs de prédire,
en fonction des publications reçues, la propension d’un uti-
lisateur à repartager un contenu ou à en créer un nouveau.
Les LLMs sont ainsi mobilisés pour peupler la simulation
en capturant les relations complexes entre les profils des
utilisateurs et leurs comportements d’interaction.

9 SMA sur l’étagère
Comme évoqué dans la section 7, LangChain permet de
développer des applications basées sur des agents mais ces
derniers ne sont pas conçus pour communiquer et colla-
borer. La structuration des interactions LangGraph sous la
forme de workflows rend difficile la gestion de scénarios
où les agents doivent collaborer de manière complexe ou
effectuer des tâches nécessitant une coordination approfon-
die, comme le partage dynamique de connaissances ou la
prise de décision collective.
MetaGPT 10 [14] est un cadriciel pour créer des SMA géné-
ratifs dédiés au développement logiciel. Il propose de mo-
déliser le SMA comme une entreprise de services du numé-
rique, en s’appuyant sur la spécialisation des rôles, l’orga-
nisation des flux de travail, ainsi que des mécanismes effi-
caces de partage d’information, tels que les pools de mes-
sages et les systèmes d’abonnement.
CAMEL 11 [18] propose un cadre multi-agents génératif pour
l’accomplissement de tâches complexes. Il propose une

10. https://github.com/geekan/MetaGPT
11. https://github.com/camel-ai/camel
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technique appelée inception prompting pour faire émer-
ger des comportements de coopération. Cette bibliothèque
open-source inclut des implémentations de divers agents,
des pipelines de génération de données, des outils d’ana-
lyse de données et des jeux de données.
AutoGen 12[40] est un cadriciel polyvalent open-source
pour créer des systèmes muli-agents génératifs. Il permet
des schémas de conversation plus flexibles que CAMEL,
dynamiques intégrant (ou pas) une participation humaine.

10 Discussion
Sur le chemin vers le développement d’une intelligence ar-
tificielle plus générale et plus proche de celle des humains,
les SMAA génératifs, avec leurs capacités de raisonnement
et d’apprentissage continu, ouvrent des perspectives pro-
metteuses pour résoudre des problèmes dans des environ-
nements ouverts et simuler des dynamiques sociales com-
plexes.
Les agents autonomes génératifs sont capables d’interpré-
ter leur perception de l’environnement de manière contex-
tuelle, d’apprendre en continu à partir de nouvelles expé-
riences et d’effectuer des inférences logiques pour prendre
des décisions et accomplir des tâches variées, y compris
dans des situations non prévues par leur concepteur. Leur
aptitude à décomposer des tâches complexes en sous-tâches
plus simples et à générer des plans d’action détaillés leur
permet de s’adapter à des scénarios divers et dynamiques.
Les SMA génératifs, quant à eux, se distinguent par leur
capacité à partager des connaissances, à coordonner leurs
actions et à ajuster leurs stratégies en réponse aux retours
de l’environnement, ce qui les rend particulièrement effi-
caces pour la résolution de problèmes dans des environne-
ments ouverts. En outre, la simulation à base d’agents gé-
nératifs hétérogènes, capables d’émuler des comportements
sociaux humains et d’interagir avec d’autres agents ou hu-
mains dans des environnements virtuels, permet de repro-
duire des dynamiques sociales complexes.
Malgré des perspectives prometteuses, plusieurs défis
concernant les SMAA génératifs doivent encore être rele-
vés. Il est crucial d’assurer la reproductibilité des résultats
à travers différents modèles et essais. Par ailleurs, les bancs
d’essai et les critères d’évaluation actuels restent insuffi-
sants. Les comportements générés peuvent répliquer des
stéréotypes issus des données d’entraînement biaisés. De
plus, le déploiement à grande échelle de SMAA génératifs
est coûteux, en termes de consommation énergétique, de
ressources de calcul, voire de crédits liés à l’utilisation des
tokens pour des LLMs propriétaires. Ce déploiement néces-
site la gestion de volumes d’informations pouvant dépasser
la capacité de la fenêtre contextuelle de ces modèles. Cette
limitation plaide en faveur d’architectures hybrides, dispo-
sant d’un état interne explicite et persistant, essentielle à la
coordination et à la cohérence des comportements.
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Résumé
La détection d’anomalies vise à identifier des
comportements atypiques au sein des systèmes complexes.
Parmi les différentes approches développées dans ce
domaine, les réseaux de neurones graphiques (GNN) se
distinguent par leur efficacité. Dans cet article, nous
proposons une revue des méthodes fondées sur les GNN
pour la détection d’anomalies, et introduisons une nouvelle
taxonomie, construite autour des mécanismes de prédiction
d’anomalies utilisés.

Mots-clés
Détection d’anomalies, réseaux de neurones graphiques,
séries temporelles.

Abstract
Anomaly detection is the process of identifying unusual
behaviors in systems. In this wide-ranging field, graph
neural networks (GNNs) are highly effective compared to
the other proposed approaches in the literature. This article
summarizes the representative GNN-based methods for
anomaly detection and proposes a novel taxonomy based
on how these methods predict anomalies.

Keywords
Anomaly detection, graph neural network, time series.

1 Introduction
Real-world systems are generally complex and include vast
numbers of interconnected sensors. Anomaly detection
is an important task but is difficult in such complex
systems since capturing relationships between sensors and
detecting sensors deviating from these is challenging [10].
Graph Neural Networks (GNNs) [13] have emerged as
a robust AI method for anomaly detection in a wide
range of application domains, including spam detection
[4], fraud detection [11], cybersecurity [40], industrial
system supervision [10], etc. In a financial transaction
network, where nodes represent user accounts and edges
represent transactions, an anomaly may correspond to a
fraudulent account that interacts abnormally with others,
such as making high-frequency or high-value transactions
to unrelated accounts [38].

GNNs operate on graph-structured data, which can be
constructed from various types of raw data such as tabular
data, images, or time series, when a graph input is
not available, and they aim to learn data representations
(or embeddings) by capturing complex relationships from
the graph. In many real-world scenarios, time series
data constitute an essential setting for anomaly detection
since anomalies may occur over time. Time series
often involve multiple signals from system sensors that
may exhibit spatial dependencies among sensors and
temporal dependencies across different time steps [23].
In an industrial sensor network, time series data from
different sensors can be modeled as a graph, where nodes
represent sensor variables, and edges reflect their spatial
or temporal correlations. An anomaly might occur as a
sudden deviation in one sensor’s behavior that breaks the
normal relationship with others over time [10]. In all
settings, GNNs offer a unified framework for capturing
the underlying spatial or temporal patterns and identifying
abnormal behaviors.

The survey [24] reviews GNN-based anomaly detection
techniques. [23] analyzes GNN methods for different
time series tasks, including anomaly detection. Moreover,
[26] proposes a survey of anomaly detection approaches in
graph data based on different types of anomalies, graphs,
and graph-based methods, including GNNs. Unlike the
recent survey [43] that summarizes different types of
GNN-based anomaly detection methods based primarily
on data distribution assumptions (such as whether normal
or anomalous data boundaries are clearer), we propose
an embedding-centric taxonomy focused on how the
learned embeddings by GNNs are utilized for anomaly
detection independently of the original anomaly boundary
assumptions and the input raw data nature. Specifically, we
classify representative GNN-based methods for anomaly
detection based on whether embeddings are directly used
for classification, for target value prediction, or for
embedding similarity to identify anomalies, offering a
complementary perspective to the existing literature. We
also discuss the particular case of anomaly detection with
GNN when the inputs are time series.

The rest of this paper is organized as follows. Section 2
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gives a background on graphs and GNNs. Section 3
proposes the taxonomy based on different GNN methods
for anomaly detection. Section 4 discusses the particular
case of anomaly detection with GNNs where the inputs
are time series, and Section 5 presents the conclusions and
future directions.

2 Background
A graph is denoted as G = (V,E), where V is the set
of nodes, and E is the set of edges. Graphs can be
presented by an adjacency matrix A ∈ R|V |×|V | where
Ai,j = 1 if (vi, vj) ∈ E and Ai,j = 0 otherwise. For
a node vi ∈ V , the set of neighbors N(vi) contains the
nodes adjacent to vi. A graph can have attributes or feature
information on nodes/edges. Generally, a node feature
matrix is denoted as X ∈ R|V |×d, where d is the number
of attributes [17]. A graph can be directed or undirected;
that is, edges of directed graphs are directed from one
node to another [7]. The graph can be homogeneous or
heterogeneous. If only one type of node exists and one
type of edge, the graph is homogeneous; otherwise, it is
heterogeneous [29]. In a temporal aspect, a graph can be
static or dynamic. In dynamic graphs, input features or
the graph structure vary over time, reflecting the changing
relationships and attributes within the network, while in
static graphs, the graph structure remains fixed [17].
GNNs process graph-structured data to capture complex
relationships and extract significant system information.
The key principle behind GNNs is aggregating information
from a node’s local neighborhood to learn node
representations or embeddings. That is, a node’s state is
affected by the states of its neighboring nodes.
For a given graph G = (V,E,X), where X ∈ R|V |×d is
the input feature matrix, xi is the d-dimensional input node
feature vector of vi, GNN learns the node representation
hi for each vi ∈ V . During a L-layer GNN training, the
node embedding at the l-th GNN layer h(l)i is updated based
on aggregated information from vi’s neighborhood N(vi).
This update can be formalized as follows:

m
(l)
i = AGG(l)

({
h
(l−1)
j ,∀vj ∈ N(vi)

})
, (1)

h
(l)
i = UPDATE(l)

(
h
(l−1)
i ,m

(l)
i

)
(2)

where UPDATE and AGG are differentiable functions
with AGG as permutation invariant that can operate on
multiple inputs (e.g., element-wise sum, mean, or max).
This function takes node embeddings of vi’s neighbors as
input and computes a message m

(l)
i by aggregating the

information coming from neighbors. Then, the UPDATE
function combines the message and previous vi’s node
embedding to obtain the current node embedding.
We note that the initial embeddings at l = 0 are input node
features, i.e., h(0)i = xi. After L iterations, the output of
GNN is a set of node embeddings {h(L)

i ,∀vi ∈ V } where
each obtained node embedding includes information about
its L-hop neighborhood.

Regarding the Equation 1, a simple GNN message-passing
mechanism [13] can be constructed as follows:

h
(l)
i = σ


W (l)

selfh
(l−1)
i +W

(l)
neigh

∑

vj∈N(vi)

h
(l−1)
j + b(l)




(3)
where W (l)

self ,W
(l)
neigh ∈ Rd(l)×d(l−1) are trainable weight

matrices with d(l), d(l−1) embedding dimensions of the
corresponding layer and σ is a non-linearity function. b(l) ∈
Rd(l) is the bias term, which is often neglected. This simple
GNN formulation can be decomposed as:

m
(l)
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∑

vj∈N(vi)

h
(l−1)
j , (4)
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(l−1)
i ,m

(l)
i ) = σ(W

(l)
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i +W

(l)
neighm

(l)
i )

(5)

Among the different GNN formulations, classical GNN
layers are Graph Convolutional Networks (GCNs) [25],
GraphSAGE (Graph Sample and Aggregate) [16], and
Graph Attention Networks (GATs) [36], each with the
functions for aggregation and message computation.
GCN and GraphSAGE suppose that all neighbors vj ∈
N(vi) are equally important to the node vi, that is, the
messages coming from neighbors have the same weighting
factor (importance), which is based on the node degree.
However, some neighbors might be more relevant in some
cases than others. Thus, Graph Attention Networks (GATs)
introduce attention mechanisms to learn different weights
for different neighbors [36]. The node embedding of vi at
the l-th GAT layer is defined as:

h
(l)
i = σ


 ∑

vj∈N(vi)

αijW
(l)h

(l−1)
j


 (6)

whereαij are attention weights across a pair of nodes vi, vj .
To determine αij , we first compute attention coefficients
eij , which indicate the importance of vj to node vi:

eij = a(W (l)h
(l−1)
i ,W (l)h

(l−1)
j ) (7)

where a is an attention mechanism (e.g., a single-layer
neural network). Then we normalize eij using the softmax
function to obtain the final attention weight αij :

αij = softmaxj(eij) =
exp(eij)∑

vk∈N(vi)
exp(eik)

(8)

3 Anomaly Detection with GNNs
In graphs, anomalies may appear at the node-level, edge-
level, or graph-level. At the node level, an anomaly
can be seen on node attributes as a significantly different
characteristic. Regarding neighborhood interaction, an
anomaly can be present in structural patterns such as
unusual degrees of connections or unexpected labels, etc.
An edge can be anomalous at the edge-level if it has an
abnormal edge weight compared to the distribution of the
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Figure 1: Overview of GNN’s two-layer version of a message-passing mechanism. It shows the aggregation of messages
from A’s local neighbors on the graph, which are B, C, and D. Concept adapted from [17].

other edge weights. The discovery of an unexpected link
or absence of any edge might also be pointed out as an
anomaly. At the graph-level, a graph can be anomalous
if it has unusual structural patterns or unexpected changes
compared to other input graphs [26].
In anomaly detection, the training dataset may include
normal and anomalous instances (fully or partially labeled)
or only normal instances. In the former case, GNN can
directly learn to identify instances as normal or anomalous
based on known labels, while in the latter, GNN learns the
expected behavior. The embeddings generated by GNN
can be fed into the prediction phase using a classifier
that performs a prediction function to decide whether an
instance is anomalous. Further, the embeddings may be
used to predict a value of a specific instance. Moreover,
they can be compared with each other through similarities
between them to infer anomaly information. In this survey
we introduce a taxonomy that reflects these three ways of
leveraging the embeddings learned by GNN for anomaly
detection: via direct prediction, comparison with target
values, or evaluation of embedding similarities.

3.1 Direct Prediction of Anomalies
The first category focuses on direct prediction of anomalies
using a classifier function. Most methods in this
category perform a training process under supervision, i.e.,
supervised (labeled normal and abnormal data) or semi-
supervised (only labeled standard data). Depending on the
task level, a given entity (node, edge, or graph)’s learned
representation by GNN is used as input by a classifier that
decides whether the entity is anomalous.
[4], GEM [29], and HACUD [20] aim to detect
spam profiles/malicious accounts in social networks by
considering a graph where accounts are nodes and
communications between accounts are edges. Learned
node embeddings by GNN-based models are passed to a
classifier to predict whether an account is malicious.
SemiGNN [38] combines GNN with attention mechanisms
to detect fraud in financial transaction networks that contain

different types of relationships. Final user embeddings
are obtained by combining the learned relation-specific
embeddings. Then the users are classified as fraudulent
or not. Likewise, CARE-GNN [11] aims to detect
camouflaged fraudsters by applying a similar approach on a
multi-relation graph. On the other hand, DeepHGNN [39]
detects anomalies in program executions by modeling
the different relationships (events) between different node
types (programs, files, etc.). It models the program’s
behavior by an attention-based GNN model and checks
whether the given event corresponds to that program.
GAS [28] identifies spam reviews using GCNs to model
the interactions between reviews, users, and products. GAS
learns embeddings for each review, which are then fed
to a classifier to decide whether it is a spam comment.
iDetective [46] introduces an attributed heterogeneous
information network to identify key players in hack
forums. Learned user embeddings are fed to Support
Vector Machine (SVM) to classify the user as a key player
(anomalous) or a non-key player (standard). MVAN [35]
employs GNNs to detect anomalous players with fraudulent
money trading activities in online games by leveraging
multiple player relationships.
AddGraph [49] models a dynamic graph and identifies
abnormal changes in the graph’s connections for telecom
and social networks. Learned node embeddings are then
used to classify edges as anomalous or normal based on the
computed edge anomaly score at the current timestamp.

3.2 Target Value Prediction
The GNN-based methods in this category predict future
time series values by learning the expected behavior of
systems. Due to that, they can be considered one-class
methods since the training dataset contains observations
from only one class (normal). An anomaly can be predicted
via a forecasting-based model that predicts the target value
at t + 1 based on historical normal data on a temporal
window [t−w, . . . , t]. When the predicted value differs too
much from the observed one, an anomaly is detected [34].
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This step usually involves a single fully connected layer or
Multilayer perceptron (MLP).
Anomalies can also be identified by a reconstruction-based
model, which aims to reconstruct given inputs. The model
can approximate well the normal inputs, but it fails to
reconstruct abnormal ones [23].
MTAD-GAT [48], GTAD [14], and HAD-MDGAT [52]
apply jointly a reconstruction module and a forecasting
module after obtaining node embeddings from a GAT-based
model. For each node, an anomaly score is defined based
on the predicted value by the forecasting module and the
reconstruction probability obtained from the reconstruction
module. Similarly, [12] aims to detect leaks in water
distribution networks (WDNs), where nodes are sensors
and edges are pipes. With partially observed nodal
pressures, the model reconstructs and predicts complete
nodal pressure values, respectively. Then, edge-wise
prediction errors are computed to detect leakages. On
the other hand, GReLeN [45] uses only a reconstruction
module after combining Variational Auto Encoder (VAE)
and an attention-based GNN for learning graph structure.
GTA [7], GDN [10], CST-GL [50], and STGDNN [15] use
a forecasting approach and aim to learn a graph structure
along with the GNN-based model. For learning node
embeddings, while GTA applies a transformer-based GNN,
GDN and STGDNN use a GAT-based model.
DyGraphAD [21] models a multivariate time series as
a set of dynamic correlation graphs. At the forecasting
step, it predicts the dynamic correlation graph and the
sensor values used to compute an anomaly score for the
timestamp. On the other hand, DGNN [5] leverages
dynamic neighborhood subgraphs based on correlations,
and a GAT-based model to forecast sensor values. [27] also
employs a forecasting approach, but for finding anomalies
in interconnected traffic flows. The model uses GNN
with attention mechanism to extract a context of the flows
based on their past traffic activity and then forecast the
next value of the flow. GSC-MAD [47] forecasts sensor
values by analyzing changes in learning graph structure.
An anomaly score at the timestamp is calculated by
combining prediction deviations and differences between
the new and stable graph structures. GST-Pro [51] deals
with missing values by modeling dynamic graph neural
controlled differential equations on multi-sensor data to
learn embeddings for each sensor, which are then used for
forecasting sensor values.

3.3 Embedding Similarity
In the third category, the focus is put on learned
embeddings. Anomalies are detected by analyzing how
similar or dissimilar embeddings are. This can be done
using a clustering approach where nodes with similar
embeddings are grouped into clusters, or using similarity
metrics where the distance or similarity between node
embeddings can indicate abnormality.
MatchGNet [40] applies a graph-matching approach based
on the similarities between known benign and unknown
programs. For a given unknown program, MatchGNet

computes its graph embedding, and then the cosine
similarity between the ones of the existing programs is
computed. Based on a threshold, the unknown anomalous
programs are identified. From normal data, OCGNN [41]
learns the node embeddings to find a minimal hypersphere
that encloses them. The node is detected as anomalous if
a given node’s embedding is outside of this hypersphere.
GraphSAD [6] aims to detect a sequence of abnormal
observations in a time series split into subsequences. An
abnormal subsequence is detected by comparing the learned
embedding with reference subsequence embeddings based
on its neighbors.
While our proposed taxonomy offers a general perspective
on how GNN-learned embeddings can be used for anomaly
detection, the specific nature of the input data can
significantly influence how these methods are structured. In
particular, time series data often exhibit introduce temporal
dependencies that require appropriate graph construction
and adaptation of GNN architectures. In the following
section, we analyze a subset of the surveyed GNN-based
anomaly detection methods that consider time series as
input, and discuss how they represent spatial and temporal
dependencies within graph-based frameworks.

4 Anomaly Detection with GNNs in
Time Series

Time series is a key data type in most systems that record
masses of data over time [18, 23]. Formally we denote a
time series X as:

X = {X1, X2, ..., XT } ∈ RN×T (9)

where Xt = (xt,1, xt,2, ..., xt,N ) is the vector of values
across N variables at time t, and xt,i is the value of the
i-th variable at time t [44]. Among the methods mentioned
in Section 3, [29, 35, 49, 42] and all the methods presented
in Section 3.2 focus on anomaly detection in multivariate
time series, while [6] deals with univariate time series.
Anomalies in time series may occur as a single point (e.g.,
at a given time step), referred to as point anomalies, or as
a subsequence that deviates significantly from the expected
behavior [44], referred to as collective anomalies [3]. For
a long time series, fixed-length samples generated by a
sliding window of length T are used as inputs. For
point anomalies, the objective of the anomaly detection in
multivariate time series is to decide if a point at a given
timestamp i is an anomaly or not, i.e., compute an output
vector y ∈ RT , where yi ∈ {0, 1} indicates whether the
timestamp i is an anomaly [48].
In complex systems, where time series reveal the evolution
of measurements in multiple sensors, anomalies may arise
not only from the characteristics of variables but also
from the relationships between variables [48]. Due to the
graph’s capacity to exhibit complex data structures, GNNs
have emerged as a powerful tool for revealing complex
relationships on non-Euclidean data [18]. GNNs can
capture the links between variables within a multivariate
time series (spatial dependency) and dependencies between
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Figure 2: Taxonomy of the representative GNN-based methods for anomaly detection. Direct prediction of anomalies
can be done by interpreting the output layer of the GNN where an activation function (softmax, ReLU, etc.) is applied, or the
learned embeddings can be fed into a separate classifier (MLP, logistic regression, SVM, etc.). The methods in the second
category can use a forecasting or reconstruction-based approach. Further, some methods combine these two techniques. The
third category contains methods that compare the similarity of the learned embeddings of GNN to detect anomalies. They can
compare by using the cosine similarity, the similarity to a reference, or the similarity based on a defined sphere location.

different time points (temporal dependency). A recent
survey by [23] offers a comprehensive overview of GNN
methods in time series for several major tasks, including
anomaly detection. Other recent surveys [18, 44] review
the time series anomaly detection techniques using graphs
and deep learning methods (including GNNs).
A graph structure can be learned directly from input time
series data or constructed by computing several metrics
or functions, such as spatial proximity, attribute similarity,
etc. Spatial proximity aims to compute proximity between
nodes’ locations based on, for example, the shortest path
between nodes [23]. Meanwhile, attribute similarity
determines the similarity between node attributes and then
connects similar nodes. This can be done, among other
ways, by computing Euclidean distance, cosine similarity,
Pearson Correlation Coefficients (PCC), or dynamic time
warping (DTW) [31] between time series [18, 23].
Multivariate time series data can be introduced as a spatial-
temporal graph. It is a set of graphs G = {G1,G2, ...,GT }
with Gt = (At, Xt) a graph at time t where At ∈ RN×N

is the adjacency matrix and Xt ∈ RN×d is the node-
feature matrix with d being the feature dimension [23].
The adjacency matrix At may remain fixed (static case)
or evolve in time (dynamic case). Thus, spatial-temporal
graphs allow GNN to capture in an explicit way both:

• Spatial (inter-variable) dependencies: Relationships
between nodes (e.g., sensors, devices).

• Temporal (intra-variable) dependencies: Evolving
patterns over time (e.g., periodic behaviors or
sequential dependencies) [44].

Several techniques exist in the spatial-temporal graph
structures to integrate temporal dependency into GNNs.
One approach is to include time-specific features for
each node, for example, the average or variance of past
values [22]. Another approach uses a sliding window,
where the data can be divided into overlapping fixed-length
windows, creating a separate graph for each window [48].
This allows the GNN to learn spatial relationships in each
window while implicitly considering the temporal context.
Another approach is to insert some hybrid architectures
that combine GNNs with temporal modeling methods
such as RNN [1], LSTM [19], or GRU [8], allowing
them to model time dependencies explicitly. Moreover,
Temporal GAT (TGAT) [9], which employs a self-attention
mechanism with a functional time encoding, or Temporal
Convolutional Networks (TCNs) [2], which use a 1D
fully-convolutional network (FCN) [30] architecture and
causal convolutions, might be applied to extract temporal
dependencies. In such hybrid architectures, the spatial and
temporal layers can be combined directly (e.g., using GCNs
for spatial learning and GRUs for temporal patterns) or by
stacking the temporal layer on the GNN spatial layer (e.g.,
processing a GRU after a GNN) [23, 44].

[12, 27], GEM [29], GDN [10], and GSC-MAD [47]
can extract spatial dependencies between nodes, but
they ignore temporal dependencies between different
timestamps. Meanwhile, AddGraph [49] extends GCN to
a temporal GCN with an attentional GRU to capture the
nodes’ long- and short-term temporal patterns. Similarly,
GReLeN [45] applies an architecture combined with GRU
and GNN. However, MTAD-GAT [48] employs a GAT
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model as a spatial-temporal encoder with spatial and
temporal GAT layers. The spatial GAT learns spatial
dependencies between sensors, while the temporal GAT
extracts temporal relationships from a given input in a
sliding window; it considers a fully connected graph where
timestamps in the sliding window are nodes. Concatenated
learned embeddings across layers are fed into a GRU
as a forecasting module to capture long-term temporal
dependencies as in HAD-MDGAT [52]. However, in
HAD-MDGAT, GRU output is used in forecasting and
reconstruction modules for model inference. Besides,
Event2Graph [42] extends the TGAT architecture to model
the temporal dependency on the node level. At the same
time, GTA [7] employs a transformer-based architecture
within a hierarchical causal convolution to extract temporal
dependencies. GTAD [14] uses a TCN to extract temporal
information and a variant of GAT for spatial dependencies.
The obtained embeddings are fed into the forecasting and
reconstruction models, which both contain a TCN module
to avoid losing temporal information.
DyGraphAD [21] applies DTW for constructing dynamic
correlation graphs for each input subsequence from a
multivariate time series that computes similarities between
pairwise time series. Then, embeddings of these graphs
and representations of subsequences are learned via a
temporal-based GNN architecture. CST-GL [50] combines
GCN and TCN for spatial and temporal convolutions,
respectively. Similarly, DGNN [5] uses GRU, a forecasting
module to predict values at the next time step and
extract temporal dependency. Further, STGDNN [15]
extends the GDN [10] architecture as a spatial-temporal
GNN framework by inserting spatial-temporal relationships
in the graph structure. GST-Pro [51] exploits spatial
and temporal dependencies by modeling Dynamic Graph
Neural Controlled Differential Equations.

5 Conclusion
In this paper, we reviewed the representative GNN-based
methods for anomaly detection and proposed a taxonomy
based on how these use learned embeddings for predicting
anomalies. We discussed the specific case of the GNNs for
anomaly detection, where the inputs are time series.
This review highlights that GNNs are well-suited solutions
for the anomaly detection task due to their capacity
for modeling complex systems. The message-passing
technique allows GNNs to generate embeddings that
contain rich neighborhood information. These learned
embeddings are then used in many ways to identify
anomalies. Our taxonomy helps researchers better
understand anomaly detection using GNNs by clarifying
the differences in the ways anomalies are identified using
the generated embeddings from GNNs.
In the anomaly detection, it’s crucial to understand why a
particular event is flagged as anomalous and how to validate
the relevance of these detected anomalies [33]. Therefore,
as future work, we intend to study the anomaly detection
in industrial production lines using GNNs, and explain the

detected anomalies using counterfactual explanations by
focusing on alternative scenarios [37]. That is, we aim
to generate counterfactual explanations that would indicate
what changes to an anomalous instance would make it be
considered normal [33]. Another research direction is to
explore how to determine which system components are
malfunctioning through model-based diagnosis [32].
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Résumé
Des agents entrainés peuvent exhiber des comportements
collectifs, d’où l’on peut extrapoler des rôles et objectifs
implicites par analogie d’une organisation structurée et
fonctionnelle. Nous proposons MOISE+MARL, un cadre
qui contraint les agents à évoluer selon une telle organi-
sation pour améliorer le contrôle et l’explicabilité en ap-
prentissage par renforcement multi-agent. MOISE+MARL
guide les agents vers des rôles et missions en ajustant dy-
namiquement leurs actions et récompenses. Il inclut une
analyse post-entraînement pour inférer des spécifications
organisationnelles implicites. Expérimenté sur divers envi-
ronnements, il démontre un alignement entre les comporte-
ments des agents, les spécifications définies et celles infé-
rées.

Mots-clés
Apprentissage par renforcement multi-agent, Explicabilité,
Contrôle, Organisation

Abstract
Trained agents can exhibit collective behaviors, from which
roles and implicit objectives can be extrapolated by ana-
logy with a structured and functional organization. We pro-
pose MOISE+MARL, a framework that constrains agents
to evolve within such an organization to enhance control
and explainability Multi-Agent Reinforcement Learning.
MOISE+MARL guides agents toward roles and missions
by dynamically adjusting their actions and rewards. It also
includes a post-training analysis to infer implicit organiza-
tional specifications. Tested across various environments, it
demonstrates alignment between agent behaviors, predefi-
ned specifications, and inferred ones.

Keywords
Multi-Agent Reinforcement Learning, Explainability,
Control, Organization

*Cet article est traduit d’un article long accepté à AAMAS [30].

1 Introduction
L’apprentissage par renforcement multi-agent [19] (Multi-
Agent Reinforcement Learning - MARL) permet de trouver
une politique conjointe qui régit les actions individuelles
des agents et leurs interactions pour atteindre un objectif
sans gérer explicitement leur coordination. Dans des envi-
ronnements nécéssitant des interactions sociales, les agents
peuvent aboutir à des comportements semblables à des rôles
et objectifs implicites, qui les rapprochent en partie d’une
organisation (structurelle et fonctionnelle) telle que décrite
dansMOISE+ [14].
Toutefois, l’identification de ces rôles et objectifs émer-
gents reste complexe en raison de comportements sou-
vent bruités ou irréguliers. Afin d’interpréter des com-
portements comme des rôles et objectifs d’une organi-
sation implicite, nous introduisons l’adéquation organi-
sationnelle. Ce concept propose une vision organisation-
nelle pour envisager deux problèmes encore peu explo-
rés que sont le controle et l’explicabilité dans le MARL
au travers de : i) L’évaluation de l’adéquation organisa-
tionnelle consiste à mesurer l’alignement d’une politique
conjointe avec une organisation explicite où les comporte-
ments sont réguliers. La littérature, souvent centrée sur les
rôles [1, 33, 35], manque d’approches systématiques dotées
de moyens quantitatifs ; ii) Le contrôle de l’adéquation
organisationnelle consiste à orienter les agents vers des po-
litiques conformes à une organisation via des contraintes ou
incitations définies. Ce contrôle induit la réduction de l’es-
pace de recherche, l’amélioration de la convergence et le
respect des contraintes de sécurité, sans recourir au Hierar-
chical Reinforcement Learning (HRL).
Cet article présente le cadre MOISE+MARL que nous
avons introduit dans [30]. MOISE+MARL apporte une
contribution synthétique en simplifiant la complexité de nos
premiers travaux sur l’intégration d’un modèle organisa-
tionnel en MARL [29, 28] en se recentrant sur les notions
de rôles et objectifs, permettant une meilleure utilisabilité
et scalabilité. Il combine un formalisme Markovien et le
modèle organisationel MOISE+ [14] pour permettre de
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spécifier la logique des rôles et objectifs. Une fois confi-
guré, ce cadre permet d’attribuer des rôles et objectifs aux
agents en ajustant dynamiquement les actions et la récom-
pense. Dans MOISE+MARL, nous proposons également
la méthode Trajectory-based Evaluation in MOISE+MARL
(TEMM) pour inférer des rôles et objectifs implicites à par-
tir de trajectoires collectées via des techniques d’apprentis-
sage non supervisé, évaluant ainsi quantitativement l’adé-
quation organisationnelle. Contrairement au HRL, qui dé-
compose les tâches en interne [23, 18, 26], MOISE+MARL
guide les agents vers des rôles et objectifs de façon externe.
Nous avons évalué MOISE+MARL avec : i) Quatre envi-
ronnements différents, chacun entraînant des politiques né-
céssitant des organisations implicites variées, afin d’éva-
luer la généralisabilité du cadre ; ii) Quatre algorithmes
MARL de familles distinctes, pour mesurer leur adéquation
avec MOISE+MARL lors de l’entraînement et de l’ana-
lyse post-entraînement ; iii) Un ensemble de spécifica-
tions organisationnelles par environment, permettant une
évaluation manuelle et quantitative de leurs impacts. Une
observation manuelle montre qu’un agent adoptant un rôle
et engagé dans une mission, s’aligne effectivement sur le
comportement attendu, confirmant la mesure de l’adéqua-
tion organisationnelle obtenue via TEMM. Les rôles et mis-
sions inférés s’alignent sur les spécifications prédéfinies,
démontrant la cohérence interne du cadre. Par ailleurs, les
algorithmes basés sur la politique et les acteur-critique pro-
duisent des politiques stables, tandis que ceux basés sur la
valeur présentent une variabilité plus importante.
La section 2 présente les travaux sur l’adéquation organi-
sationnelle, la section 3 introduit MOISE+MARL, la sec-
tion 4 décrit TEMM, la section 5 expose le protocole expéri-
mental et la section 6 les résultats, puis la section 7 conclut.

2 Travaux connexes
Cette section explore des travaux qui lient des aspects de
l’organisation dans le MARL.

2.1 Évaluation de l’adéquation organisation-
nelle

Certains travaux se sont intéressés à l’inférence de rôles ou
d’objectifs pour mesurer l’adéquation organisationnelle ou
des concepts similaires. Wilson et al. [5] proposent un trans-
fert de rôles dans les environments multi-agent pour faci-
liter l’adaptation entre environnements, mais leur modèle
se limite à des rôles spécifiques liés aux tâches. Berenji et
Vengerov [7] étudient la coordination et l’inférence de rôles
dans des missions Unmanned Aerial Vehicles pour renfor-
cer la coopération, sans permettre d’inférer les rôles im-
plicites requis. Yusuf et Baber [34] utilisent des méthodes
bayésiennes pour coordonner des agents diversifiés, mais
leur approche manque d’abstraction des rôles et n’évalue
pas l’alignement avec une structure organisationnelle glo-
bale. Serrino et al. [27] explorent l’inférence dynamique des
rôles dans des environnements sociaux, se concentrant sur
des rôles opérationnels immédiats plutôt que sur des rôles
implicites.

Les travaux identifiés intègrent des mécanismes internes
impliquant une inférence « faite-main » implicite des rôles
pour servir une coordination globale. Néanmoins, aucun ne
se focalise sur l’inférence générale des rôles et objectifs ni
sur la mesure de l’adéquation organisationelle.

2.2 Contrôle de l’adéquation organisation-
nelle

Le contrôle de l’adéquation organisationnelle consiste à ali-
gner les politiques des agents sur une organisation prédéfi-
nie via des contraintes ou incitations. Par exemple, Achiam
et al. [16] présentent le Constrained Policy Optimization
(CPO), qui ajuste les politiques avec des contraintes de sé-
curité tandis que nous souhaitons aller plus loin en appli-
quant des contraintes externes qui modifient dynamique-
ment l’espace d’action pour orienter les agents vers des
comportements organisationnels.
Ray et al. [4] intègrent des contraintes dans la récompense
via des multiplicateurs de Lagrange mais ne les exploite pas
pour structurer les comportements de plusieurs agents. De
même, alors que Garcia et al. [12] et Alshiekh et al. [21]
se concentrent sur l’exploration sécurisée (shielding), nous
cherchons à guider les agents vers des comportements ali-
gnés avec des rôles.
Plutôt que de décomposer les tâches en sous-tâches comme
le HRL [13], nous voulons contraindre le MARL de ma-
nière externe, assurant une granularité modulaire et des
comportements affinés. Enfin, la coordination décentrali-
sée par partage des connaissances [15] illustre l’importance
d’une communication maîtrisée pour garantir l’adéquation
organisationnelle dans les systèmes complexes.
Poursuivant les approches comme le shielding ou le CPO,
nous souhaitons intégrer des contraintes organisationnelles
externes en MARL standard, modifiant actions et récom-
penses pour s’aligner sur des rôles et objectifs.

3 Le cadre MOISE+MARL
Cette section présente le formalisme utilisé pour décrire le
cadre MOISE+MARL.

3.1 Cadre de Markov pour le MARL
Pour appliquer les techniques de MARL, nous nous ap-
puyons sur le Decentralized Partially Observable Markov
Decision Process (Dec-POMDP) [22]. Les Dec-POMDP
modélisent naturellement la coordination décentralisée
multi-agent en situation d’observabilité partielle, ce qui les
rend particulièrement adaptés à l’intégration de contraintes
organisationnelles. Contrairement aux Partially Observable
Stochastic Games (POSG), le Dec-POMDP comprend une
fonction de récompense commune, favorisant ainsi la col-
laboration [8].
Un Dec-POMDP d ∈ D (où D est l’ensemble
des Dec-POMDP) est défini comme un 7-uplet d =
〈S, {Ai}, T,R, {Ωi}, O, γ〉, où S = {s1, . . . , s|S|} est
l’ensemble des états possibles ; Ai = {ai1, . . . , ai|Ai|}
est l’ensemble des actions possibles pour l’agent i ; T
représente l’ensemble des probabilités de transition, avec
T (s, a, s′) = IP(s′|s, a) qui correspond à la probabilité
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de passer de l’état s à l’état s′ suite à l’action a ; R :
S × A × S → R est la fonction de récompense, attri-
buant une récompense en fonction de l’état initial, de l’ac-
tion effectuée et de l’état résultant ; Ωi = {oi1, . . . , oi|Ωi|}
est l’ensemble des observations possibles pour l’agent i ;
O représente l’ensemble des probabilités d’observation, où
O(s′, a, o) = IP(o|s′, a) est la probabilité d’obtenir l’obser-
vation o après avoir effectué l’action a et atteint l’état s′ ;
et enfin, γ ∈ [0, 1] est le facteur d’actualisation.
Le formalisme suivant est utilisé avec MOISE+MARL pour
résoudre le Dec-POMDP [8, 3] : i)A représente l’ensemble
des n agents ; ii) Π désigne l’ensemble des politiques,
où une politique π ∈ Π, π : Ω → A, associe de ma-
nière déterministe une observation à une action, représen-
tant ainsi la stratégie interne de l’agent ; iii) Πjoint repré-
sente l’ensemble des politiques conjointes, avec une poli-
tique conjointe πjoint ∈ Πjoint, πjoint : Ωn → An = Πn,
qui sélectionne une action pour chaque agent en fonction
de leurs observations respectives, constituant ainsi une col-
lection de politiques utilisée par les agents d’une même
équipe ; iv) H est l’ensemble des historiques, où un his-
torique (ou trajectoire) sur z ∈ N étapes (typiquement le
nombre maximal d’étapes dans un épisode) est représenté
par le z-uplet h = 〈〈ωk, ak〉 | k ≤ z, ω ∈ Ω, a ∈ A〉, cap-
turant les observations et actions successives ; v) Hjoint

désigne l’ensemble des historiques conjointes, avec un
historique conjoint hjoint ∈ Hjoint sur z étapes défini
comme l’ensemble des historiques individuels : hjoint =
{h1, h2, . . . , hn} ; vi) Vjoint(πjoint) : Πjoint → R dé-
signe la récompense cumulative attendue sur un horizon
fini (en supposant γ < 1 ou si le nombre d’étapes dans un
épisode est fini), où πjoint représente la politique conjointe
pour l’équipe i, les politiques conjointes des autres équipes,
πjoint,−i, étant considérées comme fixes.
Nous définissons la résolution du Dec-POMDP comme
la recherche d’une politique conjointe πjoint ∈ Πjoint qui
atteint au moins une récompense cumulative attendue de s,
où s ∈ R.

3.2 Le modèle organisationnelMOISE+
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FIGURE 1 – Une vue synthétique de MOISE+

Spécifications structurelles (SS) : Elles définissent la
structure des agents, notées SS = 〈R, IR,G〉, où
R est l’ensemble des rôles, avec une relation d’hé-
ritage IR (c’est-à-dire, ρ1 @ ρ2 si ρ1 hérite de
ρ2). De plus, GR spécifie des groupes sous la forme

〈R,SG,Lintra,Linter, Cintra, Cinter, np, ng〉, où L dé-
signe les liens (connaissance, communication, autorité) et
C les compatibilités entre rôles, avec np et ng indiquant
respectivement le nombre de rôles et de sous-groupes.

Spécifications fonctionnelles (FS) : Elles décrivent les ob-
jectifs des agents et sont notées FS = 〈SCH,PO〉. Le
schéma social SCH comprend les objectifs globaux G,
les missions M et les plans P organisant ces objectifs
(via l’opérateur op pour séquence, choix ou parallèle). Les
missions regroupent des ensembles d’objectifs (mo) et le
nombre d’agents par mission est donné par nm, tandis que
PO représente les préférences (ex. m1 ≺ m2).

Spécifications déontiques (DS) : Elles précisent la rela-
tion entre rôles et objectifs, notées DS = 〈OBL,PER〉.
Les contraintes temporelles T C fixent les périodes pour les
permissions/obligations (ex. Any pour tout moment). Les
obligations OBL imposent aux agents en rôle ρa d’exécu-
ter la missionm aux moments tc, tandis que les permissions
PER les autorisent. La fonction rds associe à chaque rôle
une spécification sous la forme 〈tc, y,m〉, avec y = 0 pour
permission et y = 1 pour obligation.
Les autres spécifications structurelles (compatibilités, liens)
sont inhérentes aux rôles. De même, les objectifs (in-
cluant missions et mo) sont inhérents aux autres spécifi-
cations fonctionnelles (plans, cardinalités, ordres de pré-
férence). Considérer les rôles, les missions et les permis-
sions/obligations est suffisant pour lierMOISE+ au Dec-
POMDP.

3.3 Liaison deMOISE+ avec le MARL
Alors qu’AGR [10] (Agent Group Role) est un cadre infor-
mel qui introduit des rôles par groupes, MOISE+ offre
une description plus détaillée et flexible des structures et
fonctions d’un système multi-agent (MAS), facilitant ainsi
la formalisation des politiques en MARL.

Guides de Contraintes : Trois relations décrivent la lo-
gique des rôles et objectifs dans le cadre Dec-POMDP :
i) Guide d’action de rôle rag : H × Ω → P(A × R) :
Pour chaque couple (h, ω) (h ∈ H , ω ∈ Ω), il associe
un ensemble d’actions Aω ⊆ A avec une rigidité ch ∈
[0, 1] (par défaut ch = 1), restreignant ainsi le choix de
la prochaine action ; ii) Guide de récompense de rôle
rrg : H × Ω × A → R : Défini par rrg(h, ω, a) = rm
si a /∈ Aω (avec rag(h, ω) = Aω × R), et 0 sinon, afin
d’encourager le respect du rôle ; iii) Guide de récom-
pense d’objectif grg : H → R : Attribue un bonus rb à la
récompense globale si h contient une sous-séquence carac-
téristique hg ∈ Hg correspondant à un objectif.

Lieurs : Relient les spécifications de MOISE+ aux
Guides de Contraintes et aux agents : i) Agent vers Rôle
ar : A → R (relation bijective) ; ii) Rôle vers Guide
de Contrainte rcg : R → rag ∪ rrg : Associe à chaque
rôle une relation rag ou rrg ; iii) Objectif vers Guide
de Contrainte gcg : G → grg : Relie chaque objectif à son
guide grg.
La résolution du problème MOISE+MARL consiste à
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Définition 1 Fonction de valeur d’état adaptée aux Guides de Contrainte en mode AEC :

V
πj

(st) =
∑

at∈A si rn()<cht,
at∈At sinon

πi(at|ωt)
∑

st+1∈S
T (st+1|st, at)

[
R(st, at, st+1) +

∑

m∈Mi

vm(t)
grgm(ht+1)

1− p+ ε
+ (1− cht)× rrg(ωt, at+1) + V

π
j
i+1mod n (st+1)

]

Avec rag(ht, ωt) = At × R, 〈at, cht〉 ∈ At × R ; et rn : ∅ → [0, 1[, une fonction aléatoire uniforme

Avec ωt = O(ωt|st, at) ; ht = {h0 = 〈〉, ht+1 = 〈ht, 〈ωt+1, at+1〉〉} ; grgm(h) =
∑

(grgi,wi)∈mo(m)

wi × grgi(h) ; ε ∈ R>0 ;
vm(t) = {1 si t ∈ tc ; sinon 0} ; etMi = {mj | 〈ar(i),mj , tc, p〉 ∈ M}

rcg
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FIGURE 2 – Une vue minimale du cadre
MOISE+MARL : Les utilisateurs définissent d’abord
les spécifications deMOISE+, qui incluent des rôles (R)
et des missions (M) associées via rds. Ensuite, ils créent
des spécifications MOISE+MARL en définissant d’abord
des Guides de Contraintes tels que rag et rrg pour
spécifier la logique des rôles, et grg pour la logique des
objectifs. Ensuite, des Lieurs sont utilisés pour connecter
les agents aux rôles via ar et pour relier la logique des
Guides de Contrainte aux spécifications définies de
MOISE+. Une fois cette configuration réalisée, des
rôles peuvent être attribués aux agents, et le cadre MARL
s’adapte en conséquence pendant l’entraînement.

trouver une politique conjointe πj = {πj0, πj1, . . . , πjn}
maximisant la fonction de valeur d’état V π

j

(ou atteignant
un seuil minimal), qui représente la récompense cumulative
attendue à partir d’un état initial s ∈ S en suivant les actions
conjointes aj ∈ An sous l’effet de Guides de Contraintes.
Cette fonction est définie pour des agents agissant de ma-
nière séquentielle et cyclique (mode AEC) (voir la Défini-
tion 1). La Figure 2 illustre les liens entreMOISE+ et le
Dec-POMDP via MOISE+MARL.

À chaque instant t ∈ N (initialement t = 0), l’agent i = t
mod n doit assumer le rôle ρi = ar(i). Pour chaque spé-
cification déontique valide di = rds(ρi) = 〈tci, yi,mi〉,
l’agent est autorisé (si yi = 0) ou obligé (si yi = 1) d’exé-
cuter la mission mi ∈ M (avec Gmi = mo(mi)). L’agent
choisit d’abord une action parmi celles attendues At si une
valeur aléatoire est inférieure à la rigidité cht, sinon parmi
l’ensemble A ; ainsi, un cht = 1 impose une contrainte
forte.

L’action appliquée à st conduit à l’état suivant st+1, génère
la prochaine observation ωt+1 et une récompense. Celle-ci
est la somme de la récompense globale et des ajustements
organisationnels : i) un bonus (via les Guides de Récom-
pense d’Objectif), pondéré par 1

1−p+ε pour ajuster son im-
pact, et ii) une pénalité (via les Guides de Récompense de
Rôle), pondérée par la rigidité cht pour ajuster son impact.
Le calcul de la récompense cumulative se poursuit dans
st+1 avec l’agent suivant (i+ 1) mod n.

3.4 Faciliter l’implémentation des Guides de
Contrainte

Puisque les rôles, objectifs et missions sont de simples
étiquettes, leur définition est implicite. Cependant, implé-
menter une relation rag, rrg ou grg nécessite de définir
de nombreux historiques, souvent redondants, rendant une
définition extensionnelle fastidieuse. De plus, la logique
de chaque Guide de Contrainte analyse la trajectoire de
l’agent pour vérifier son appartenance à un ensemble prédé-
fini. Par exemple, rag détermine les actions attendues selon
l’appartenance de la trajectoire à un ensemble donné et la
nouvelle observation.

Une approche consiste à laisser l’utilisateur définir ses
Guides de Contrainte via une logique personnalisée (par
script, par exemple). Dans ce cas, la relation bg : H →
{0, 1} formalise la décision d’appartenance d’un historique
à un ensemble Hg . Pour simplifier l’implémentation, nous
proposons un Trajectory-based Pattern (TP), inspiré du
Traitement Automatique du Langage, noté p ∈ P , per-
mettant de définir intentionnellement un ensemble d’histo-
riques.

Un TP implique que toute observation ou action réelle
considérée est connue et associée à une étiquette l ∈ L (via
l : Ω ∪ A → L) afin d’être gérée de manière pratique. Un
TP p ∈ P est défini comme suit : p est soit une « séquence
feuille » notée comme un couple historique-cardinalité sl =
〈h, {cmin, cmax}〉 (où h ∈ H , cmin ∈ N, cmax ∈ N ∪ {“ ∗
”}) ; soit une « séquence nœud » notée comme un couple
composé d’un tuple de séquences et d’une cardinalité sn =
〈〈sl1 , sl2 , . . .〉, {cmin, cmax}〉. Par exemple, le pattern p =
“[o1, a1, [o2, a2]〈0, 2〉]〈1, ∗〉” peut être formalisé comme la
séquence nœud 〈〈〈o1, a1〉, 〈1, 1〉〉, 〈〈o2, a2〉, 〈0, 2〉〉〉〈1, “ ∗
”〉, indiquant l’ensemble des historiques Hp contenant au
moins une fois la sous-séquence constituée d’une première
paire 〈o1, a1〉 suivie d’au maximum deux répétitions de la
paire 〈o2, a2〉.
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4 La méthode TEMM
Comme indiqué en section 2, aucun travaux ne répond plei-
nement à nos exigences pour déterminer les rôles et ob-
jectifs implicites ainsi que l’adéquation organisationnelle.
Nous proposons donc la méthode Trajectory-based Evalua-
tion in MOISE+MARL (TEMM) pour inférer des spécifica-
tions comme des rôles ou des missions.
TEMM repose sur l’apprentissage non supervisé pour gé-
néraliser ces spécifications à partir des trajectoires collec-
tées lors de multiples épisodes. En quantifiant l’écart entre
les spécifications implicites inférées et les comportements
observés, TEMM mesure l’adéquation organisationnelle,
c’est-à-dire la conformité d’une politique aux spécifica-
tions inférées. TEMM repose sur des définitions propres à
chaque spécification organisationnelle deMOISE+ (his-
toriques conjoints, etc.), inférées progressivement via des
techniques non supervisées. Une description informelle est
disponible 2.
1) Inférence des rôles et héritage
Un rôle ρ est défini comme une politique dont l’historique
contient une Séquence Commune la Plus Longue (SCL).
Un rôle ρ2 hérite de ρ1 si sa SCL est incluse dans celle
de ρ1. TEMM emploie le clustering hiérarchique pour ex-
traire ces SCL, représentées sous forme de dendrogramme,
et mesure l’écart entre les séquences actuelles et inférées,
définissant ainsi l’adéquation organisationnelle structurelle.
2) Inférence des objectifs, plans et missions
Un objectif correspond à un ensemble d’observations
conjointes communes, atteint via les historiques d’agents
performants. TEMM construit pour chaque historique
conjoint un graphe de transition, fusionne ces graphes et, à
l’aide de K-means, identifie des groupes de trajectoires. Les
ensembles d’observations restreints extraits pour chaque
groupe sont considérés comme des objectifs implicites, per-
mettant d’inférer les plans sur la base des choix et sé-
quences. Une mission est définie comme l’ensemble des
objectifs réalisés par un ou plusieurs agents, et la distance
entre les objectifs inférés et l’observation conjointe actuelle
permet de calculer l’adéquation organisationnelle fonction-
nelle.
3) Inférence des obligations et permissions
Une obligation se produit lorsqu’un agent, jouant le rôle
ρ, réalise exclusivement les objectifs d’une mission dans
un intervalle donné, tandis qu’une permission permet d’at-
teindre d’autres objectifs sous conditions. TEMM identi-
fie l’association agent-mission et détermine si l’agent est
contraint (obligation) ou bénéficie de flexibilité (permis-
sion). L’adéquation organisationnelle globale est la somme
de l’adéquation structurelle et fonctionnelle.
Globalement, bien que le K-means et le clustering hiérar-
chique requièrent une configuration manuelle pour éviter
les erreurs, TEMM recommande de vérifier et d’ajuster ma-
nuellement les rôles et objectifs obtenus pour éliminer les
perturbations éventuelles.

2. L’implémentation « MOISE+MARL API » (MMA), les hyperpara-
mètres et spécifications utillisés sont disponibles à https://github.
com/julien6/MOISE-MARL.

5 Cadre expérimental
Cette section détaille le cadre expérimental utilisé pour éva-
luer le cadre MOISE+MARL.

5.1 Implémentation de MOISE+MARL
Nous avons développé une API Python 2, pour implémenter
MOISE+MARL. Cette API structure le modèleMOISE+

en classes de données imbriquées afin de définir les spécifi-
cations organisationnelles (rôles, objectifs, permissions. . .).
Nous utilisons la bibliothèque PettingZoo [17] (similaire à
Gymnasium [6]) pour la gestion des environnements en y
intégrant un dictionnaire personnalisable pour le mappage
des étiquettes d’observation/action (l), ainsi que le support
des TPs pour définir et faire correspondre les motifs.
Chaque Guide de Contrainte (rag, rrg et grg) est implé-
menté comme une classe distincte. Les utilisateurs peuvent
les définir via des fonctions personnalisées ou des règles
JSON (par exemple, rag associe un couple 〈TP, dernière
observation〉 à des actions attendues, et grg applique des
bonus selon des TP spécifiques). La classe globale MMA
intègre ces guides et relie les agents aux rôles via des re-
lations telles que ar, intégrant ainsi les spécifications de
MOISE+.
Une fois configuré, MMA encapsule l’environnement avec
un wrapper PettingZoo qui applique des masques d’actions
et ajuste les récompenses pour garantir le respect des spéci-
fications durant l’entraînement. Il intègre également MARL-
lib [24] pour accéder aux algorithmes MARL de pointe sur
un cluster haute performance.
Enfin, la méthode TEMM, avec des hyperparamètres opti-
misés manuellement, est utilisée après l’entraînement pour
inférer les rôles et objectifs implicites via clustering hié-
rarchique et K-means. Cette analyse génère des sorties vi-
suelles (dendrogrammes, graphes de transition) et permet
d’exporter les trajectoires JSON des comportements orga-
nisationnels inférés.

5.2 Environnements utilisés
Nous testons MOISE+MARL dans quatre environnements
MARL, modélisés comme des scénarios Dec-POMDP et
chacune présentant des défis distincts en termes d’organi-
sations requises pour atteindre au mieux l’objectif global :
i) Predator-Prey : Plusieurs prédateurs coopèrent pour
capturer une proie, testant la coordination pour atteindre un
objectif collectif [25] ; ii) Overcooked-AI : Jeu de cui-
sine en équipe où les agents préparent et servent des plats
dans des cuisines de complexité croissante [20]. Cet envi-
ronnement évalue la coordination et l’allocation des tâches
avec des rôles clairs (chef, assistant, serveur) ; iii) Wa-
rehouse Management : Les agents gèrent un entrepôt en
coordonnant les livraisons vers des points de demande, in-
fluençant leur spécialisation (transport, gestion des stocks) ;
iv) Cyber-Defense Simulation : Simulation de défense
d’un réseau contre des cyberattaques. Les agents identifient
et contrent les menaces tout en respectant des règles de sé-
curité strictes, testant ainsi leur sûreté [31].
Ces environnements, encapsulables via l’API PettingZoo,
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s’intègrent avec notre implémentation de MOISE+MARL
et facilitent l’application des spécifications organisation-
nelles.

5.3 Algorithmes MARL utilisés
Nous avons évalué notre cadre avec plusieurs algorithmes
MARL : i) MADDPG (Multi-Agent Deep Determinis-
tic Policy Gradient) [25] : Un algorithme d’apprentis-
sage centralisé avec exécution décentralisée, permettant
à chaque agent d’avoir une politique déterministe tout
en utilisant l’information globale lors de l’entraînement ;
ii) MAPPO (Multi-Agent Proximal Policy Optimiza-
tion) [9] : Une version adaptée de PPO pour les systèmes
multi-agent, optimisée pour une convergence stable de la
politique conjointe dans des scénarios complexes ; iii) Q-
Mix [32] : Un algorithme basé sur les valeurs Q qui ap-
prend à combiner les Q-valeurs individuelles des agents
en une valeur conjointe afin d’optimiser la coopération ;
iv) COMA (Counterfactual Multi-Agent) [11] : Un al-
gorithme acteur-critique capable d’estimer l’impact des ac-
tions d’un agent individuel sur la récompense globale de
l’équipe.

5.4 Spécifications organisationnelles
Pour chaque environnement, nous avons défini un en-
semble de spécifications organisationnelles. Ces spécifica-
tions comprennent les rôles, les missions, ainsi que les per-
missions et obligations. Voici une description informelle de
ces spécifications 2 : i) Predator-Prey : Des rôles de préda-
teur et de proie sont définis, chaque prédateur ayant des ob-
jectifs spécifiques tels que « capturer la proie » ou « bloquer
les voies d’évasion » ; ii) Overcooked-AI : Les agents
adoptent trois rôles principaux : chef, assistant et serveur.
Le chef est responsable de la cuisson et de l’assemblage des
plats, l’assistant s’occupe de la découpe et de l’approvision-
nement en ingrédients, et le serveur se charge de la livrai-
son des plats aux clients. Les missions consistent principa-
lement à préparer et à servir un nombre déterminé de plats
dans un délai imparti ; iii) Warehouse Management :
Les agents adoptent des rôles tels que « transporteur » et «
gestionnaire d’inventaire », avec des missions liées à la ges-
tion des flux logistiques et à l’optimisation des livraisons ;
iv) Cyber-Defense Simulation : Les agents occupent des
rôles de défenseurs de réseau, avec des obligations telles
que la détection d’intrusions, la levée d’alertes aux autres
agents pour proteger l’essaim de drones.

5.5 Configuration matérielle
Toutes les expériences ont été menées sur un cluster aca-
démique haute performance, avec des nœuds GPU (NVI-
DIA A100, V100 et AMD MI210). Chaque configuration
algorithme-environnement a été exécutée 5 fois en parallèle
pour assurer des résultats fiables. Les hyperparamètres 2

(taux d’apprentissage, facteurs d’actualisation, taux d’ex-
ploration) proviennent soit des banques de MARLlib, soit
d’une recherche sur grille réalisée via Optuna [2].

5.6 Métriques d’évaluation et protocole
L’évaluation prend en compte l’efficacité des politiques et
l’impact des spécifications organisationnelles en reposant
sur les métriques suivantes : i) Récompense Cumulative :
Mesure l’efficacité de la politique dans l’atteinte des ob-
jectifs de l’environnement ; ii) Écart-type de la Récom-
pense : Reflète la stabilité des politiques apprises au cours
des épisodes ; iii) Taux de Convergence : Indique la
rapidité avec laquelle les politiques atteignent une perfor-
mance stable ; iv) Taux de Violation des Contraintes :
Évalue le respect des contraintes organisationnelles par la
politique, ce qui est crucial pour la sécurité ; v) Score de
Cohérence : Mesure l’alignement entre les comportements
appris et les spécifications organisationnelles ; vi) Score
de Robustesse : Évalue la capacité des agents à maintenir
leur performance face à une série de scénarios difficiles ;
vii) Niveau d’Adéquation Organisationnelle : Quantifie
l’adéquation organisationnelle avec TEMM.
Notre protocole compare le Baseline de Référence (RB)
sans contraintes organisationnelles au Baseline Organisé
(OB) utilisant MOISE+MARL. Pour le RB, nous utilisons
MMA pour entraîner les agents dans chaque environne-
ment (jusqu’à convergence ou limite d’épisodes) sans appli-
quer de spécifications organisationnelles, puis nous sélec-
tionnons l’algorithme obtenant la Récompense Cumulative
maximale. Pour l’OB, nous réinitialisons environnements et
agents, appliquons via MMA des spécifications prédéfinies
(chaque agent se voit attribuer un rôle) et ré-entraînons ces
agents avec l’algorithme le plus performant du RB. Les mé-
triques permettent alors des comparaisons. Nous évaluons
l’impact de MOISE+MARL en vérifiant si les comporte-
ments des agents s’alignent avec les rôles définis (à l’aide
de l’Écart-type de Récompense, du Taux de Convergence
et du Score de Robustesse). Une différence significative du
Niveau d’Adéquation Organisationnelle entre RB et OB, et
une corrélation entre les rôles et ce niveau, confirmera l’ef-
ficacité du cadre. Enfin, nous comparons MOISE+MARL à
AGR+MARL (qui ne considère que les rôles) pour évaluer
l’importance des missions.

6 Résultats
Cette section discute des résultats obtenus sur les quatre en-
vironnements.

6.1 Adéquation organisationnelle quantita-
tive et cohérence

Comme l’illustre le Tableau 1, l’adéquation organisation-
nelle est systématiquement plus élevée dans l’OB, confir-
mant que MOISE+MARL aligne efficacement le compor-
tement des agents sur les spécifications organisationnelles.
Par exemple, dans Predator-Prey avec MADDPG, l’OB
atteint un niveau d’adéquation de 0.87 (soit +49% par rap-
port aux 0.43 du RB), tandis que dans Overcooked-AI avec
MAPPO, on observe 0.91 (+89%). Même constat pour Wa-
rehouse Management avec Q-Mix, où l’adéquation passe
de 0.50 (RB) à 0.90 (OB).

De façon générale, contraindre les agents par des spécifi-
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TABLE 1 – Résultats détaillés pour chaque environnement et algorithme favorisé, pour le RB et l’OB.
Env. Alg. Spec.

Org.
Récom.
Cum.

Écart-
Type

Taux
Conv.

Taux Viol. Score
Cohé.

Score
Rob.

Niv.
Adéq.

Predator-Prey MADDPG 200.1 21.5 0.65 12.3% - 0.65 0.43
Predator-Prey MADDPG Oui 245.8 15.2 0.85 0.0% 0.81 0.83 0.87
Overcooked-AI MAPPO 348.2 15.6 0.75 7.1% - 0.71 0.48
Overcooked-AI MAPPO Oui 391.2 10.4 0.92 0.0% 0.89 0.89 0.91
Warehouse M. Q-Mix 257.4 18.9 0.74 7.8% - 0.68 0.50
Warehouse M. Q-Mix Oui 307.1 13.8 0.88 0.0% 0.88 0.86 0.90
Cyber-Defense COMA 162.4 17.3 0.70 12.2% - 0.67 0.45
Cyber-Defense COMA Oui 188.9 11.2 0.86 0.0% 0.76 0.80 0.83

cations organisationnelles diminue la déviation de récom-
pense et accélère la convergence, indiquant un impact no-
table sur leur comportement. Nous avons observé manuel-
lement, notamment dans Predator-Prey, que les politiques
entraînées correspondent bien à une organisation structu-
relle et fonctionnelle implicite.

Le score de cohérence demeure également élevé (jusqu’à
0.76 dans le contexte bruité de Cyber-Defense), montrant
que, malgré les perturbations, les spécifications organisa-
tionnelles inférées sont proches de celles appliquées.

6.2 Performance et stabilité selon les algo-
rithmes

Les résultats indiquent que les algorithmes basés sur
la politique et les algorithmes acteur-critique, tels que
MADDPG et MAPPO, bénéficient considérablement du
cadre MOISE+MARL, notamment en termes de cohé-
rence et de stabilité. Par exemple, dans l’environnement
Overcooked-AI, MAPPO a vu son écart-type de récom-
pense passer de 15.6 (RB) à 10.4 (OB), reflétant une poli-
tique plus stable avec moins de fluctuations comportemen-
tales. De même, MADDPG dans Predator-Prey a montré
une diminution similaire, passant de 21.5 en RB à 15.2 en
OB, indiquant une fiabilité accrue.
En revanche, les algorithmes basés sur la valeur, comme
Q-Mix, ont maintenu une haute performance en récom-
pense cumulative, mais ont affiché une variabilité plus im-
portante en termes de cohérence. Par exemple, dans l’envi-
ronnement Warehouse Management, Q-Mix a atteint un
écart-type de récompense de 13.8 en OB, soit une amélio-
ration notable par rapport aux 18.9 en RB, mais toujours
supérieur à la stabilité observée dans les algorithmes ba-
sés sur la politique. Cela suggère que, bien que Q-Mix soit
efficace pour atteindre les objectifs de la tâche, il pourrait
nécessiter un ajustement supplémentaire pour les rôles avec
MOISE+MARL afin d’améliorer la cohérence.

6.3 Impact des contraintes organisation-
nelles sur la convergence, la robustesse et
le taux de violation des politiques

L’application des contraintes organisationnelles a permis
d’accélérer les taux de convergence dans tous les environ-
nements. Dans l’environnement Cyber-Defense, COMA
avec MOISE+MARL a convergé à un taux de 0.86, contre
0.70 en RB. Des tendances similaires ont été observées dans

l’environnement Warehouse Management avec Q-Mix,
qui est passé de 0.74 en RB à 0.88 en OB. Cette conver-
gence accélérée peut être attribuée aux rôles et aux mis-
sions, qui réduisent l’espace de recherche des politiques.
En outre, nous avons observé que les taux de violation des
contraintes étaient systématiquement plus élevés lorsque
les contraintes organisationnelles étaient définies avec une
rigidité de contrainte plus faible. Dans l’environnement
Overcooked-AI, MAPPO a enregistré un taux de violation
nul avec une rigidité de contrainte de 1, contre 7.1% avec
une rigidité de 0. De même, dans Warehouse Manage-
ment, Q-Mix a vu le taux de violation passer de 7.8% à zéro
lorsque la rigidité augmentait. Cela vient renforcer l’effica-
cité du cadre dans l’amélioration du respect des comporte-
ments souhaités.
De plus, nous avons observé une amélioration constante de
la robustesse lorsque les spécifications organisationnelles
étaient appliquées aux agents. Par exemple, MADDPG
dans Predator-Prey et MAPPO dans Overcooked-AI ont
obtenu des scores de cohérence élevés, respectivement
0.81 et 0.89, indiquant que les agents suivaient de près
les rôles inférés. La robustesse s’est également améliorée,
avec MAPPO dans Overcooked-AI atteignant un score
de robustesse de 0.89, contre 0.71 en RB, soulignant une
meilleure résilience face aux perturbations.
Cependant, un biais potentiel peut être souligné : les spéci-
fications organisationnelles ont été conçues pour englober
toutes les observations, évitant ainsi les situations nouvelles
non gérées.

6.4 Comparaison entre MOISE+MARL et
AGR+MARL

TABLE 2 – Comparaison de la performance entre
MOISE+MARL et AGR+MARL.

Framework Env. Taux
Conv.

Score
Rob.

Niv.
Adéq.

Récom.
Cum.

MOISE+MARL PP 0.85 0.83 0.87 245.8
AGR+MARL PP 0.75 0.69 0.56 208.4
MOISE+MARL OA 0.92 0.89 0.91 391.2
AGR+MARL OA 0.82 0.75 0.58 348.9
MOISE+MARL WM 0.88 0.86 0.90 307.1
AGR+MARL WM 0.76 0.72 0.61 278.6

Impact des objectifs intermédiaires Le Tableau 2 met en
lumière l’effet de ces objectifs dans MOISE+MARL. Dans
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Overcooked-AI, MAPPO obtient une récompense cumu-
lative de 391.2 et une adéquation organisationnelle de 0.91,
soit 33% de plus qu’AGR+MARL (0.58). Dans Warehouse
Management, Q-Mix sous MOISE+MARL atteint 307.1
de récompense (contre 278.6 pour AGR+MARL) et un
score de robustesse supérieur (0.86 vs 0.72).
Ces résultats soulignent l’importance des objectifs inter-
médiaires pour des comportements plus stables et mieux
orientés vers l’objectif. MOISE+MARL surpasse ainsi
AGR+MARL en récompense, robustesse et adéquation or-
ganisationnelle dans Predator-Prey, Warehouse Manage-
ment et Overcooked-AI. Enfin, l’augmentation du nombre
de contraintes organisationnelles accroît quasi linéairement
la durée d’entraînement, d’après nos premières résultats2.

7 Conclusion et travaux futurs
Nous proposons le cadre MOISE+MARL pour améliorer le
contrôle et l’explicabilité des agents en MARL par l’inté-
gration d’un modèle organisationnel explicite. Nos résultats
montrent une meilleure convergence et stabilitié des poli-
tiques, ainsi qu’un alignement des comportements observés
avec les spécifications attendues et inférées de façon agnos-
tique.
Cependant, reposant sur des spécifications prédéfinies,
MOISE+MARL peut peiner à prendre en compte le surcoût
computationnel. Trois axes de recherche émergent donc :
i) Développer des mécanismes adaptatifs pour faire évoluer
dynamiquement rôles et missions ; ii) Explorer des mé-
thodes automatisées (Large Language Models) pour géné-
rer des spécifications organisationnelles ; iii) Améliorer
la scalabilité de TEMM et proposer d’autres approches. Ces
perspectives ouvriront la voie à une meilleure intégration
de l’organisation dans le MARL, renforçant notamment la
robustesse, sûreté et l’explicabilité des agents pour des sy-
tèmes réels.
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Résumé
Cet article aborde le problème nouveau, découlant du
concept novateur de fédération de missions dans le do-
maine de l’observation de la Terre grâce au développement
de réseaux de stations terrestres, rencontré par le système
de communication et de gestion des ressources des satellites
(SCRMS). Ce problème décisionnel est celui de la sélection
des contacts, sous contraintes de satisfaction des besoins
de communication des satellites, en minimisant le coût et
les brouillages. Nous avons développé plusieurs méthodes
de résolution : un programme linéaire, des schémas de re-
cherche incomplète et des schémas d’allocation gloutonne.

Mots-clés
Observation de la Terre, ressources de communication,
GSaaS, programmation linéaire en nombres entiers, re-
cherche incomplète.

1 Introduction
Traditionnellement, les missions spatiales consacrées à
l’observation de la Terre disposent de leurs propres res-
sources. Chaque mission possède sa constellation de satel-
lites, ses stations au sol et son centre de contrôle. Les sta-
tions au sol sont dédiées à la communication avec les satel-
lites et permettent de charger des plans d’observation et de
télécharger des observations. Plus récemment, des stations
de communication tierces utilisant le paradigme de la sta-
tion au sol en tant que service (GSaaS) ont été développées
[1]. Dans ce paradigme, les clients réservent des ressources
de communication auprès d’un fournisseur de segments ter-
restres au lieu de construire leurs propres stations.
Une couche de fédération multi-agents pour coordonner
plusieurs missions d’observation de la Terre indépendantes
a été proposée [2]. L’objectif de cette fédération est de per-
mettre aux clients qui demandent l’acquisition de vastes
zones d’accéder facilement à plusieurs constellations de sa-
tellites et de sites de communication afin de composer et
de télécharger leurs acquisitions en un temps réduit com-
paré aux demandes conventionnelles non coordonnées. Le
système de communication et de gestion des ressources des
satellites (SCRMS) doit gérer les communications en uti-
lisant non seulement les stations terrestres appartenant aux

*Ce document résume en français un article accepté à la conférence
CPAIOR’25 [3].

missions de la fédération, mais aussi le GSaaS.
Le présent travail est consacré au développement et à l’éva-
luation expérimentale d’algorithmes permettant de résoudre
ce problème d’allocation. Sa principale contribution est la
fourniture de lignes directrices solides pour la sélection
d’algorithmes pour la fonction de réservation de sites de
communication.

2 Problème de sélection
Le SCRMS est chargé de fournir des possibilités de com-
munication avec le sol à tous les satellites de toutes les mis-
sions fédérées. Il gère la communication entre d’une part
N satellites et d’autre part des sites comprenant une ou plu-
sieurs stations au sol, chaque station contrôlant une antenne
spécifique. Pour cela il recherche des fenêtres de commu-
nication pour le transfert de données en liaison montante et
descendante. Les missions fournissent les orbites de leurs
satellites et les réseaux de stations au sol publient les coor-
données et les masques de visibilité de leurs stations.
La propagation des orbites et le calcul des événements
conduisent pour chaque satellite i à Li contacts potentiels
avec le sol. Chaque contact l ∈ {1, . . . Li} est caractérisé
par son site au sol, et sa fenêtre temporelle [ui,l, ui,l], per-
mettant de déduire sa durée di,l. La variable de décision
associée à un contact est xi,l ∈ {0, 1}, valant 1 si le contact
l du satellite i est choisi dans la réservation.
La sélection de contacts permet de remplir en partie les be-
soins de communications d’un satellite. Chaque satellite i
a Ki besoins à remplir, définis par une durée de communi-
cation Di,k, à remplir sur une fenêtre temporelle [ti,k, ti,k],
avec une liste de sites réservables Si,k et une bande de ra-
diocommunication (bande S pour téléverser les futurs plan
d’observation et les opérations de maintenance, et bande X
pour le téléchargement des observations). Un contact peut
donc être choisi pour participer à la validation d’un besoin
k si sa fenêtre temporelle est inclue dans celle du besoin,
que le site fait partie des sites réservables et que la bande de
radiocommunication est la bonne. Notons Zi,l l’ensemble
des besoins qu’un contact l est en mesure de satisfaire.
Notre problème de décision est donc celui de sélec-
tionner des contacts tel que le plan obtenu puisse véri-
fier pour chaque satellite i et chacun de ses besoins k∑

l∈{1,...Li}/k∈Zi,l
di,lxi,l ≥ Di,k.

Nous pouvons ainsi optimiser deux critères : le coût total
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de la sélection, en additionnant le coût des contacts retenus
(dépendant du modèle de coût du GSaaS, basé sur la durée
du contact ou sur un coût fixe par contact), et le conflit et
brouillage total induit par la sélection. Deux contacts l et
m des satellites i et j, respectivement, peuvent générer une
quantité bi,l,j,m de conflit et brouillage si leurs fenêtres tem-
porelles se chevauchent et qu’ils partagent le même site (pas
nécessairement la même antenne). Le total est obtenu en
faisant la somme du conflit et brouillage généré par toutes
les paires de contacts. Nous considérons ici un ordre lexi-
cographique sur les critères, nous minimisons en premier
le coût (resp. le confit et brouillage) et à valeur égale nous
minimisons le confit et brouillage (resp. le coût).

3 Méthodes de résolution
Round-robin. La procédure round-robin permet d’envisa-
ger une distribution équitable d’articles entre des agents.
Nous associons ici les besoins aux agents et les contacts aux
articles. Chaque besoin est considéré à tour de rôle et sé-
lectionne un contact supplémentaire. L’ordre d’examen des
besoins dépend de l’évaluation de ces derniers ou de leur
difficulté, déclinant deux méthodes. L’évaluation du besoin
k du satellite i s’obtient en sélectionnant la meilleure va-
leur sur les critères calculée en ajoutant un des contacts non
sélectionnés qui peuvent contribuer au besoin k. La dureté
du besoin est proportionnelle au ratio de sa durée de com-
munication et de la durée totale possible parmi les contacts
non sélectionnés.

Procédures gloutonnes. Un schéma d’allocation glouton
sélectionne les contacts un par un en faisant le choix qui
semble le meilleur sur le moment, sans réviser cette déci-
sion par la suite. Nous considérons deux manières de choi-
sir : soit l’on se concentre sur les besoins, soit les contacts.
Dans le premier cas, les besoins sont sélectionnés de ma-
nière itérative pour être pleinement satisfaits, guidé par leur
évaluation ou par leur dureté (similaire au Round-robin). La
deuxième méthode conduit à un glouton guidé par la sélec-
tion du contact avec la meilleure évaluation.

Recherches locales. Les procédures round-robin et glou-
tonnes sont des heuristiques constructives : elles produisent
des solutions partielles à chaque étape jusqu’à ce qu’elles
atteignent l’admissibilité. A l’inverse, les recherches lo-
cales travaillent sur des solutions complètes en essayant
d’améliorer les critères tout en maintenant l’admissibilité.
Ces méthodes nécessitent une solution initiale et la défi-
nition du voisinage d’une solution. Pour choisir la solu-
tion initiale nous nous servons de deux heuristiques : si
le coût est optimisé en premier nous sélectionnons pour
chaque satellite i les contacts par ordre croissant de coût
jusqu’à ce que ses besoins soient remplis, et sinon nous
utilisons la procédure du glouton guidé par l’évaluation du
besoin. Avec un voisinage obtenu par la dé-sélection d’un
unique xi,l (en interdisant celles qui violent la contrainte sur
les besoins), nous définissons deux schémas de recherche :
une recherche du meilleur d’abord, qui sélectionne la so-
lution avec la meilleure évaluation parmi toutes les solu-
tions déjà évaluées mais non développées, et une recherche

en profondeur d’abord, qui sélectionne la meilleure solu-
tion voisine de la solution courante. Avec un plus grand
voisinage obtenu en dé-sélectionnant un nombre donné de
contacts nous pouvons également reconstruire l’admissibi-
lité à l’aide d’une recherche à large voisinage (Large Neigh-
borhood Search).
Programmation linéaire en nombres entiers. Les
contraintes sur les besoins ainsi que l’expression du coût
sont déjà linéaires et s’intègrent directement. L’expression
du conflit et du brouillage est cependant quadratique, étant
donné qu’elle contient le produit xi,lxj,m afin d’ajouter la
quantité bi,l,j,m ssi les deux contacts l et m sont sélection-
nés. Cette expression est cependant facilement linéarisable
sans approximation en introduisant une variable binaire
intermédiaire yi,l,j,m, remplaçant ce produit, et trois
contraintes linéaires pour chaque paire de contacts.

4 Résultats et perspectives
Les performances sont comparées sur un scénario réaliste
de 60 jours, avec une fédération de 3 constellations de 2,4
et 4 satellites respectivement, et des besoins qui évoluent
tout au long de cette période. Les méthodes doivent pla-
nifier chaque jour les contacts des 10 prochains. Les ré-
sultats obtenus sont satisfaisant, surtout pour la modélisa-
tion linéaire qui respecte la contrainte de temps de calcul
imposée (moins de 5 minutes pour obtenir le plan). Cer-
tains aspects du problème réel ne sont cependant pas en-
core pris en compte, comme la possibilité que le GSaaS
refuse un contact. Il est aussi possible d’avoir des forfaits
de communication avec un nombre de contacts prépayé
et un coût supplémentaire pour chaque contact excédent.
De plus les besoins considérés sont routiniers, dont seul
la charge évolue, mais il existe aussi des besoins urgents,
liés à l’observation d’une zone spécifique. Il est alors né-
cessaire de réserver des contacts avant et après le survol
de cette zone pour mettre à jour les plans d’observation
et récupérer ces dernières le plus rapidement possible. Ces
travaux sont réalisés dans le projet européen DOMINO-E
(https://domino-e.eu/).
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Résumé
La satisfiabilité diversifiée est un problème d’optimisation
combinatoire qui cherche à identifier k modèles satisfaisant
une formule CNF donnée tout en maximisant la somme des
distances entre chaque paire de modèles. Cet article pré-
sente deux nouvelles méthodes exactes de résolution. La
première approche s’appuie sur la programmation quadra-
tique en nombres entiers, tandis que la seconde est ba-
sée sur une formulation pseudo-booléenne linéaire, pou-
vant également être adaptée à la satisfiabilité maximum
(MaxSAT). Notre évaluation expérimentale approfondie dé-
montre l’efficacité et la performance des deux méthodes
proposées sur diverses instances. De plus, pour certaines
familles d’instances, les approches proposées parviennent
à obtenir des solutions optimales.

Mots-clés
Satisfiabilité diversifiée, Programmation en Nombres En-
tiers, Satisfiabilité Maximum, Modélisation

Abstract
Diverse Satisfiability is a combinatorial optimization pro-
blem that seeks to identify k models satisfying a given CNF
formula while maximizing the sum of pairwise Hamming
distances between them. This paper introduces two novel
exact solution methods. The first approach relies on qua-
dratic integer programming, while the second is based on
a linear Pseudo-Boolean formulation, which can also be
adapted to Maximum Satisfiability (MaxSAT). Our com-
prehensive experimental evaluation demonstrates the effi-
ciency and effectiveness of both proposed methods across
various benchmark instances. Furthermore, for some ins-
tance families, the proposed approaches manage to obtain
optimal solutions.

Keywords
Diverse Satisfiability, Integer Programming, Maximum Sa-
tisfiability, Modeling

1 Introduction
La satisfiabilité propositionnelle (SAT) est un problème de
décision consistant à déterminer si une formule en forme
normale conjonctive (CNF) donnée peut être satisfaite par
une affectation de variables [6], également appelée mo-
dèle de la formule. SAT est le premier à avoir été démon-
tré NP-complet [8], et constitue un paradigme largement
utilisé pour la modélisation de nombreux problèmes du

monde réel, notamment en vérification matérielle et logi-
cielle [1, 7], en planification et ordonnancement [24, 25], ou
encore en bio-informatique [16, 17]. La version classique
du problème SAT vise à trouver un unique modèle pour
une formule CNF donnée, mais de nombreuses applications
réelles exigent l’identification de plusieurs modèles présen-
tant des propriétés structurelles diverses. Dans ce cas, le
fait de s’arrêter au premier modèle ne permet pas de me-
ner à bien l’analyse souhaitée ou risque l’omission d’in-
formations cruciales. Un exemple représentatif qu’on peut
citer est celui de la vérification bornée de modèles (Boun-
ded Model Checking, BMC) [1], où chaque modèle de la
formule correspond à un chemin de vérification possible.
Toutefois, se limiter à une unique solution peut accroître le
risque d’omettre des erreurs spécifiques, dans la mesure où
celle-ci ne permet pas de capturer l’ensemble des compor-
tements potentiels du système vérifié. Cette limitation met
en évidence la nécessité de générer plusieurs solutions pré-
sentant une forte diversité structurelle, en vue d’accroître la
robustesse des processus de débogage et de vérification.

Dans cette optique, Nadel a introduit le problème de la
satisfiabilité diversifiée (Diverse Satisfiability) dans [20].
Étant donné une formule CNF, ce problème consiste à iden-
tifier k modèles de la formule maximisant la diversité struc-
turelle. Celle-ci est quantifiée à l’aide de la somme des
distances de Hamming entre toutes les paires de modèles
sélectionnés, assurant ainsi une dispersion maximale dans
l’espace des solutions. Dans ce même travail, l’auteur pro-
pose une méthode incomplète s’appuyant sur une heuris-
tique de décision dédiée. Un problème connexe introduit
dans la littérature est celui de la distance de Hamming
maximale pour les problèmes de satisfaction de contraintes
(CSP), initialement formulé par Crescenzi et Rossi dans
[9]. Néanmoins, ce problème, bien qu’applicable à des ins-
tances à domaines finis, se limite à la recherche de deux
modèles distincts. Dès lors, dans le cas binaire, il devient
essentiellement équivalent à une instance de la satisfiabilité
diversifiée avec k = 2.

Étant donné que le problème SAT est déjà NP-complet, le
problème de la satisfiabilité diversifiée, qui requiert l’iden-
tification de k modèles satisfaisants distincts, représente un
défi computationnel encore plus complexe. En particulier,
pour un paramètre donné p, Misra et al. [19] démontrent
que, même dans le cas restreint où k = 2, déterminer deux
modèles qui diffèrent exactement (ou au moins) sur p va-
riables demeure un problème NP-difficile. Dans [2], An-
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gelsmark et Thapper établissent une borne supérieure de
complexité en O(1.7338n) pour la résolution du problème
de distance de hamming maximale sur les formules 2-SAT
(c’est-à-dire la satisfiabilité diversifiée avec k = 2, où l’ins-
tance ne contient que des clauses de longueur 2). Plus gé-
néralement, ils montrent que, pour une formule l-SAT où l
désigne la longueur maximale des clauses, une borne supé-
rieure en O((2a)n) peut être obtenue, sous l’hypothèse que
l’instance sous-jacente de l-SAT peut être résolue enO(an)
pour une certaine constante a.
Dans cet article, nous nous focalisons sur l’introduction
d’approches exactes pour le problème de satisfiabilité di-
versifiée, lesquelles, à notre connaissance, n’ont pas encore
été explorées dans la littérature. Nous proposons deux ap-
proches génériques, l’une reposant sur la programmation
entière quadratique (QIP) et l’autre sur la programmation
pseudo-booléenne linéaire, cette dernière pouvant être aisé-
ment transformée en une instance de satisfiabilité maximum
(MaxSAT), l’extension naturelle de SAT en problème d’op-
timisation. Notre approche QIP permet de formuler la fonc-
tion objectif de manière naturelle sous forme quadratique,
tandis que les approches linéaires reformulent l’objectif
comme une combinaison linéaire d’une série de variables
booléennes, s’appuyant sur deux fonctions de pondération :
la pondération directe (DW) et la pondération incrémentale
(IW). L’efficacité des approches proposées est ensuite éva-
luée au travers d’expérimentations approfondies.
La suite de cet article est structurée comme suit. La sec-
tion 2 présente les définitions formelles, les notations ainsi
que les fondements théoriques du problème de satisfiabi-
lité diversifiée, en plus d’introduire les paradigmes stan-
dards de la programmation entière quadratique, la pro-
grammation pseudo-booléenne linéaire, et la satisfiabilité
maximum. La section 3 expose nos approches exactes, in-
cluant la formulation quadratique ainsi que les formulations
pseudo-booléennes linéaires et leur transformation en mo-
dèles MaxSAT. La section 4 fournit une analyse détaillée
des résultats expérimentaux obtenus. Enfin, la section 5 ré-
capitule nos contributions et discute les perspectives de nos
travaux.

2 Préliminaires
2.1 Satisfiabilité diversifiée
Soit X un ensemble de variables booléennes prenant des
valeurs dans {V rai, Faux} (ou {0, 1}). Un littéral l est
soit une variable x ∈ X , soit sa négation x. Le litté-
ral positif l = x est dit satisfait lorsque x est affectée
à Vrai, tandis que le littéral négatif l = x est satisfait
lorsque x est affectée à Faux. Une clause C est une dis-
jonction (∨) de littéraux, et peut également être représen-
tée comme un ensemble de littéraux. Plus précisément, on
peut écrire un clause sous la forme C = C+ ∪ C−, où
C+ est l’ensemble des littéraux positifs et C− l’ensemble
des littéraux négatifs. De plus, une clause est satisfaite dès
lors que l’un de ses littéraux est satisfait. Une formule en
forme normale conjonctive (CNF) est une conjonction (∧)
de clauses, et elle est satisfaite si toutes ses clauses sont sa-

tisfaites. Une formule CNF ϕ composée de m clauses peut
être représentée comme un ensemble de clauses, c’est-à-
dire ϕ = {C1, . . . , Cm}. Étant donnée une formule CNF ϕ
définie sur les variables de X , le problème de satisfiabilité
propositionnelle (SAT) consiste à déterminer s’il existe une
affectation α : X → {V rai, Faux} qui satisfait ϕ. Lors-
qu’une telle affectation existe, on l’appelle modèle de ϕ et
on dit que la formule est satisfiable.
Nous introduisons ci-après de manière formelle la notion
de distance de Hamming entre deux affectations, qui cor-
respond au nombre de valeurs différentes attribuées aux va-
riables booléennes dans une paire d’affectations. Nous dé-
finissons ensuite une notion essentielle à la formulation du
problème de satisfiabilité diversifiée, à savoir la mesure de
diversité pour des ensembles d’affectations.

Définition 1 (Distance de Hamming entre affectations).
Étant donné un ensemble de variables booléennes X et
deux affectations α1, α2 des variables de X , la distance
de Hamming entre α1 et α2, notée Dis(α1, α2), est définie
comme suit :

Dis(α1, α2) = |{x ∈ X | α1(x) ̸= α2(x)}|
=
∑

x∈X
|α1(x)− α2(x)|

Définition 2 (Diversité). Étant donné un ensemble de va-
riables booléennes X et un ensemble A = {α1, . . . , αk}
de k affectations des variables dans X , la diversité de A,
notée Div(A), est définie comme suit :

Div(A) =
k−1∑

i=1

k∑

j=i+1

Dis(αi, αj) (1)

Étant donnée une formule CNF ϕ et un entier k ≥ 2, le pro-
blème de la satisfiabilité diversifiée (Diverse satisfiability,
ou Diverse SAT) consiste à trouver un ensemble de k mo-
dèles de ϕ avec une diversité maximale. Plus formellement,
nous cherchons :

A = argmaxA∈{0,1}k×|X|Div(A)

Dans [20], Nadel évoque la notion de diversité pour une
variable, c’est-à-dire le nombre de ses assignations à Vrai
multiplié par le nombre de ses assignations à Faux, telle que
définie formellement ci-dessous. Cette notion lui a servi de
critère pour évaluer la contribution d’une seule variable à
la diversité, dans l’heuristique proposée par l’auteur. Nous
formalisons la correspondance entre la diversité classique
et celles des variables dans Proposition 1.

Définition 3 (Diversité des Variables). Étant donné un en-
semble de variables booléennes X et un ensemble A =
{α1, . . . , αk} de k affectations des variables de X , la di-
versité de la variable x ∈ X dans A, notée Div(x,A), est
définie comme suit :

Div(x,A) = T (x,A) · F (x,A)

où :
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— T (x,A) = |{α ∈ A | α(x) = 1}|,
— F (x,A) = |{α ∈ A | α(x) = 0}|.

Proposition 1. Étant donné un ensemble de variables boo-
léennes X et un ensemble A = {α1, . . . , αk} de k affecta-
tions des variables dans X , on a :

Div(A) =
∑

x∈X
Div(x,A) (2)

Preuve.

Div(A) =

k−1∑

i=1

k∑

j=i+1

Dis(αi, αj)

=
k−1∑

i=1

k∑

j=i+1

|{x ∈ X | αi(x) ̸= αj(x)}|

=

k−1∑

i=1

k∑

j=i+1

∑

x∈X
αi(x)̸=αj(x)

1

=
∑

x∈X

k−1∑

i=1

k∑

j=i+1
αi(x) ̸=αj(x)

1

=
∑

x∈X
T (x,A) · F (x,A) =

∑

x∈X
Div(x,A)

Dans le reste de cet article, nous calculons la diversité des
modèles à l’aide de l’équation 2 puisqu’elle permet de re-
présenter plus naturellement le problème dans nos formula-
tions.

2.2 Programmation quadratique en nombres
entiers

La programmation quadratique en nombres entiers (Qua-
dratic Integer Programming, QIP) est un paradigme de pro-
grammation mathématique avec des variables entières, une
fonction objectif quadratique et des contraintes linéaires.
Comme défini dans [22], la forme classique d’un modèle
QIP est la suivante :

(QIP ) max
x

x⊤Hx+ c⊤x

s.t. x ∈ P
x ∈ Zn

où H ∈ Qn×n est une matrice symétrique, c ∈ Qn et P
est un polyèdre, représenté par P = {x : Ax ≤ b} où
A ∈ Qm×n et b ∈ Qm.
La programmation pseudo-booléenne linéaire (Linear
Pseudo-Boolean Programming, LPB) est définie dans le do-
maine des variables booléennes. Selon [10], elle peut être
formulée sous le format suivant :

(LPB) max f(x1, . . . , xn)

s.t. fj(x1, . . . , xn) ≧ 0, j ∈ {1, . . . ,m}
x ∈ {0, 1}n

où f(x1, . . . , xn) =
∑n

i=1 wi · xi, wi ∈ Z.

2.3 Satisfiabilité maximum
La satisfiabilité maximum (MaxSAT) est l’extension natu-
relle de SAT en problème d’optimisation. Dans cet article,
nous utilisons sa version la plus générique, à savoir Max-
SAT partiel pondéré [4, 15]. Ce problème prend en en-
trée une formule bipartite pondérée ϕ = H ∪ S conte-
nant des variables booléennes dans X . H est l’ensemble
des clauses dures qui doivent être satisfaites, comme dans
SAT. S est l’ensemble des clauses souples, composé de
clauses pondérées (C,WC), où WC est un poids entier po-
sitif associé à la clause C. L’objectif de MaxSAT partiel
pondéré est d’obtenir une affectation α qui maximise (resp.
minimise) la somme des poids des clauses souples satis-
faites (resp. falsifiées) tout en satisfaisant toutes les clauses
dures. Formellement, soit costα(ϕ) la somme des poids des
clauses souples de ϕ falsifiées par l’affectation α, le pro-
blème MaxSAT partiel pondéré consiste ainsi à déterminer
optimum(ϕ) = min

α
costα(ϕ).

Dans le reste de l’article, nous utilisons MaxSAT pour faire
référence à sa variante partielle pondérée. De plus, la lit-
térature introduit des contraintes pseudo-booléennes (PB)
qui peuvent être efficacement encodées sous forme clau-
sale [23]. Ces contraintes prennent la forme suivante :

∑

j

aj · lj ▷ b

où aj ∈ N, b ∈ N, lj est un littéral et ▷ ∈ {=,≥,≤}. Un
cas particulier de contrainte PB survient lorsque tous les
coefficients des littéraux sont égaux à un et peuvent donc
être omis [23]. Ces contraintes sont couramment appelées
contraintes de cardinalité et prennent donc la forme la sui-
vante : ∑

j

lj ▷◁ b

où lj est un littéral, b ∈ N et ▷◁∈ {=,≤,≥}.

3 Formulations pour la satisfiabilité
diversifiée

Dans cette section, nous présentons trois formulations dis-
tinctes du problème de satisfiabilité diversifiée, à savoir une
formulation basée sur un modèle de programmation qua-
dratique en nombres entiers (QP) et deux formulations li-
néaires pseudo-booléennes (DW et IW). Nous commençons
par la première formulation QP, présentée en 3.1, qui trans-
forme naturellement le problème d’optimisation initial en
une fonction objectif quadratique. En 3.2, nous exposons
l’idée générale permettant de faire le lien entre une formu-
lation avec variables entières et objectif quadratique, et une
formulation avec variables booléennes et objectif linéaire,
conduisant ainsi aux deux modèles linéaires proposés en
3.3. Enfin, la section 3.4 présente la transformation des for-
mulations linéaires pseudo-booléennes vers des formula-
tions MaxSAT.

3.1 Formulation quadratique
Dans cette sous-section, nous présentons une formulation
en programmation quadratique en nombres entiers (QIP)
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max
∑

j∈N
Oj · (k −Oj) (QP-0)

s.c
∑

lj∈C−
h

(1− Vi,j) +
∑

lj∈C+
h

Vi,j ≥ 1 ∀(i, h) ∈ K ×M

(QP-1)

Oj =
∑

i={1,...,K}
Vi,j ∀j ∈ N (QP-2)

Oj ∈ N+, Vi,j ∈ {0, 1} ∀(i, j) ∈ K ×N
(QP-3)

FIGURE 1 – Modèle quadratique pour la satisfiabilité diver-
sifiée

pour le problème de satisfiabilité diversifiée. Cette formu-
lation s’appuie naturellement sur la Proposition 1, qui ex-
prime la diversité comme la somme des diversités indivi-
duelles des variables. Étant donnée une formule CNF ϕ
contenant n variables et m clauses, notre objectif est d’ob-
tenir k modèles maximisant la diversité. Pour cela, nous
définissons un modèle QIP à l’aide des deux séries de va-
riables suivantes, où K = {1, . . . , k}, N = {1, . . . , n} et
M = {1, . . . ,m} :

— Variables entières Oj ∀j ∈ N , qui représentent
le nombre d’affectations à Vrai de la jème variable
dans l’ensemble A des k affectations, c’est à dire
T (xj , A).

— Variables binaire Vi,j ∀(i, j) ∈ K × N , qui re-
présentent la valeur booléenne de la jème variable
dans la ième affectation αi ∈ A, c’est à dire αi(xj).

Nous obtenons la formulation quadratique (QP) illustrée
dans la Figure 1. L’équation QP-0 est une reformulation de
Proposition 1, indiquant que l’objectif de maximisation, à
savoir la diversité, est égal à la somme des diversités indi-
viduelles des variables. L’équation QP-1 garantit que l’en-
semble A des k affectations construites constitue bien des
modèles de la formule CNF ϕ donnée en entrée. L’équa-
tion QP-2 établit le lien sémantique entre les variables boo-
léennes Vi,j et les variables entières Oj . Cette formulation
requiert O(k · n) variables et O(k ·m+ n) contraintes.

3.2 De la formulation quadratique aux for-
mulations linéaires

Dans la sous-section précédente, la formulation proposée
utilise des variables entières ainsi qu’une fonction objec-
tif quadratique, conformément à la relation établie dans
Proposition 1. Toutefois, la présence d’un terme quadra-
tique dans la fonction objectif peut constituer un obstacle
important à la résolution efficace du problème. Par consé-
quent, nous proposons une approche alternative consistant à
transformer la formulation QIP en une formulation linéaire
pseudo-booléenne. Autrement dit, il s’agit de transformer
la fonction objectif quadratique initiale en une combinai-
son linéaire de variables booléennes.

FIGURE 2 – Les fonctions de poids DW et IW pour un scé-
nario avec k = 10

Pour chaque variable booléenne d’origine xj ∈ X dans la
formule CNF ϕ donnée, nous introduisons d’abord une sé-
rie de variables booléennes auxiliaires destinées à représen-
ter le nombre d’affectations à Vrai de xj à travers les k mo-
dèles, soit T (xj , A). Il convient de souligner que la relation
de correspondance entre ces variables auxiliaires et l’entier
T (xj , A) doit être cohérente avec les fonctions de pondé-
ration. Nous développons ensuite deux fonctions de pondé-
ration distinctes, appelées respectivement pondération di-
recte (DW) et pondération incrémentale (IW), permettant
de reformuler le terme quadratique original Div(xj , A) =
T (xj , A) · (k − T (xj , A)).
Une illustration de ces deux fonctions de pondération dans
un scénario comportant k = 10 modèles est présentée dans
la Figure 2. La première fonction, DW, associe directement
à chaque valeur possible de T (xj , A) sa contribution cor-
respondante à la diversité. Les points bleus répartis sur la
courbe parabolique indiquent que le maximum de diversité
est atteint lorsque xj est assignée à Vrai dans exactement
la moitié des modèles. La seconde fonction, IW, adopte une
approche incrémentale en exprimant Div(xj , A) comme la
somme de contributions marginales. Les points rouges de la
Figure 2 illustrent la variation de la valeur de diversité lors-
qu’on incrémente T (xj , A) d’une unité. Il est à noter que
ces valeurs incrémentales deviennent négatives au-delà du
point médian, traduisant les rendements décroissants asso-
ciés à une répartition déséquilibrée des affectations à Vrai.
Formellement, soit r = T (xj , A), nous définissons la fonc-
tion de pondération directe (DW) comme suit :

Dr = r · (k − r) ∀r ∈ {0, . . . , k}

et la fonction de pondération incrémentale (IW) par :

Ir = Dr −Dr−1 = −2r + k + 1 ∀r ∈ {1, . . . , k}

On peut remarquer que pour tout r ∈ {1, . . . , k}, on a
Dr =

∑r
r′=1 Ir′ . Ces deux fonctions de pondération dis-

tinctes offrent donc des approches différentes mais mathé-
matiquement équivalentes pour reformuler la fonction ob-
jectif d’origine, comme cela sera détaillé dans la suite.
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max
n∑

j=1

k∑

r=0

Dr · Uj,r (DW-0)

s.c
∑

lj∈C−
h

(1− Vi,j) +
∑

lj∈C+
h

Vi,j ≥ 1 ∀(i, h) ∈ K ×M

(DW-1)
∑

r∈({0}∪K)

Uj,r = 1 ∀j ∈ N (DW-2)

∑

r∈({0}∪K)

rUj,r =
∑

i∈K
Vi,j ∀j ∈ N (DW-3)

Vi,j ∈ {0, 1}, Uj,r ∈ {0, 1} ∀(i, j) ∈ K ×N
∀(r, j) ∈ ({0} ∪K)×N (DW-4)

FIGURE 3 – Modèle linéaire pour la satisfiabilité diversifiée
avec le pondération directe DW.

3.3 Formulations linéaires
3.3.1 Formulation par pondération directe
Nous présentons d’abord la formulation pour le problème
de satisfiabilité diversifiée avec la fonction de pondéra-
tion DW, qui repose sur les variables suivantes, où K =
{1, . . . , k} et N = {1, . . . , n} :

— Variables binaires Uj,r ∀(r, j) ∈ ({0}∪K)×N ,
qui représentent le fait que le nombre d’affectations
à Vrai de la jème variable dans l’ensemble des k mo-
dèles soit égal à r, c’est à dire T (xj , A) = r.

— Variables binaire Vi,j ∀(i, j) ∈ K × N , qui re-
présentent la valeur booléenne de la jème variable
dans la ième affectation αi ∈ A, c’est à dire αi(xj).

Ainsi, la formulation avec la fonction de pondération DW,
Dr = r · (k − r), peut être obtenue comme indiqué dans la
Figure 3, où M = {1, . . . ,m}. L’équation DW-0 formule
la fonction objectif, où chaque termeDr ·Uj,r indique qu’il
y a une contribution à la diversité Dr = r · (k − r) lorsque
la variable xj est assignée à Vrai exactement dans r des k
modèles. L’équation DW-1 garantit que chaque modèle αi

satisfait la formule CNF originale ϕ, c’est-à-dire que pour
toute clause Ch de ϕ et chaque modèle αi, au moins un lit-
téral de la clause doit être satisfait selon les assignations de
variables dans αi. L’équation DW-2 impose qu’il y ait un
seul nombre d’assignations à Vrai de la variable j parmi les
k modèles. L’équation DW-3 établit la relation de corres-
pondance entre les variables Uj,r et les assignations réelles
des modèles Vi,j . Il y a O(k · n) variables et O(k ·m+ n)
contraintes dans la formulation DW.

3.3.2 Formulation par pondération incrémentale
Dans cette sous-section, nous développons une autre for-
mulation pour le problème de satisfiabilité diversifiée en
utilisant la fonction IW. Les variables utilisées dans cette
formulation sont les suivantes :

— Variables binaires Uj,r ∀(r, j) ∈ ({0}∪K)×N ,
qui représentent le fait que le nombre d’affectations
à Vrai de la jème variable dans l’ensemble des k af-

max

n∑

j=1

k∑

r=0

Ir · Uj,r (IW-0)

s.c
∑

lj∈C−
h

(1− Vi,j) +
∑

lj∈C+
h

Vi,j ≥ 1 ∀(i, h) ∈ K ×M

(IW-1)

Uj,r ≤ Uj,r−1 ∀(r, j) ∈ (K \ {1})×N (IW-2)
∑

r∈K
Uj,r =

∑

i∈K
Vi,j ∀j ∈ N (IW-3)

Vi,j ∈ {0, 1}, Uj,r ∈ {0, 1} ∀(i, j) ∈ K ×N
∀(r, j) ∈ K ×N (IW-4)

FIGURE 4 – Modèle linéaire pour la satisfiabilité diversifiée
avec le pondération incrémentale IW.

fectationsA soit supérieure ou égale à r, c’est à dire
T (xj , A) >= r.

— Variables binaire Vi,j ∀(i, j) ∈ K × N , qui re-
présentent la valeur booléenne de la jème variable
dans la ième affectation αi ∈ A, c’est à dire αi(xj).

La formulation linéaire avec IW, définie par Ir = −2r +
k+1, est obtenue comme illustré dans la Figure 4. La struc-
ture de IW reste similaire à celle de DW. L’équation IW-0
exprime la contribution incrémentale de l’affectation Vrai
de la variable xj à la diversité globale. L’équation IW-1 im-
pose la satisfiabilité de l’ensemble des k affectations obte-
nues. L’équation IW-2 assure l’ordre dans l’utilisation des
variables Uj,r ce qui, en conjonction avec IW-3, permet de
capturer l’information sémantique de Uj,r. Les complexités
en nombre de variables et de contraintes dans la formulation
IW sont respectivement de O(n · k) et O(k · (m+ n)).

3.4 Formulations MaxSAT
Lorsqu’on se focalise sur l’exigence intrinsèque du pro-
blème de satisfiabilité diversifiée, on ne peut pas ignorer
la tâche centrale consistant à obtenir des modèles en lo-
gique propositionnelle, une tâche pour laquelle MaxSAT
semble intuitivement être mieux adapté. Dans cette sous-
section, nous présentons la transformation des formulations
linéaires précédentes vers MaxSAT. Nous reformulons les
modèles sous forme clausale, accompagnée de contraintes
pseudo-booléennes (PB) ou de cardinalité, comme illustré
dans la Figure 5. De plus, nous signalons que l’équation
IW-0* peut contenir des poids négatifs, ce qui n’est pas
conforme au standard original de MaxSAT. Elle est donc
transformée à l’aide de l’équation suivante :
{

(Uj,i, Ir) Ir ≥ 0,
(U j,i,−Ir) Ir < 0,

∀(r, j) ∈ K ×N (IW-0)

Un exemple illustratif est présenté dans l’exemple suivant.
Cette technique de normalisation permet de représenter cor-
rectement la fonction de poids incrémentale dans le cadre
standard de MaxSAT, qui exige des poids non négatifs pour
toutes les clauses souples.
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Exemple 1. Si on prend k = 4 and n = 3, selon la défini-
tion Ir = −2r + k + 1, on a :

I1 = 3, I2 = 1, I3 = −1, I4 = −3

Pour chaque variable xj où j ∈ {1, 2, 3}, avant normalisa-
tion, les clause souples présentent des poids négatifs selon
IW-0* :

(Uj,1, 3), (Uj,2, 1), (Uj,3,−1), (Uj,4,−3)

La contribution des xj peut être formulée comme suit :

objoriginal = 3Uj,1 + Uj,2 − Uj,3 − 3Uj,4

Après normalisation de IW-0*, on obtient :

(Uj,1, 3), (Uj,2, 1), (U j,3, 1), (U j,4, 3)

avec la contribution suivante :

objnormalized = 3Uj,1 + Uj,2 + U j,3 + 3U j,4

Puisque U j,r = 1 − Uj,r, on peut réecrire les objectifs
comme suit :

objnormalized = 3Uj,1 + Uj,2 + (1− Uj,3) + 3(1− Uj,4)

= 3Uj,1 + Uj,2 − Uj,3 − 3Uj,4 + 4

= objoriginal + 4

L’ajout d’une constante à toutes les valeurs de la fonc-
tion objectif ne modifie pas la solution optimale d’une ins-
tance MaxSAT donc la formulation normalisée permet bien
d’identifier les mêmes ensembles optimaux de modèles di-
versifiés.

4 Résultats expérimentaux
Dans cette section, nous présentons les résultats expérimen-
taux des approches proposées. Le protocole expérimental,
incluant l’environnement de test, les instances traitées, ainsi
que les solveurs utilisés, est détaillé en 4.1. La section 4.2
présente les performances globales, tandis que la section
4.3 compare les formulations basées sur les deux fonctions
de pondération distinctes.

4.1 Protocole expérimental
Tous les tests ont été menés sur la plateforme MatriCS 1,
équipée d’un système CentOS 8.6 et d’un processeur In-
tel Xeon E5-2680 v4 fonctionnant à une fréquence de 2,40
GHz, avec une capacité Turbo Boost allant jusqu’à 3,30
GHz. Le temps limite fixé pour tous les solveurs est de 7200
secondes. Les instances utilisées dans nos expériences pro-
viennent de deux sources : 20 instances issues de la vérifica-
tion de matériel, telles que proposées et utilisées dans [20],
ainsi que 88 instances provenant de SATLIB 2, pour un to-
tal de 108 instances réparties en 8 familles distinctes. La
taille de ces instances varie de 61 variables et 300 clauses

1. https://www.matrics.u-picardie.fr
2. https://www.cs.ubc.ca/~hoos/SATLIB/benchm.

html

Soft Clauses
(Uj,r, r · (k − r)) ∀(r, j) ∈ ({0} ∪K)×N (DW-0)
Hard Clauses

(
∨

lj∈C−
h

V i,j) ∨ (
∨

lj∈C+
h

Vi,j) ∀(i, h) ∈ K ×M (DW-1)

∑

r∈({0}∪K)

Uj,r = 1 ∀j ∈ N (DW-2)

∑

r∈({0}∪K)

rUj,r =
∑

i∈K
Vi,j ∀j ∈ N (DW-3)

(a) MaxSAT-DW

Soft Clauses
(Uj,r, Ir) ∀(r, j) ∈ K ×N (IW-0*)
Hard Clauses

(
∨

lj∈C−
h

V i,j) ∨ (
∨

lj∈C+
h

Vi,j) ∀(i, h) ∈ K ×M (IW-1)

Uj,r → Uj,r−1 ∀(r, j) ∈ (K \ {1})×N (IW-2)
∑

r∈K
Uj,r =

∑

i∈K
Vi,j ∀j ∈ N (IW-3)

(b) MaxSAT-IW

FIGURE 5 – Formulations MaxSAT avec DW (a) et IW (b).

à 83908 variables et 276106 clauses. Toutes les instances
garantissent l’existence d’au moins 10 modèles distincts.
Les solveurs de l’état de l’art suivants ont été utilisés dans
nos expériences afin d’évaluer les méthodologies propo-
sées : CPLEX [11] pour la formulation QIP proposée en 3.1
ainsi que pour les deux formulations pseudo-booléennes li-
néaires introduites en 3.3 ; MaxHS [21], WMaxCDCL [14],
et OpenWBO [18] pour les deux formulations MaxSAT
décrites en 3.4. Nous notons que ces trois solveurs Max-
SAT représentent respectivement des approches basées sur
la programmation linéaire en nombres entiers (ILP), sur la
séparation et évaluation (Branch-and-Bound), et sur les ap-
pels aux oracles SAT. Pour réaliser les encodages CNF des
contraintes de cardinalité et pseudo-booléennes, nous avons
utilisé la bibliothèque PySAT 3 [12, 13], avec les contraintes
de cardinalité encodées à l’aide de l’encodage Cardinality
Network [3], qui permet d’encoder une contrainte de car-
dinalité de borne K sur N littéraux avec une complexité
O(N log2K) en termes de clauses et de variables auxi-
liaires. Concernant les contraintes pseudo-booléennes, nous
avons utilisé le mode "Best" proposé par PySAT, qui sé-
lectionne automatiquement la méthode d’encodage la plus
adaptée.
Pour justifier la non-trivialité des solutions obtenues, nous
avons également mis en place une approche naïve par énu-
mération, basée sur le solveur SAT CaDiCaL [5]. Le sol-
veur est exécuté de manière itérative k fois. Après chaque

3. https://pysathq.github.io/
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itération, une nouvelle clause est ajoutée à la formule pour
bloquer l’assignation satisfaisante nouvellement trouvée.
Une fois les k itérations terminées, le programme est sus-
pendu et la diversité est calculée à partir des k modèles ob-
tenus.

4.2 Performances globales
Les analyses de performance des différentes approches tes-
tées à travers l’ensemble des familles, pour les valeurs de
k égales à 2, 5 et 10, sont présentées dans les Tableaux 1,
2 et 3. Ces tableaux présentent les performances sous deux
aspects : la capacité des approches proposées à résoudre le
problème à l’optimalité et la diversité obtenue par celles-
ci, comparée à l’énumérateur naïf CaDiCaL. À partir de
ces tableaux, il ressort que toutes les formulations propo-
sées parviennent à obtenir des solutions optimales dans cer-
taines familles, notamment pour des valeurs plus petites de
k, comme celle de 2. De manière générale, les formulations
linéaires avec les fonctions de poids DW et IW, obtiennent
le plus grand nombre de solutions optimales pour toutes les
valeurs de k. L’écart se renforce lorsque la valeur de k aug-
mente jusqu’à 10, illustrant ainsi une bonne scalabilité de
l’approche linéaire pour la résolution du problème.
Pour les solveurs MaxSAT, OpenWBO coopérant avec DW
obtient le plus grand nombre d’instances résolues à l’opti-
malité, soit 89 sur 108, lorsque k = 2, tandis que MaxHS
coopérant avec IW bascule en première position lorsque
k = 5 et k = 10, résolvant respectivement 67 et 33 ins-
tances. WMaxCDCL présente des performances compa-
rables à celles de MaxHS et OpenWBO lorsque k = 2 et
k = 10, bien que ses performances diffèrent des deux autres
lorsque k = 10.
De plus, on note que, dans plusieurs cas, bien que la for-
mulation QIP avec CPLEX parvienne à atteindre la valeur
optimale prouvée par certains autres solveurs, elle échoue
à prouver l’optimalité, avec respectivement 7, 21, et 15 ins-
tances non prouvées lorsqu’on prend k = 2, k = 5 et
k = 10. Dans l’ensemble, ces résultats démontrent que,
malgré le fait que toutes les approches proposées sont ca-
pables de résoudre de manière optimale le problème de sa-
tisfiabilité diversifiée, le choix du solveur et de la fonction
de poids a un impact significatif sur les performances, cer-
taines combinaisons montrant des résultats supérieurs en
fonction des cas spécifiques.
En termes de diversité, pour k = 2, 5, 10, les meilleurs ré-
sultats obtenus par un solveur exact est respectivement de
3.58, 2.50, et 3.34 fois meilleure que celle de la solution
obtenue par l’énumération naïve avec CaDiCaL. Lorsqu’on
restreint l’analyse aux cas avec optimalité prouvée, ces fac-
teurs deviennent respectivement de 113, 63, et 23. L’écart
de performance substantiel entre l’énumérateur naïf et les
approches exactes proposées démontre clairement la diffi-
culté inhérente du problème, et confirme la nécessité de dé-
velopper des approches exactes performantes.
On peut également observer qu’avec l’augmentation de la
valeur de k, les approches exactes proposées échouent par-
fois à obtenir des solutions faisables dans le temps im-
parti. Cela est particulièrement le cas pour WMaxCDCL

et CPLEX et pourrait être dû au fait que l’objectif interne
des solveurs exacts est d’obtenir des solutions optimales, de
sorte que les résultats intermédiaires incomplets ne reflètent
pas pleinement le processus de résolution. Par exemple,
l’approche linéaire avec IW résolue avec le solveur CPLEX
ne parvient à obtenir que 4 résultats faisables pour la fa-
mille difficile "hardware" lorsque k = 5, mais tous ces ré-
sultats sont optimaux. Malgré cette difficulté, les approches
proposées offrent toujours une qualité satisfaisante pour les
solutions sous-optimales, ce qui démontre une grande ro-
bustesse.
En se focalisant sur la comparaison de la capacité de résolu-
tion optimale de toutes les approches exactes proposées, les
Figures 6, 7, 8 offrent une vision plus complète du nombre
cumulé d’instances résolues par chaque approche dans le
temps imparti.

FIGURE 6 – Nombre cumulé d’instances résolues pour k =
2 en fonction du temps de résolution en secondes.

FIGURE 7 – Nombre cumulé d’instances résolues pour k =
5 en fonction du temps de résolution en secondes.

FIGURE 8 – Nombre cumulé d’instances résolues pour k =
10 en fonction du temps de résolution en secondes.
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Famille #I #Var #CL Énum. CPLEX MaxSAT (DW) MaxSAT (IW)

CaDi. QIP DW IW MaxHS WMaxCDCL OpenWBO MaxHS WMaxCDCL OpenWBO

flat100- 30 155 562 [2] 23(6686)[73] 30(11)[103] 30(8)[103] 30(2)[103] 30(15)[103] 30(2)[103] 30(5)[103] 30(16)[103] 30(6)[103]
flat100+ 30 425 1584 [2] 1(6685)[63] 30(1047)[283] 30(730)[283] 30(486)[283] 30(357)[283] 30(50)[283] 30(81)[283] 30(435)[283] 25(51)[235]

ais 4 155 2730 [18] 1(4)[6] 4(196)[34] 4(60)[34] 3(56)[34] 4(5831)[34] 4(35)[34] 3(69)[34] 3(171)[22] 3(425)[22]
morphed 20 500 3100 [2] 0(-)[0] 20(65)[200] 20(25)[200] 19(166)[200] 20(9836)[200] 19(21)[199] 1(8)[200] 0(-)[0] 18(46)[197]
logistics 4 1881 11682 [3] 1(5531)[216] 3(58)[365] 3(108)[368] 3(286)[364] 2(443)[218] 2(13)[293] 2(304)[366] 1(28)[218] 2(2302)[285]
hardware 20 49391 161548 [5483] 0(-)[596] 4(249)[1177] 4(195)[1180] 0(-)[18835] 0(-)[0] 4(66)[10052] 0(-)[18381] 0(-)[0] 2(74)[9149]

All 108 9476 31620 [1018] 26(18905)[156] 91(1626)[377] 91(1126)[378] 85(996)[3647] 86(16482)[154] 89(187)[2018] 66(466)[3563] 64(651)[116] 80(2904)[1836]

TABLE 1 – Résultats pour k = 2. Pour chaque famille d’instances, le nombre d’instances (#I), le nombre moyen de variables (#V ar) et le nombre moyen de clauses (#CL)
sont indiqués. Ensuite, la diversité des résultats obtenue par l’approche d’énumération naïve utilisant CaDiCaL (CaDi.) est rapportée. Les performances de l’approche QIP
et de l’approche linéaire avec CPLEX ainsi que les trois solveurs MaxSAT, à savoir MaxHS, WMaxCDCL et OpenWBO, sur les formulations avec deux fonctions de poids
distinctes (DW, IW) sont présentées sous la forme de #OPT (tot_timeopt)[Divall], où #OPT représente le nombre de solutions optimales obtenues dans le temps limite,
tot_timeopt est la somme des temps de résolution pour ces solutions optimales et Divall est la diversité moyenne calculée en fonction des meilleures solutions faisables
(ou optimales) obtenues pour pour toutes les instances dans la famille concernée. Dans le cas où aucune solution faisable n’est trouvée dans le temps limite, la diversité est
considérée comme étant nulle (égale à 0 comme pénalité) sinon la diversité de la meilleure solution faisable est considérée. Parmi toutes nos approches, celle ayant résolu de
manière optimale le plus grand nombre d’instances dans le temps le plus court est indiquée en gras. De plus, la meilleure diversité globale Divall parmi toutes les approches,
y compris l’énumération naïve avec CaDiCaL, est soulignée.

Famille #I #Var #CL Énum. CPLEX MaxSAT (DW) MaxSAT (IW)

CaDi. QIP DW IW MaxHS WMaxCDCL OpenWBO MaxHS WMaxCDCL OpenWBO

flat100- 30 155 562 [50] 0(-)[595] 30(2169)[827] 30(81)[827] 30(3558)[827] 30(5311)[827] 20(7597)[817] 30(609)[827] 30(4472)[827] 28(403)[823]
flat100+ 30 425 1584 [32] 0(-)[59] 22(56712)[1493] 29(26379)[2160] 29(13603)[2249] 27(25914)[1973] 20(15181)[2148] 30(3023)[2267] 28(25118)[2067] 30(796)[2267]

ais 4 155 2730 [280] 0(-)[50] 1(5834)[119] 1(2348)[124] 1(429)[314] 1(645)[124] 0(-)[304] 1(506)[327] 1(765)[124] 1(3987)[306]
morphed 20 500 3100 [30] 0(-)[87] 0(-)[1977] 3(10458)[1985] 0(-)[1855] 0(-)[0] 0(-)[1197] 6(9311)[2000] 0(-)[0] 0(-)[2000]
logistics 4 1881 11682 [38] 0(-)[0] 0(-)[995] 0(-)[1608] 0(-)[2604] 0(-)[0] 0(-)[1682] 0(-)[2652] 0(-)[0] 0(-)[1782]
hardware 20 49391 161548 [42853] 0(-)[1919] 3(16991)[3850] 4(4427)[3850] 0(-)[82752] 0(-)[0] 0(-)[87145] 0(-)[100503] 0(-)[0] 0(-)[8613]

All 108 9476 31620 [7976] 0(-)[555] 56(81706)[1765] 67(43693)[1974] 60(17589)[16630] 58(31870)[782] 40(22779)[17257] 67(13449)[19952] 59(30354)[808] 59(5185)[2901]

TABLE 2 – Résultats pour k = 5. Le format des données est aligné avec Tableau 1.

Famille #I #Var #CL Énum. CPLEX MaxSAT (DW) MaxSAT (IW)

CaDi. QIP DW IW MaxHS WMaxCDCL OpenWBO MaxHS WMaxCDCL OpenWBO

flat100- 30 155 562 [337] 0(-)[1501] 30(14651)[3410] 30(1253)[3410] 0(-)[3224] 10(14085)[1815] 1(1209)[2897] 27(21543)[3410] 0(-)[2144] 17(31749)[3410]
flat100+ 30 425 1584 [179] 0(-)[20] 5(18333)[1487] 16(43420)[3905] 0(-)[8323] 0(-)[0] 0(-)[8286] 6(20519)[9350] 0(-)[1531] 7(3270)[9350]

ais 4 155 2730 [1226] 0(-)[0] 0(-)[211] 0(-)[211] 0(-)[1272] 0(-)[0] 0(-)[1230] 0(-)[1366] 0(-)[0] 0(-)[1278]
morphed 20 500 3100 [168] 0(-)[0] 8(45029)[7988] 7(31263)[7993] 0(-)[6548] 0(-)[0] 0(-)[5106] 0(-)[6371] 0(-)[0] 0(-)[8000]
logistics 4 1881 11682 [208] 0(-)[0] 0(-)[0] 0(-)[1942] 0(-)[9230] 0(-)[0] 0(-)[7772] 0(-)[9975] 0(-)[0] 0(-)[7760]
hardware 20 49391 161548 [105280] 0(-)[0] 0(-)[14790] 0(-)[15886] 0(-)[330172] 0(-)[0] 0(-)[34762] 0(-)[42646] 0(-)[0] 0(-)[21896]

All 108 9476 31620 [19724] 0(-)[423] 43(78013)[5586] 53(75936)[6534] 0(-)[65952] 10(14085)[504] 1(1209)[10823] 33(42062)[13042] 0(-)[1021] 24(35019)[9416]

TABLE 3 – Résultats pour k = 10. Le format des données est aligné avec Tableau 1.
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Lorsque k = 2, DW surpasse généralement IW, à l’ex-
ception du seul cas où CPLEX-DW et CPLEX-IW par-
viennent à résoudre rapidement toutes les instances. À me-
sure que k augmente à 5 et 10, IW montre généralement
une meilleure performance que le poids direct. Par ailleurs,
on observe que la formulation quadratique (QIP) montre
des performances plus faibles par rapport aux approches li-
néaires. De plus, l’approche linéaire avec CPLEX se com-
porte de manière comparable aux solveurs MaxSAT uni-
quement lorsque k = 5, mais elle présente un avantage
dans tous les autres cas. Ces résultats confirment que nos
approches exactes peuvent résoudre efficacement les pro-
blèmes de satisfiabilité diversifiée de taille raisonnable, les
approches linéaires montrant des résultats particulièrement
prometteurs.

4.3 Poids direct vs poids incrémental
Pour analyser les différences entre les deux fonctions de
poids proposées, DW et IW, nous menons une comparai-
son détaillée de leurs performances à travers différentes
familles d’instances et configurations de solveurs. Les Fi-
gures 9 et 10 présentent les comparaisons des temps d’exé-
cution des deux fonctions de poids pour k = 2 et k = 5.
Chaque point dans les diagrammes de dispersion corres-
pond à une instance, avec ses coordonnées déterminées
par le temps d’exécution pour les deux fonctions de poids.
Lorsqu’une instance n’a pas été résolue dans le temps im-
parti, la limite du temps d’exécution est reportée. Les points
situés en dessous de la diagonale indiquent les instances où
IW réalise de meilleures performances, tandis que les points
au-dessus de la diagonale sont en faveur de DW.
Nous observons que les distributions des points suivent des
tendances distinctes lorsque la valeur de k varie. Lorsque
k = 2, DW montre généralement des performances su-
périeures, avec 33.33%, 62.96%, 95.37%, 92.59% des
points situés au-dessus ou sur la ligne diagonale respecti-
vement pour les solveurs CPLEX, MaxHS, WMaxCDCL,
OpenWBO. À mesure que k augmente à 5, nous obser-
vons une tendance où IW surpasse DW, avec des pourcen-
tages de points de 84.26%, 89.81%, 81.48%, 72.22% situés
sous ou sur la ligne diagonale respectivement pour les sol-
veurs CPLEX, MaxHS, WMaxCDCL et OpenWBO. Dans
le cas de k = 10, nous omettons les figures correspon-
dantes car toutes les approches, à l’exception des modèles
linéaires avec CPLEX, n’ont pas réussi à résoudre de nom-
breuses instances, mais nous observons clairement dans le
Tableau 3 que IW obtient les meilleurs résultats. Enfin, sur
la base des résultats obtenus pour toutes les valeurs de k,
nous constatons l’avantage de IW par rapport à DW à me-
sure que k augmente.

5 Conclusion
Dans cette étude, nous avons proposé des formulations
exactes pour le problème de la satisfiabilité diversifiée,
en utilisant la programmation entière quadratique (QIP)
ainsi que des modèles de programmation linéaire pseudo-
booléene, pouvant être adaptées en formulations MaxSAT.
Ces approches permettent de formuler l’objectif de la satis-

fiabilité diversifiée sous l’angle de la diversité des variables.
L’approche QIP présente une formulation naturelle de l’ob-
jectif sous forme quadratique, tandis que les formulations
linéaires et MaxSAT reposent sur deux fonctions de poids
distinctes, exploitant pleinement les capacités des solveurs
modernes à résoudre des problèmes d’optimisation linéaire
complexes. Les résultats expérimentaux, menés sur un large
éventail d’instances avec différentes valeurs du paramètre
k, représentant le nombre de modèles, démontrent l’effica-
cité et la robustesse des méthodologies proposées.
Dans le cadre de nos travaux futurs, nous envisageons de
concevoir des algorithmes dédiés pour la satisfiabilité di-
versifiée qui dépassent les limitations des schémas de réso-
lution globaux tout en conservant la structure et la représen-
tation de l’objectif proposées dans nos approches actuelles.
Par ailleurs, à mesure que nous élargissons nos expériences
à un éventail d’instances plus large, nous espérons établir
de nouvelles solutions optimales, afin de soutenir les cher-
cheurs intéressés par ce domaine. Ces repères élargis fa-
ciliteront également la conception et l’évaluation d’algo-
rithmes heuristiques et d’approximation pour le problème
de la satisfiabilité diversifiée.
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À propos de l’AFIA
L’objet de l’AFIA, Association Loi 1901 sans but lucratif, est de promouvoir et de favoriser le développement
de l’Intelligence Artificielle (IA) sous ses différentes formes, de regrouper et de faire croître la communauté
française en IA et, à la hauteur des forces de ses membres, d’en assurer la visibilité.

L’AFIA anime la communauté par l’organisation de grands rendez-vous. Se tient ainsi chaque été une
semaine de l’IA, la Plate-forme IA (PFIA 2023 à Strasbourg, PFIA 2024 à La Rochelle, PFIA 2025 à Dijon)
au sein de laquelle se tiennent la Conférence Nationale d’Intelligence Artificielle (CNIA), les Rencontres des
Jeunes Chercheurs en IA (RJCIA) et la Conférence sur les Applications Pratiques de l’IA (APIA) ainsi que des
conférences/journées thématiques hébergées qui évoluent d’une année à l’autre, sans récurrence obligée.

Ainsi, PFIA 2025 a hébergé du 30 juin au 4 juillet 2025 à Dijon, outre la 28e CNIA, les 23es RJCIA et la
11e APIA : les 6 conférences CAp, IC, JFPC, JFSMA, JIAF et SFC, 4 journées thématiques (Défense & IA,
Humanité & IA, Société & IA, IA en BFC), 6 ateliers thématiques (ACAI, GDR RADIA, IN-OVIVE, Jeux &
IA, MAFTEC, Santé & IA), et plusieurs tutoriels hébergés.

Forte du soutien de ses 497 adhérents à jour de leur cotisation en juillet 2025, l’AFIA assure :

— le maintien d’un site Web dédié à l’IA reproduisant également les Brèves de l’IA ;
— une journée industrielle « Forum Industriel en IA » (FIIA 2025) ;
— une journée recherche « Perspectives et Défis en IA » (PDIA 2024) ;
— une journée enseignement « Enseignement et Formation en IA » (EFIA 2023) ;
— une « École Saisonnière en IA » (ESIA2025, précédente édition en 2023) ;
— la remise annuelle d’un prix de thèse en IA ;
— le soutien à 7 collèges ayant leur propre activité :

— collège Création d’Événements Collaboratifs, Inclusifs et Ludiques en IA (octobre 2021),
— collège Humanités, Société et Intelligence Artificielle (janvier 2025),
— collège Industriel (janvier 2016),
— collège Représentation et Raisonnement (avril 2017),
— collège Science de l’Ingénierie des Connaissances (avril 2016),
— collège Systèmes Multi-Agents et Agents Autonomes (janvier 2017),
— collège Technologies du Langage Humain (juillet 2019) ;

— la parution trimestrielle des Bulletins de l’AFIA ;
— un lien entre ses membres et sympathisants sur les réseaux sociaux LinkedIn, Facebook et Twitter ;
— le parrainage scientifique, mais aussi éventuellement financier, d’événements en IA ;
— la diffusion mensuelle de Brèves sur les actualités de l’IA en France (abonnement ou envoi à la liste) ;
— la réponse aux consultations officielles ou officieuses (Ministères, Missions, Organismes) ;
— la réponse aux questions de la presse, écrite ou orale, également sur internet ;
— la divulgation d’offres de collaborations, de formations, d’emploi, de thèses et de stages.

L’AFIA organise aussi des journées communes avec d’autres associations. Pour 2025 : Société & IA avec
AFIHM; MAFTEC 12 avec GDR RADIA.

Enfin, l’AFIA encourage la participation de ses membres aux grands événements de l’IA, dont PFIA. Ainsi,
les membres de l’AFIA, pour leur inscription à PfIA, bénéficient d’une réduction équivalente à deux fois le coût
de leur adhésion, leur permettant d’assister à PFIA 2025 sur 5 jours au tarif de 138e TTC !

Rejoignez-nous vous aussi et adhérez à l’AFIA pour contribuer au développement de l’IA en France. L’adhé-
sion peut être individuelle ou au titre de personne morale. Merci également de susciter de telles adhésions en
diffusant ce document autour de vous !
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Conseil d’Administration 2024

Président Benoit LE BLANC GT Bureau, Prix Thèse, International, Représentation
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Webmestre Catherine ROUSSEY GT Web & Mail, Réseaux
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Zied BOURAOUI GT Collèges
Gayo DIALLO Collège Industriel
Bernard GEORGES Collège Industriel
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Frédéric MARIS GT Enseignement
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Conseil d’Administration 2025

Président Benoit LE BLANC GT Bureau, Prix Thèse, International, Représentation
V.-Président Thomas GUYET GT Bureau, GT Plateforme, Représentation
Trésorière Isabelle SESÉ GT Bureau, Adhésions, Partenariats
Secrétaire Grégory BONNET GT Bureau, GT Rédaction, Adhésions, Prix Thèse
Porte-parole Pierre MONNIN GT Communication, Brèves, Réseaux
Rédacteur Dominique LONGIN GT Rédaction, Collections HAL
Webmestre Jean-Guy MAILLY GT Web & Mail, Réseaux

Azzedine BENABBOU Invité, GT Web & Mail
Zied BOURAOUI GT Collèges
Gayo DIALLO Collège Industriel
Domitile LOURDEAUX GT Collèges
Davy MONTICOLO GT Plateforme, GT Journées
Jose MORENO GT Enseignement
Gauthier PICARD GT Enseignement
Valérie REINER Collège Industriel
Céline ROUVEIROL Collège Industriel
Fatiha SAIS GT Journées
Ahmed SAMET GT Plateforme, GT Journées, GT Enseignement
Thierry VIDAL Parrainage

V





Collège Création d’Événements Collaboratifs,
Inclusifs et Ludiques en IA

Objectif du collège

Le Collège Création d’Événements Collaboratifs, Inclusifs et Ludiques en IA (CECILIA) de l’AFIA
défend l’apprentissage de l’IA grâce à la pratique coopérative et l’expérimentation. Il a deux objectifs :

— mettre à disposition des ressources pour l’Intelligence Artificielle par la pratique, en particulier
pour les étudiant(e)s/lycéen(ne)s (par exemple lors de la Nuit de l’info) ;

— favoriser les rencontres dans la communauté IA au travers d’événements instructifs, ludiques
et conviviaux (par exemple lors de PFIA).

Ce collège a repris les activités du Collège Compétition 2018-2020, pour les étendre à d’autres
activités comme des ateliers inspirés des game jams pour être plus inclusives en termes de public et
d’approches scientifiques. Ainsi le collège CECILIA à organisé un atelier « Jam Création de textes
poétiques ou drôles » lors de PFIA’2022 et un atelier « Jam DriveToGæther » lors de PFIA’2023.

Pour mémoire, le Collège Compétition a organisé pour l’AFIA les compétitions et animations :
« IA sur Robot » lors de RFIA’16 à Clermont-Ferrand, et « BotContest » lors de PFIA’17 à Caen,
« DriveToGæther » lors de PFIA’19.

Programme de travail

À ce jour, les événements identifiées par le collège sont les suivants :
— Nuit de l’Info. Les participantes et les participants à la Nuit de l’Info répondent en une nuit

sur un défi national de programmation, tout en relevant divers défis connexes. Leur programme
et un document doivent être remis le lendemain matin avant 8h. Ces résultats sont évalués
par un jury national et les jurys des défis connexes. Cette compétition a lieu tous les ans en
décembre et l’AFIA y participe en y proposant un défi : intégrer de l’IA dans l’application
développée. Le jury de ce défi se compose de membres du collège et d’autres personnes de
l’AFIA.

— IA sur Robots. Le but de ce défi est de mettre en évidence l’IA au sein d’une ou plusieurs
plateformes robotiques, dans un scénario figé avec des règles, et une mesure des performances.
Ce défi est ouvert à toutes et tous : personnels travaillant dans la recherche, l’enseignement,
l’ingénierie, étudiantes et étudiants ainsi que le grand public. Ce défi s’intitule « DriveToGæ-
ther » et dispose d’un scénario et d’un règlement. Les projets sélectionnés seront testés par le
public (par exemple lors de PFIA). Un de nos souhaits est de formaliser le règlement et les
supports de cet événement pour le rendre facilement organisable par des tierces organisations
locales (lycées, clubs, etc.).

— IA et Créativité. Le but de cet événement est de faire expérimenter au public le potentiel
créatif, l’originalité, la performance stratégique et/ou l’adaptabilité des méthodes d’IA. Il se
déroule sur une ou plusieurs soirées (par exemple lors de PFIA), dans un cadre coopératif et
festif.

— Un rassemblement annuel des membres du collège pour revenir sur les activités organisées
(par exemple lors de PFIA).
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Comité de pilotage

Le comité de pilotage se réunit au moins mensuellement et plus avant les événements.

— Anne-Gwenn BOSSER, École Nationale d’Ingénieurs de Brest, Lab-STICC ;
— Florence DUPIN DE SAINT-CYR, Université Toulouse 3 Paul Sabatier, IRIT ;
— Liana ERMAKOVA, Université de Bretagne Occidentale, Brest, HCTI ;
— Thomas GUYET, Inria, Lyon ;
— Philippe MORIGNOT, chercheur indépendant, Paris
— Nicolas PÉPIN-HERMANN, BA Healthcare, Rennes.

Un comité d’organisation est déterminé en fonction des événements, et intègre des membres du
comité de pilotage et des membres de comité d’organisation de l’événement. Nous projetons de lancer un
appel à participation pour constituer un comité consultatif afin de fédérer une communauté d’actrices
et d’acteurs intéressés par l’IA pour tous (responsables d’enseignement ou de FabLab, etc.).

Contacts

Coordinateur du collège : Florence DUPIN DE SAINT-CYR
Adresse de contact : collegececilia-ca@googlegroups.com
Un membre du comité de pilotage est membre du conseil d’administration de l’AFIA :

— Thomas GUYET, thomas.guyet@afia.asso.fr.

Références

— Florence Dupin de Saint-Cyr, Nicolas Yannick Pepin, Nassim Mokhtari, Philippe Morignot, Julien
Vianey, Anne-Gwenn Bosser, Liana Ermakova (2024) DriveToGaether: a Turnkey Collaborative Robo-
tic Event Platform, 16th Int. Conf. on Agents and Artificial Intelligence (ICAART 2024), SciTePress,
pages 404-411, doi : 10.5220/0012463800003636.

— Anne-Gwenn Bosser, Liana Ermakova, Florence Dupin de Saint-Cyr, Pierre De Loor, Victor Charpe-
nay, Nicolas Yannick Pépin, Benoît Alcaraz, Jean-Victor Autran, Alexandre Devillers, Juliette Gros-
set, Aymeric Hénard, Florian Marchal (2022) Poetic or Humorous Text Generation: Jam Event at
PFIA2022 13th Conf. and Labs of the Evaluation Forum (CLEF 2022), CEUR Workshop Procee-
dings, CEUR-WS.org, vol 3180, pages 1719-1726.

(Version de juillet 2024)
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Collège Industriel

Objectif du collège

L’objet du Collège Industriel (CI) de l’AFIA est de favoriser les échanges en France dans le domaine
de l’IA entre sa composante industrielle et sa composante académique ainsi que diverses actions de
promotion de l’IA. Le rejoindre c’est, pour une société, en plus des bénéfices accordés à toutes les
personnes morales de l’AFIA (pointeur vers site Web adhésions) :

— accroître la visibilité du CI de l’AFIA ;
— pouvoir faire état de ses relations académiques et leurs recherches de partenariat académique

sur des problématiques ciblées ;
— proposer aux collèges thématiques des actions intéressant les membres du CI ;
— pouvoir discuter avec les autres sociétés et adhérents au CI de problématiques dans le domaine

de l’IA, et partager des solutions en garantissant la confidentialité des échanges ;
— promouvoir l’IA auprès des décideurs et dirigeants industriels ;
— contribuer à équilibrer tous les domaines de l’IA et leurs hybridations ;
— témoigner auprès des collèges thématiques de cas d’usage qui intéressent le CI. ;
— témoigner de l’apport de l’IA dans l’industrie lors d’événements AFIA (FIIA, tutoriels). ;
— faire du lobbying au niveau français auprès des Ministères, des pôles de compétitivité, de

l’ANR et tout autre organisme, également au niveau européen ;
— faire connaître aux académiques ses besoins en recrutement ;
— offrir des opportunités à la communauté académique de valoriser leurs formations.

En outre, les sociétés membres du CI à jour de leur cotisation mensuelle au printemps apparaissent
comme partenaires de la Plateforme Intelligence Artificielle de la même année.

Programme de travail

En délégation du CA de l’AFIA, le programme de travail du CI consiste à :

— contribuer au pilotage d’événements annuels à forte visibilité, le Forum Industriel de l’IA
(FIIA) et la Conférence sur les Applications Pratiques de l’IA (APIA) ;

— cartographier les relations académiques et industrielles (services du 1er Ministre, MA, MC,
MEAE, MESRI, MI, MINEF, MJ, MS, MTES, ALLISTENE, CNRS, IMT, INRAE, INRIA,
ONERA + IRT) ;

— solliciter les collèges thématiques de l’AFIA pour des contacts ou des interventions ;
— solliciter les collèges thématiques de l’AFIA pour des partenariats de projet ;
— organiser des réunions régulières au sein du collège ;
— organiser des réunions avec invités externes ;
— coprogrammer le prochain AI Summit France ;
— diffuser des bulletins ou des dossiers du collège en français avec résumés en anglais ;
— motiver les facilités d’accès à toutes les approches d’IA et leurs hybridations dans les forma-

tions, open-sourcer.
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Ce programme est complété en début d’année civile par les membres du collège. Le CI se réunit
mensuellement pour coordonner les avancées sur les actions engagées par le collège et en décider
d’autres, échanger sur un sujet particulier et/ou sur l’actualité en IA sur le mois écoulé. Les réunions
du CI font l’objet de comptes rendus qui distribués à ses membres et au CA de l’AFIA.

Comité de pilotage

Le CI est composé de l’ensemble des sociétés s’étant acquittées des droits d’adhésion pour l’année en
cours et d’au moins deux académiques membres du CA de l’AFIA. Son comité de pilotage est constitué
de dix personnes physiques, dont au moins : le coordinateur du CI, le responsable de la feuille de route
et le responsable des séminaires. Ces responsables sont désignés pour une durée d’une année par les
membres du CI lors de la première réunion annuelle. En 2022, le Collège Industriel est composé de :

— Bruno CARRON et Frédéric PERLANT, AIRBUS, Elancourt ;
— Alain BERGER, ARDANS, Montigny-le-Bretonneux ;
— Mustapha DERRAS, Youssef MILOUDI et Valérie REINER, BERGER-LEVRAULT, Bou-

logne Billancourt ;
— Stéphane DURAND et Bruno PATIN, DASSAULT Aviation, Saint-Cloud ;
— Pierre FEILLET et Christian DE SAINTE-MARIE, IBM FRANCE, Gentilly ;
— Ghislain ATEMEZING et Christophe PRIGENT, MONDECA, Paris ;
— Jean-Pierre DESMOULINS, Jean-Baptiste FANTUN et Véronique VENTOS, NUKKAI, Pa-

ris ;
— Julien BOHNE, Bernard GEORGES et Christelle LAUNOIS, SOCIETE GENERALE, Val

de Fontenay ;
— Patricia BESSON, Juliette MATTIOLI et David SADEK, THALES, Palaiseau ;
— Yves DEMAZEAU et Céline ROUVEIROL, CA AFIA, Grenoble et Paris.

Contacts

Coordinateur et Responsable de la feuille de route : yves.demazeau@afia.asso.fr.
Responsable des séminaires : valerie.reiner@berger-levrault.com.
Quatre membres du comité de pilotage sont membres du conseil d’administration de l’AFIA :

— Yves DEMAZEAU, yves.demazeau@afia.asso.fr ;
— Bernard GEORGES, bernard.georges.777@gmail.com ;
— Valérie REINER, valerie.reiner@berger-levrault.com ;
— Céline ROUVEIROL, celine.rouverirol@afia.asso.fr.

(Version de juillet 2024)
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Collège Humanités, Société
et Intelligence Artificielle

Objectif du collège

Le collège Humanités, Société et Intelligence Artificielle (HumaniSIA) de l’AFIA s’est donné pour
mission de développer une communauté de chercheuses et chercheurs venant de tous horizons et s’in-
téressant à la convergence des différents domaines de recherche autour des aspects éthiques, sociaux et
environnementaux de l’intelligence artificielle.

Ce collège organise et aide à l’organisation de conférences autour des interactions entre l’intelligence
artificielle et la société. Il participe également aux travaux des autres collèges de l’AFIA et contribue
à la diffusion des connaissances au profit du grand public. Il contribue à la mise en avant de jeunes
chercheuses et chercheurs et à leur formation, en les encourageant à participer aux activités de ce
collège et plus largement à celles de l’AFIA.

Ce collège s’intéresse plus particulièrement aux risques qui peuvent se poser en matière d’envi-
ronnement et de gestion des ressources fondamentales, d’inégalités, d’emploi, de discriminations et
d’exclusion de tout ordre qu’un usage maladroit ou volontairement néfaste de l’intelligence artificielle
pourrait avoir sur nos sociétés et nos démocraties.

Programme de travail

Pour la période 2024 – 2026, le programme du collège HumaniSIA est prioritairement dédié à la
constitution de la communauté HumaniSIA à l’intérieur comme à l’extérieur de l’AFIA.

Á cet effet, nous participerons activement à l’intérieur de l’AFIA :

— à la Plate-Forme Intelligence Artificielle (PFIA) regroupant une fois par an les chercheuses et
chercheurs en IA et que nous nous attacherons à faire connaître auprès des autres disciplines.

— aux journées thématiques organisées par les collèges de l’AFIA intéressés par notre démarche.

Á l’extérieur de l’AFIA, nous avons l’intention de développer des coopérations avec des sociétés sa-
vantes proches de l’AFIA pour contribuer à faire connaître l’AFIA auprès des chercheur.se.s d’autres
disciplines et à en développer l’influence. Les premières coopérations envisagées le sont avec :

— l’association Évolution Artificielle ;
— l’Association Francophone d’Interaction Humain-Machine (AFIHM) ;
— le groupement de recherche Raisonnement, Apprentissage, et Décision en Intelligence Artifi-

cielle (RADIA) du CNRS.

Pour encourager les jeunes chercheuses et chercheurs à intégrer l’AFIA, nous avons également l’intention
de soutenir l’organisation d’un colloque de doctorant.e.s autour de l’approche transversale de l’IA.

Activités prévues pour 2025 :

— mars 2025 : journée commune AFIA-AFIHM à Lille, sur le campus de l’Inria : les thèmes por-
teront sur l’impact de l’IA dans la société ainsi que l’emploi de l’IA dans la création artistique,
avec notamment la question des droits d’auteur ainsi que la consommation d’énergie ;
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— juillet 2025 : participation à la plateforme IA à Dijon, organisée par l’AFIA ; le thème de la
journée Société et IA de 2025 s’intitule : « Expertise artificielle ? L’apparition des systèmes
d’IA dans l’expertise ».

— courant 2ème semestre 2025 : journées doctorales à destination des jeunes chercheurs (à Stras-
bourg).

Comité de pilotage

Le comité de pilotage est composé des personnes suivantes :

— Benoît LEBLANC, École Nationale Supérieure de Cognitique ;
— Davy MONTICOLO, Université de Lorraine ;
— Céline CASTETS-RENARD, Université d’Ottawa et ANITI (Institut d’IA de Toulouse) ;
— Samia CHEHBI GAMOURA, École de Management de Strasbourg, Université de Strasbourg ;
— Alain GOUDEY, Neoma Business School ;
— Évelyne LUTTON, INRAE ;
— Thierry MÉNISSIER, Université Grenoble Alpes et MIAI (Institut d’IA de Grenoble) ;
— Fabrice JAOUËN, Junia ;

Le comité de pilotage peut être amené à inviter des membres de la communauté à participer aux
discussions et réunions du collège.

Contacts

Coordinateur du collège : fab.jaouen@gmail.com.
Deux membres du comité de pilotage sont membres du conseil d’administration de l’AFIA :

— Benoît LEBLANC, benoit.leblanc@ensc.fr ;
— Davy MONTICOLO, davy.monticolo@univ-lorraine.fr.

(Version de mars 2025)
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Collège Représentation et Raisonnement

Objectif du collège

L’objectif du Collège Représentation et Raisonnement (R&R) de l’AFIA est d’animer les com-
munautés de recherche françaises dans ce domaine. Les thématiques de recherche sont relatives aux
méthodes et outils fondamentaux de l’Intelligence Artificielle. Elles portent sur :

— la définition de modèles de représentation des informations (croyances, connaissances, pré-
férences, obligations et permissions, actions, incertitude, confiance, réputation) comme les
langages des logiques classiques ou non classiques, les modèles possibilistes, les ontologies, les
langages à base de contraintes, les représentations graphiques, etc. ;

— la définition et l’automatisation de raisonnements sur ces informations : raisonnement spatio-
temporel, dynamique des informations, révision de croyances, fusion d’informations symbo-
liques, raisonnement par argumentation, raisonnement causal, raisonnement abductif, raison-
nement à partir de cas, etc. ;

— la perspective algorithmique et de représentation pour des concepts utilisés dans des théories
connexes comme la théorie des jeux ou la théorie du choix social (équilibre, stratégie gagnante,
manipulation, etc.) : théorie des jeux algorithmique et choix social computationnel ;

— la mise au point de méthodes de codage des informations et d’algorithmes de traitement
efficaces : compilation de connaissances, SAT, ASP, etc. ;

— la modélisation formelle de l’interaction : entre utilisateurs et systèmes informatiques, entre
entités informatiques autonomes (agents) ;

— et généralement le lien avec différentes techniques liées à la décision, la planification, l’ordon-
nancement, le diagnostic, l’apprentissage, les sciences des données, etc.

Ces thématiques couvrent de très nombreux contextes d’application, comme par exemple le Web
sémantique, le Web des données, les systèmes de recommandation ou d’aide à la décision, les agents
conversationnels et assistants personnels, la programmation des jeux, la robotique, etc.

Programme de travail

Le collège R&R est impliqué dans les activités suivantes :

— IAF : Journées d’Intelligence Artificielle Fondamentales. Ces journées ont lieu tous les ans, à
l’initiative du comité IAF. Elles sont articulées autour de 3 ou 4 exposés de synthèse invités,
ainsi que d’un programme constitué après appel à communication ;

— JFPDA : Journées Francophones sur la Planification, la Décision et l’Apprentissage pour la
conduite de systèmes. Ces journées ont lieu tous les ans, à l’initiative des anciens présidents
de comités de programme JFPDA et des participants à la liste de diffusion jfpda@loria.fr.
Elles sont articulées autour de 2 ou 3 exposés de synthèse invités, ainsi que d’un programme
constitué après appel à communication ;

— JFPC : Journées Francophones de Programmation par Contraintes. Ces journées ont lieu
tous les ans à l’initiative de l’AFPC (Association Française pour la Programmation par
Contraintes). Elles sont articulées autour de 2 ou 3 exposés de synthèse invités, ainsi que
d’un programme constitué après appel à communication ;
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— des ateliers thématiques, qui ont lieu lors d’autres évènements et la contribution à l’organisa-
tion de journées communes.

Le collège consacre une partie de son budget de fonctionnement à l’attribution de bourses permet-
tant à des étudiants d’assister à l’un des évènements organisés par le collège, ou d’autres manifestations
pertinentes au regard des thématiques scientifiques.

Comité de pilotage

Le comité de pilotage du collège est constitué des personnes suivantes :

— Elise BONZON, Université Paris-Descartes, LIPADE, Paris ;
— Zied BOURAOUI, co-président du comité de programme IAF, Université d’Artois, CRIL,

Lens ;
— Sylvie DOUTRE, co-présidente du comité de programme IAF, Université Toulouse 1 Capitole,

IRIT, Toulouse ;
— Sébastien KONIECZNY, ancien directeur du GDR IA, CNRS, CRIL, Lens ;
— Fréderic MARIS, membre du CA et représentant pour l’AFIA, Université Toulouse 3 Paul

Sabatier, IRIT, Toulouse ;
— Nicolas MAUDET, Université Pierre et Marie Curie, LIP6, Paris ;
— François SCHWARZENTRUBER, ancien président du comité de programme JFPDA, ENS

Rennes, IRISA, Rennes ;
— Laurent SIMON, membre du CA de l’AFIA, président de l’AFPC, Université de Bordeaux,

LaBRI, Bordeaux ;
— Elise VAREILLES, membre du CA de l’AFPC ISAE Supaero, Toulouse ;
— Bruno ZANUTTINI, ancien président du comité de programme JFPDA, Université Caen

Normandie, GREYC, Caen.

La composition du comité est amenée à être modifiée bi-annuellement.

Contacts

Coordinateur du collège : frederic.maris@irit.fr.
Listes de diffusion : bull-i3@irit.fr, bull-ia@gdria.fr, jfpda@loria.fr.
Deux membres du comité de pilotage du collège sont membres du Conseil d’Administration de

l’AFIA :

— Fréderic MARIS, frederic.maris@irit.fr ;
— Laurent SIMON, lsimon@labri.fr.

(Version de juillet 2024)
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Collège Science de l’Ingénierie
des Connaissances

Objectif du collège

L’Ingénierie des Connaissances (IC) est une thématique de l’Intelligence Artificielle (IA). Sa fina-
lité est la production de systèmes « intelligents et explicables », capables d’aider l’humain dans ses
activités et ses prises de décisions. La construction des modèles de connaissances (principalement à
base d’ontologies) et leur évaluation reposent sur une prise en compte des contextes applicatifs des
différents domaines d’étude et des cas d’usage qui leur correspondent. La représentation formelle per-
met des raisonnements automatiques sur ces connaissances et sur les données qui leur sont associées,
pouvant être complexes, hétérogènes, évolutives et distribuées. Elle permet aussi des tests de validité et
de cohérence des modèles développés. L’opérationnalisation des modèles pose des questions de passage
à l’échelle et d’explicabilité des résultats destinés aux utilisateurs des systèmes construits.

Les thématiques de recherche de l’IC sont relatives aux méthodes et outils de l’IA. Elles traitent un
ensemble de thèmes portant, entre autres, sur les graphes et les modèles de connaissances dont nous
listons les principaux :

— construction, réutilisation et mise à jour de ressources sémantiques, liage de données, aligne-
ment complexe, gestion des données et connaissances évolutives ;

— découverte de connaissances : fouille de ressources structurées et non structurées, découverte
de classes et de propriétés, découverte de règles ;

— validation et évaluation : métriques d’évaluation, explicabilité des résultats, détection d’er-
reurs, interaction avec les utilisateurs ;

— gestion de données complexes, spatiales et temporelles,
— gestion des flux de données hétérogènes : imprécision, incertitude, interopérabilité sémantique ;

mise en œuvre dans le contexte de l’internet des objets (IoT) ;
— éthique et Ingénierie des Connaissances.

Programme de travail

Le collège Science de l’Ingénierie des Connaissances (SIC) de l’AFIA a premièrement un rôle de
diffusion de l’information. Il gère une liste de diffusion (comptant plus de 800 inscrits) sur l’ingénierie
des connaissances et maintient une page web sur le site Web de l’AFIA. Il contribue également à
l’animation et au dynamisme de la communauté de recherche en ingénierie des connaissances. Il est
moteur dans l’organisation de différentes manifestations, comme :

— la conférence nationale Ingénierie des Connaissances (IC) qui a lieu chaque année lors de PFIA
et les ateliers qui lui sont associés ;

— les sessions spéciales Interaction Management in Digitized Ecosystems organisées dans le cadre
du chapitre français IEEE Systems Man and Cybernetics (SMC) ;

— la conférence internationale « Terminology & Ontology : Theories and applications » (TOTh) ;
— les journées dédiées au web sémantique dans le monde professionnel (SemWebPro) ;
— l’édition de numéros spéciaux en lien avec les thématiques du collège.
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Les membres du collège contribuent à la mise en place de plusieurs « Journées Communes » de
l’AFIA avec d’autres sociétés savantes, d’ateliers sur la Plate-Forme Intelligence Artificielle (PFIA) et
de journées thématiques internes au collège. Ils participent activement à des événements internationaux
tels que EKAW, K-CAP, ESWC, ECAI, TheWebConf ou encore ISWC.

Comité de pilotage

Le comité de pilotage du collège est constitué de chercheurs ou enseignants chercheurs spécialisés
dans le domaine de l’ingénierie des connaissances, tous membres des comités de programme de la
conférence nationale « journées francophones d’Ingénierie des Connaissances » (IC). Ils font également
le lien entre des sociétés savantes (ARIA (Association Francophone de Recherche d’Information (RI) et
Applications), ATALA (Association pour le Traitement Automatique des Langues), AIM (Association
d’Informatique Médicale)) et avec les GDRs RADIA et MADICS, humanité numérique :

— Marie-Hélène ABEL, Université de Technologie de Compiègne, HEUDIASYC ;
— Jean CHARLET, Assistance Publique-Hôpitaux de Paris & INSERM, LIMICS ;
— Sylvie DESPRÉS, Université Sorbonne Paris Nord„ LIMICS ;
— Catherine FARON, Université Nice Sophia Antipolis, I3S et Inria ;
— Nathalie HERNANDEZ, Université Toulouse 2 Jean Jaurès , IRIT ;
— Nathalie PERNELLE, Université Sorbonne Paris Nord, LIPN ;
— Maxime LEFRANÇOIS, Mines Saint Etienne, IMT, LIMOS ;
— Nathalie PERNELLE, EURECOM, Sophia Antipolis ;
— Catherine ROUSSEY, INRAE Centre Occitanie Montpellier, MISTEA ;
— Fatiha SAÏS, Université Paris Saclay, LISN ;
— Cassia TROJAHN, Université Jean Jaurès Toulouse 2, IRIT ;
— Haifa ZARGAYOUNA, Université Sorbonne Paris Nord, LIPN.

Contacts

Coordinateur du collège : sylvie.despres@univ-paris13.fr.
Listes de diffusion : info-ic@inria.fr.
Mail pour contacter le comité de pilotage du collège : collegeSIC@afia.asso.fr.
Deux membres du comité de pilotage sont membres du conseil d’administration de l’AFIA :

— Fatiha SAÏS, fatiha.sais@lisn.fr ;
— Catherine ROUSSEY, catherine.roussey@inrae.fr.

(Version de juillet 2024)
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Collège Systèmes Multi-Agents
et Agents Autonomes

Objectif du collège

Le collège Systèmes Multi-Agents et Agents Autonomes (SMAA) de l’AFIA a pour mission d’orga-
niser les activités du collège au sein de l’AFIA et d’assurer l’interaction entre l’AFIA et la communauté
francophone SMA et Agents Autonomes, concernant leur volet IA. Il participe à l’animation scienti-
fique au sein de l’AFIA, en coordination avec les communautés concernées, pour susciter l’implication
des membres du collège dans les événements organisés par l’AFIA (p. ex. PFIA, CNIA) tant en par-
ticipant aux comités scientifiques, qu’en organisant des manifestations d’intérêt pour la communauté
IA en France.

Le collège SMAA évolue dans deux directions :

— Accentuation des interactions avec les communautés robotique, automatique d’une part et
simulation, systèmes complexes d’autre part. Concrètement cela se traduira par l’organisation
d’événements joints sur des travaux associant SMA et/ou agents conversationnels animés à
ces disciplines. Lorsque d’autres champs d’IA seront ciblés, ces événements seront préparés en
association avec les autres collèges de l’AFIA concernés.

— Mise en place de webinaires réguliers, issues des équipes impliquées dans le collège SMAA.
Les séminaires d’équipes, soutenances de thèses, les soutenances de HDR pourront, sur base
du volontariat être diffusées à l’ensemble du collège SMAA.

Programme de travail

Les missions du collège SMAA concernent l’organisation de manifestations scientifiques (confé-
rences, journées thématiques), l’édition de dossiers techniques ou de numéros spéciaux de journaux sur
des thématiques d’intérêt pour la communauté.

Le collège SMAA accompagne notamment l’organisation régulière des JFSMA et de WACAI :

— JFSMA 2021 à PFIA Bordeaux ;
— JFSMA 2022 à Saint-Etienne ;
— WACAI 2022 (lieu à définir).

Le collège SMAA accompagne également l’organisation des journées communes suivantes :

— Journée commune MACS & IA ;
— Journée commune Robotique & IA ;
— Journée commune Simulation & IA.

Il propose également un soutien similaire à d’autres événements, ponctuels ou récurrents, relevant
de son périmètre scientifique.

Plus largement le collège envisage des actions d’animation à destination des doctorants, et des
actions de médiation scientifique et de communication à destination du public.
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Comité de pilotage

Le comité de pilotage du collège SMAA est constitué de chercheurs spécialisés dans le domaine des
systèmes multi-agents et des agents autonomes, tous membres des comités de programme ou du comité
consultatif des Journées Francophones en Systèmes Multi-Agents (JFSMA) et/ou du Workshop Affect,
Compagnon Artificiel, Interaction (WACAI).

— Emmanuel ADAM, Université Polytechnique Hauts-de-France, LAMIH, Valenciennes ;
— Fabien MICHEL, Université de Montpellier, LIRMM, Montpellier ;
— Frédéric MIGEON, Université Toulouse 3 Paul Sabatier, IRIT, Toulouse ;
— Maxime MORGE, Université de Lille 1, CRIStAL, Lille ;
— Magalie OCHS, Université Aix-Marseille, LSIS, Marseille ;
— Gauthier PICARD, ONERA, Toulouse ;
— Nicolas SABOURET, Université Paris-Sud, LIMSI, Saclay ;
— Olivier SIMONIN, INSA Lyon, CITI, Lyon ;
— Mahdi ZARGAYOUNA, IFSTTAR, Paris.

Contacts

Coordinateur du collège : emmanuel.adam@uphf.fr.
Listes de diffusion : sma@loria.fr, acai@poleia.lip6.fr.
Deux membres du comité de pilotage sont membres du conseil d’administration de l’AFIA :

— Emmanuel ADAM, emmanuel.adam@uphf.fr ;
— Gauthier PICARD, gauthier.picard@onera.fr.

(Version de juillet 2024)
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Collège Technologies du Langage Humain

Objectif du collège

Le collège Technologies du Langage Humain (TLH) de l’AFIA s’intéresse aux méthodes de com-
munication humain-machine naturelle, pouvant s’étendre à une interaction humain-humain médiée.
Elles permettent d’analyser, d’interpréter et de produire des actes du langage écrit, parlé ou signé,
ainsi que d’interagir avec des données langagières. Les TLH englobent le Traitement Automatique
des Langues (TAL), la Communication Parlée (CP) et leurs applications emblématiques comme la
Recherche d’Information (RI) et la Traduction Automatique.

L’étude du langage humain est multidisciplinaire et requiert des compétences en Linguistique, Psy-
chologie, Sciences Cognitives, Numérique et en Intelligence Artificielle (IA). Les TLH occupent une
place centrale en IA sous le prisme du Test de Turing, couvrant la représentation (e. g., plongements
lexicaux, analyse syntaxique), le raisonnement (e. g., systèmes de question-réponse, analyse séman-
tique), la planification (e. g., argumentation), l’apprentissage (e. g., analyse de sentiments), ou même
l’intelligence collective (e. g., détection de communautés). Créer des modèles capables d’interagir na-
turellement dans un langage donné impose une compréhension fine de l’acoustique, de la phonétique et
de la prosodie pour l’oral, mais aussi de la morphologie, de la syntaxe, de la sémantique et de la prag-
matique pour l’écrit ou le signé. Ainsi seulement, les TLH permettent un accès élargi à l’information
à travers moteurs de recherche, traduction, résumé de textes, veille ou systèmes de question-réponse.
La compréhension globale du langage permet également de caractériser les textes et la parole suivant
leurs objectifs communicationnels. Ainsi, l’analyse des sentiments et des émotions, l’identification de
discours haineux, la détection de plagiats ou de contenus synthétiques, l’identification et la vérification
du locuteur proposent autant de cadres applicatifs importants pour les sociétés numériques.

Puisqu’à l’ère du numérique les données langagières prolifèrent dans des quantités toujours plus
importantes et accessibles, dans un nombre grandissant de pays, les champs d’applications des TLH
sont nombreux. Ainsi, les archives numériques, les réseaux sociaux, les plateformes collaboratives, les
entretiens clients, les textos, les courriels, les commentaires sur des plateformes de vente en ligne, les
messages oraux, les vidéos en ligne sont autant de matières premières pour le développement d’ap-
plications des TLH. En particulier, quelques domaines privilégiés sont la santé, l’éducation, le droit,
le journalisme et le handicap, mais d’autres émergent comme la finance, l’agriculture, la sécurité, le
marketing et les humanités numériques.

Parallèlement au développement de modèles des TLH, et notamment les LLM, de nombreux défis
connexes doivent être pris en compte dans le cadre d’une démarche globale, comme la confiance (e. g.,
reproductibilité, explicabilité, confidentialité), l’éthique (e. g., biais d’apprentissage, représentativité,
anonymisation) et l’évaluation (e. g., métriques dédiées) des systèmes proposés.

Le collège TLH de l’AFIA a donc pour mission de promouvoir l’animation et l’interaction scienti-
fiques entre les communautés TAL, CP et RI, et l’ensemble des communautés en IA ayant des intérêts
communs dans le but de consolider les collaborations transversales.

Programme de travail

Afin de mener à bien sa mission, le collège TLH s’engage à soutenir l’organisation de manifesta-
tions scientifiques (conférences, ateliers, tutoriels), animer des groupes de travail, éditer des dossiers
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techniques, organiser des journées thématiques et diffuser et communiquer autour des recherches des
communautés françaises du TAL, de la CP, de la RI et de l’IA.

Le collège TLH s’engage à servir de canal de communication entre l’AFIA et ses collèges ainsi
qu’avec l’ATALA (Association pour le Traitement Automatique des Langues), l’ARIA (Association
Francophone de Recherche d’Information et Applications) et l’AFCP (Association Francophone de la
Communication Parlée).

Comité de pilotage

Le comité de pilotage du collège est constitué de 10 chercheuses et chercheurs spécialisés dans le
domaine du TAL, de la CP et de la RI.

— Georgeta BORDEA, La Rochelle Université, L3i, La Rochelle
— Peggy CELLIER, INSA Rennes, IRISA, Rennes
— Gaël DIAS, Université de Caen Normandie, GREYC, Caen
— Corinne FREDOUILLE, Avignon Université, LIA, Avignon
— Sahar GHANNAY, Université Paris-Saclay, LISN, Saclay
— Martin LENTSCHAT, Université Toulouse Jean-Jaures, LERASS, Toulouse
— Vincent MARTIN, LORIA, Nancy
— José MORENO, Université de Toulouse, IRIT, Toulouse
— Marie TAHON Le Mans Université, LIUM, Le Mans
— Manel ZARROUK, Université Sorbonne Paris Nord, LIPN, Villetaneuse

Contacts

Coordinatrices du collège :

— Marie TAHON marie.tahon@univ-lemans.fr.
— Peggy CELLIER (peggy.cellier@irisa.fr) ;

Listes de diffusion :

— ln@cines.fr (communauté TAL) ;
— parole@listes.afcp-parole.org (communauté CP) ;
— info-aria@lsis.org (communauté RI).

Un membre du comité de pilotage est membre du CA de l’AFIA : José MORENO (jose.moreno@irit.fr).

(Version de septembre 2025)
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Prix de Thèse IA 2024

Le jury

— Président : Andreas HERZIG ;
— Membres : Thierry ARTIÈRES, Isabelle BLOCH, Tristan CAZENAVE, Élisa FROMONT, Tho-

mas GUYET, Pierre MARQUIS, Nicolas MAUDET, Fatiha SAÏS, Thomas SCHIEX, Nicolas
THOME.

Les lauréats

— 1er prix : Virginie DO, « Fairness in recommender systems : insights from social choice », dir. : Ni-
colas USUNIER, Jérôme LANG et Jamal ATIF, 11/07/2023, Meta AI / Université Paris Dauphine-
PSL ;

— accessit (ex-æquo) : Pierre MARION, « Mathematics of deep learning : generalization, optimiza-
tion, continuous-time models », dir. : Gérard BIAU et Jean-Philippe VERT, 20/11/2023, LPSM
/ Sorbonne Université ;

— accessit (ex-æquo) : Yuan YIN, « Physics-aware deep learning and dynamical systems : hybrid
modeling and generalization », dir. : Patrick GALLINARI et Nicolas BASKIOTIS, 28/06/2023,
ISIR / Sorbonne Université.

Prix de Thèse IA 2025

Le jury

— Président : Andreas HERZIG ;
— Membres : Thierry ARTIÈRES, Farah BENAMARA, Tristan CAZENAVE, Cédric DEMON-

CEAUX, Élisa FROMONT, Thomas GUYET, Jérôme LANG, Pierre MARQUIS, Nicolas MAU-
DET, Fatiha SAÏS, Thomas SCHIEX, Michèle SEBAG, Matthieu SERRURIER.

Les lauréats

— 1er prix : Thomas FEL, « Sparks of Explainability : Recent Advancements in Explaining Large
Vision Models », dir. : Thomas SERRE, 25/07/2024, Université de Toulouse ;

— accessit (ex-æquo) : Edwige CYFFERS, « Differential Privacy for Decentralized Learning », dir. :
Aurélien BELLET, 05/12/2024, Université de Lille ;

— accessit (ex-æquo) : Marc JOURDAN, « Solving Pure Exploration Problems with the Top Two
Approach », dir. : Emilie KAUFMANN et Rémy DEGENNE, 14/06/2024, Université de Lille.
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Bulletins
Le Bulletin de l’AFIA fournit un cadre de discussions et d’échanges au sein de la communauté.

Toutes les contributions, pour peu qu’elles aient un intérêt général, sont les bienvenues. Le bulletin
contient des rubriques régulières de comptes rendus des conférences, journées et autres événements que
l’AFIA organise ou parraine, les résumés d’HDR et de Thèses de Doctorat, et un Dossier qui dresse
un état de l’art sur un domaine particulier de l’IA, présente des équipes françaises de recherche en IA
(académiques ou industrielles), ou PFIA. Les bulletins de l’AFIA sont accessibles librement depuis le
site de l’AFIA ou son portail HAL.

Le comité de rédaction

Le comité de rédaction 2024 avait Dominique LONGIN comme rédacteur en chef, aidé de Emmanuel
ADAM, Grégory BONNET (rédacteur adjoint) et Gaël LEJEUNE. En 2025, Emmanuel ADAM a laissé
sa place à Caio CORRO.

Bulletin 122 Dossier « PFIA 2023 » octobre 2023

— Ce bulletin portait sur la Plate-Forme Intelligence Artificielle (PFIA 2023) qui s’est déroulée à
Strasbourg du 3 au 7 juillet 2023. Il regroupe les comptes rendus : des 9 conférences hébergées
(APIA, CAp, CNIA, IC, JFPC, JFSMA, JIAF, RJCIA et SFC) ; de ses 4 journées communes
(« Jeux et IA », « Santé et IA », « Affects, Compagnons Artificiels et Interactions » et « Résilience
et IA ») ; d’un résumé des travaux menés par les jeunes docteurs primés pour leur thèse.

— Ce bulletin contient également les comptes rendus des journées AFIA/GRD RADIA (sur le thème
« Modèles hybrides & IA ») et « Jam DriveToGaether ».

Bulletin 123 Dossier « Équipes industrielles en IA » janvier 2024

— Ce bulletin, comme tous les deux ans, contient un dossier sur les équipes de recherche industrielles
en IA. Ce dossier, monté par Christophe BORTOLASO (Berger-Levrault) du Collège Industriel de
l’AFIA, a l’originalité de débuter par un texte collectif du collège sur les LLM et l’IA générative.
Il est suivi par les contributions de 4 entreprises différentes (Jeolis Solutions, Thalès, Cosling et
son Choco Solver et enfin CS Group).

— En fin de bulletin sont présentées les thèses en IA soutenues durant le trimestre écoulé.

Bulletin 124 Dossier « Regards croisés : AFIA & GDR RADIA » avril 2024

— Ce bulletin est un peu particulier par rapport aux précédents car son dossier, que nous devons
à Meghyn BIENVENUE et Nicolas MAUDET, présente et met en mirroir les 10 GT du GDR
RADIA avec les 8 collèges de l’AFIA. Un travail très intéressant qui met en lumière toute la
complémentarité de ces deux structures.

— Ce bulletin présente également les comptes rendus de FIIA 2023 et PDIA 2024, ainsi que les thèses
et HDR soutenue sur le trimestre écoulé.
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Bulletin 125 Dossier « IA & Création artistique » juillet 2024

— Ce bulletin est aussi un peu particulier puisque son dossier, sous la responsabilité de Samuel
BIANCHINI, est résolument interdisciplinaire. Il regroupe 7 contributions, pour plonger dans
l’univers passionnant de la création artistique sous toutes ses formes.

— En fin de bulletin, la liste des thèses soutenues durant le 2e trimestre 2024.

Bulletin 126 Dossier « PFIA 2024 » octobre 2024

— Le dossier de ce Bulletin est dirigé par Fatiha SAÏS. Il est consacré à PFIA 2024 (La Rochelle, du
1er au 5 juillet 2024) qui a hébergé 5 conférences (APIA, CNIA, IC, JIAF et RJCIA), 3 journées
(Agent & IA, Santé & IA, Société & IA), 7 ateliers, des tutoriels, des conférences invitées et la
remise des 3 prix de thèse AFIA.

— Ce Bulletin recense également les thèses et HDR du 3e trimestre de 2024 dont nous avons eu
connaissance.

Bulletin 127 Dossier « Équipes académiques en IA » janvier 2025

— Ce Bulletin est dirigé par Gaël LEJEUNE, et son dossier « IA & Francophonie » a été confié à
Pascale KUNTZ et Gayo DIALO.

— Ce bulletin présente également la liste des thèses et HDR soutenues durant le 4e trimestre 2024 et
dont nous avons eu connaissance.

Bulletin 128 Dossier « IA & Neurosciences » avril 2025

— Ce Bulletin dirigé par Dominique LONGIN contient un dossier « IA et neurosciences » dirigé par
Frédéric ALEXANDRE et regroupant pas moins de 25 contributions.

— Ce Bulletin contient également un compte rendu de FIIA 2025 et des journées IA & Société en
partenariat avec l’AFIHM et MAFTEC 12 en partenariat avec le GDR RADIA, ainsi que la liste
des thèses et HDR soutenues pendant le 1er trimestre 2025 et dont nous avons eu connaissance.

Bulletin 129 Dossier « IA & Économie » juillet 2025

— Ce second dossier thématique de 2025 a été dirigé par Jean-Daniel KANT et rassemble près d’une
dizaine de contribution différentes. Bulletin dirigé par Grégory BONNET.

— Ce Bulletin contient également les comptes rendus de PDIA 2025 et GAS 2025, ainsi que les thèses
et HDR dont nous avons eu connaissance et soutenue durant la période du 2e trimestre 2023.

XXIV



FIIA 2023
L’Association Française pour l’Intelligence Artificielle (AFIA) organise son huitième « Forum Industriel
de l’IA » sur le thème « Large Language Models (LLM) & IA ». La date a été en effet différée en 2024
pour des raisons d’organisation.

La journée est constituée de présentations pour permettre des échanges accrus entre académiques
et industriels. Une dernière session permettra des échanges entre les industriels et universitaires invités,
sur les verrous technologiques identifiés, et les perspectives de résolutions.

Date et lieu
— Date : 9 février 2024
— Lieu : TOTEM / Institut des Systèmes Complexes Paris IdF, 11 Place Nationale, 75013 Paris

Programme
— 09h00 « Mot d’accueil de l’AFIA » par Valérie REINER (Coordinatrice du collège industriel de

l’AFIA).
— 09h10 « Introduction de la journée » par Davy MONTICOLO (Représentant du collège industriel

de l’AFIA) et Bruno CARRON (Airbus Defence and Space).
— 09h25 « Connaissances et IA » par Guilherme ALVES (INRIA).
— 10h10 « Approches IA hybrides et applications au domaine de la défense » par Claude FENDZI

et Geraud FAYE(Airbus Defence and Space).
— 10h55 Pause.
— 11h10 « ChatDOC : une IA Générative interne pour interroger des documents clients » par Ay-

men SHABOU et Mohamed DHOUIB (DataLab Groupe Crédit Agricole).
— 11h55 « Mathématiques et IA » par Marianne CLAUSEL (Institut Elie Cartan Nancy).
— 12h30 Buffet.
— 13h55 « Ingénierie des connaissances, ontologie » par Cécilia ZANNI (INSA Rouen).
— 14h40 « Applications de l’IA » par Christophe BORTOLASO (Berger Levrault).
— 15h25 Table ronde : « Apports de la journée, Perspectives (verrous et ouvertures) » par l’ensemble

des orateurs et des oratrices.
— 16h10 Conclusion et prochains travaux (talks, bulletin, PFIA, APIA) par Davy MONTICOLO

(Représentant du collège industriel de l’AFIA) et Bruno CARRON (Airbus Defence and
Space).

— 16h30 Clôture.

Organisation
Cet événement est organisé par Davy MONTICOLO (Représentant du collège industriel de l’AFIA)
et Bruno CARRON (Airbus Defence and Space).

Inscriptions
Les inscriptions à la journée (gratuites pour les membres AFIA, 30e sinon) sont obligatoires et à
effectuer sur le site : https://afia.asso.fr/inscription-fiia/.
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PDIA 2024
L’Association Française pour l’Intelligence Artificielle (AFIA) organise sa neuvième journée « Perspec-
tives et Défis en Intelligence Artificielle » sur le thème « NEUROSCIENCE ET IA ».

La journée est hybride, pouvant être donc suivie à distance.

Date et lieu
— Date : 09 Avril 2024
— Lieu : ENSC, 109 avenue Roul, 33400 Talence

Programme
— 09h30 Accueil.
— 10h00 Présentation de l’AFIA par Benoit LEBLANC (Président de l’AFIA) et introduction de la

journée PDIA – Perspectives et Défis en IA – Neuroscience et IA par Thomas BORAUD
(Campus Neuroscience).

— 10h15 « IVirtual Brain Twins at the interface of AI and the brain » par Viktor JIRSA (Institut
de Neurosciences des Systèmes, Marseille).

— 11h15 « IDeep Learning in Medical Imaging : What’s Needed for Training Data ? » par Francesca
GALASSI (Empenn lab, Inria Rennes).

— 12h15 Pause.
— 13h45 « IHippocampal cells inside a random but embodied computational model » par Naomi

CHAI-EICHEL (Institut des Maladies Neurodégénératives, CNRS, Inria, U. Bordeaux).
— 14h45 « IA neuro-inspirée pour le codage prédictif et neurosymbolique dans l’acquisition du lan-

gage et la planification » par Alex PITTI (ETIS Lab, CY Alliance, Cergy Paris).
— 15h45 Pause.
— 16h15 « Algorithmes d’apprentissage et de prise de décision à la croisée des chemins entre l’In-

telligence Artificielle et les Neurosciences » par Mehdi KHAMASSI (ISIR, Sorbonne Uni-
versité).

— 17h15 « Comment exploiter et faire évoluer les relations IA-Neurosciences ?» » Table ronde.
— 18h00 Clôture.

Organisation
Cet événement est organisé par Frédéric ALEXANDRE (LABRI, INRIA), Arthur LEBLOIS (Univer-
sité de Bordeaux, Neurocampus).

Inscriptions
Les inscriptions à la journée sont obligatoires uniquement pour les personnes souhaitant être présentes
dans l’amphithéâtre. Pour bénéficier des pauses et du déjeuner, il est nécessaire de s’inscrire avant le
5 avril 2024.

— L’inscription est gratuite pour les personnes adhérentes à l’AFIA.
— Elle est de30e pour les personnes non adhérentes.
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FIIA 2025
L’Association Française pour l’Intelligence Artificielle (AFIA) organise son neuvième FORUM INDUS-
TRIEL de l’IA sur le thème «IA Responsable et maîtrise des risques». Cette journée est labellisée «En
route vers le Sommet» dans le cadre du Sommet pour l’action sur l’IA.

La journée est constituée de présentations pour permettre des échanges accrus entre académiques
et industriels. Une dernière session permettra des échanges entre les industriels et universitaires invités,
sur les verrous technologiques identifiés, et les perspectives de résolutions.

Date et lieu
— Date : 28 janvier 2025
— Lieu : TOTEM / Institut des Systèmes Complexes Paris IdF, 11 Place Nationale, 75013 Paris

Programme
— 09h00 « Mot d’accueil de l’AFIA » par Valérie REINER (Collège Industriel l’AFIA).
— 09h10 « Introduction de la journée » par Davy MONTICOLO (Représentant du collège industriel

de l’AFIA) et Walid ERRAY (Groupe Crédit Agricole).
— 09h20 « Dépasser ce qui brille et embrasser la complexité des sociétés modernes pour s’enga-

ger intelligemment dans l’intelligence artificielle » par Fabrice JAOUEN (Ministère des
Armées / Collège HumaniSIA).

— 10h05 « IA Générative en Production : maitriser ses risques et renforcer la sécurité grâce au
Red-Teaming » par Aymen SHABOU et Arnaud PARAN(Groupe Crédit Agricole).

— 10h50 Pause.
— 11h10 « Chaire IA de confiance et responsable – Focus sur l’analyse et mesure des risques de

confidentialité des grands modèles de langage » par Jérémie DENTAN et Sonia VANIER
(Ecole Polytechnique).

— 11h45 « IA responsable : vision de bout-en-bout en vue de standardisation » par Celine RE-
VERDY, Fateh KAAKAI et Michel BARRETEAU (Thales Group).

— 12h30 Buffet.
— 13h40 « Très grands modèles de langue pour le domaine médical : avancées, enjeux et défis » par

Richard DUFOUR (Université de Nantes).
— 14h25 « Moins d’Erreurs, Plus de Confiance : Vers une Réduction des Hallucinations dans les

Assistants Intelligents et le Résumé Juridique » par Mokhtar Boumedyen BILLAMI et
Nihed BENDAHMAN (Berger Levrault).

— 15h10 « Les LLM au défi : passer à l’échelle tout en réduisant leur taille » par Christophe CE-
RISARA (LORIA).

— 15h55 Table ronde : « Questions / Réponses » par tous les conférenciers.
— 15h55 Conclusion de la journée par Valérie REINER (Coordinatrice du collège industriel de

l’AFIA), Davy MONTICOLO (Représentant du collège industriel de l’AFIA) et Walid
ERRAY (Groupe Crédit Agricole).

Organisation
Cet événement est organisé par Davy MONTICOLO (Représentant du collège industriel de l’AFIA)
et et Walid ERRAY (Groupe Crédit Agricole).

Inscriptions
Les inscriptions à la journée (gratuites pour les membres AFIA, 30e sinon) sont obligatoires et à
effectuer à partir du site de l’AFIA : https://afia.asso.fr/les-journees/fiia-2025/.
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PDIA 2025
L’Association Française pour l’Intelligence Artificielle (AFIA) organise sa onzième journée « Perspec-
tives et Défis de l’IA » (PDIA) sur le thème « Désinformation, Démocratie et IA ».

La journée s’articulera autour de 6 exposés invités en informatique, mathématiques et droit. Elle
comprendra également 4 interventions courtes de doctorant(e)s.

Date et lieu
— Date : 10 juin 2025
— Lieu : CNAM Paris, Amphitéâtre Gaston Planté, accès 35, 1er étage, 2 rue Conté, Paris

Programme
— 09h00 Accueil et café.
— 09h50 Introduction.
— 10h00 « Knowledge is Power : Fighting Disinformation with Data and AI » par Ioana MANO-

LESCU (Inria, CEDAR).
— 10h50 « If generative AI becomes the mirror, we will end as Narcisse » par David CHAVALARIAS

(CNRS, CAMS et EHESS).
— 11h40 « AI Models with Systemic Risks—Manipulation and Disinformation : A Concept at the

Crossroads of the AI Act, GDPR, and Digital Services Act » par Juliette SÉNÉCHAL
(Université de Lille).

— 12h30 Buffet.
— 14h00 « Influence Campaign – The Romanian Example » par Gabriel BEN ZENOU (Inria, CE-

DAR, AMIAD) – présentation jeune chercheur.
— 14h15 « On Assessing the Political Biases of Multilingual Large Language Models » par Paul

LERNER (Sorbonne Université) – présentation jeune chercheur.
— 14h30 « Argumentation Perspectives for Better Debates » par Bruno YUN (Université Claude

Bernard Lyon 1, LIRIS).
— 15h20 Pause.
— 15h45 « Computational Social Choice and Democracy » par Jérôme LANG (CNRS, LAMSADE).
— 16h35 « Between surveillance and sousveillance : what balance in a democracy ? » par Elia VER-

DON (Université de Bordeaux, CERCCLE).
— 17h25 Clôture.

Organisation
Cet événement est organisé par Fatiha SAÏS (LISN, Université Paris Saclay) pour le Conseil d’Admi-
nistration de l’AFIA, et Srdjan VESIC (CRIL, Université d’Artois), Cédric DU MOUZA (CEDRIC,
CNAM Paris), et Nada MIMOUNI (CEDRIC, CNAM Paris) pour PDIA.

Inscriptions
Les inscriptions à la journée sont obligatoires. Pour des raisons logistiques (restauration), il est
fortement conseillé de s’inscrire avant le 03 Juin 2025. Participation en présentiel, au CNAM
Paris, pour bénéficier des échanges directs, des pauses cafés et du déjeuner.

L’inscription est gratuite pour les personnes adhérentes à l’AFIA : inscription adhérents.
Elle est de 30€ pour les personnes non adhérentes : inscription non adhérents.
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EFIA 2025
L’Association Française pour l’Intelligence Artificielle (AFIA) organise sa cinquième journée « Ensei-
gnement et Formation » sur le thème « LLM & Enseignement ».

La journée a pour objectif d’échanger autour des nouvelles pratiques dans l’enseignement dans le
cadre de l’utilisation de l’IA Générative. Ce sera l’occasion d’identifier les innovations pédagogiques, sa
mise en pratique et les défis encore existants pour la communauté enseignante, pour les établissements
d’enseignement et pour les étudiants.

Date et lieu
— Date : 14 octobre 2025
— Lieu : Université de Toulouse

Programme
— 09h00 Ouverture de Benoit LE BLANC (Président de l’AFIA). Introduction par André AOUN

et José MORÉNO (membre du CA de l’AFIA).
— 09h30 « Parlez IA ! Secrets d’une ingénierie de prompt efficace » par André AOUN (Université

de Toulouse).
— 10h00 « Refléxions pour un usage pertinent de l’IA dans l’enseignement et l’apprentissage » par

Franck AMADIEU (Université de Toulouse).
— 10h30 « TBA » par Prenom NOM (AFFILIATION).
— 11h00 Pause.
— 11h30 « TIPS : Technologie Interactive pour Pratiques de Scénarios » par Stéphanie LOUP (AF-

FILIATION), Olivier CATTEAU (AFFILIATION) et Cédric TEYSSIE (AFFILIATION).
— 12h30 Buffet.
— 14h00 « Augmenter l’apprentissage avec l’IA : cas d’usage, défis et impact » par Mar PEREZ-

SANAGUSTIN (AFFILIATION).
— 14h30 « TBA » par Prenom NOM (AFFILIATION).
— 15h00 Pause.
— 15h30 « Table ronde sur l’Intelligence Artificielle Générative au service de l’enseignement » par

André AOUN (AFFILIATION), Olivier CATTEAU (AFFILIATION), Cédric TEYSSIE
(AFFILIATION) et Mar PEREZ-SANAGUSTIN (AFFILIATION).

— 17h00 Clôture.

Organisation
Cet événement est organisé par André AOUN (Université de Toulouse) et) José MORENO (Université
de Toulouse) pour le Conseil d’Administration de l’AFIA.

Inscriptions
Lien d’inscription à venir
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Modèles hybrides & IA 2023
L’Association Française pour l’Intelligence Artificielle (AFIA) et le groupe de travail Modèles Hybrides
d’IA (MHyIA) du groupement de recherche Raisonnement, Apprentissage, et Décision en Intelligence
Artificielle (GDR RADIA) organisent conjointement une 1re journée commune « Modèles hybrides &
IA » sur le thème « IA neuro-symbolique » au sein de la conférence « European Conference on Symbolic
and Quantitative Approaches to Reasoning with Uncertainty » (ECSQARU 2023).

Date et lieu
— Date : 19 septembre 2023
— Lieu : la salle des colloques, Bâtiment “La Maison de la Recherche”, Université d’Artois, Rue

Maurice Schuman, 62000 Arras

Programme
— 09h00 Ouverture de Fatiha SAÏS (représentant l’AFIA) et Zied BOURAOUI (représentant le

GDR RADIA).
— 09h15 « Aligning embeddings with symbolic knowledge : towards a tight integration of learning

and reasoning » par Steven SCHOCKAERT (Cardiff University).
— 10h15 Pause.
— 10h30 « Interpretable Neural-Symbolic Concept Reasoning » par Giuseppe MARRA (KU Leu-

ven).
— 11h30 « Integrating Combinatorial Solvers and Neural Models » par Pasquale MINERVINI (Uni-

versity of Edinburgh).
— 12h30 Clôture.

Organisation
Cet événement est organisé par Zied BOURAOUI (CRIL, Université d’Artois), Pierre MONNIN (I3S,
Université Côte d’Azur) et Fatiha SAÏS (LISN, Université Paris Saclay).

Inscriptions
La participation est gratuite mais l’inscription est obligatoire, à effectuer à partir de ce lien, pour
recevoir le lien Zoom de la demi-journée.
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EGC & IA 2024
L’Association Française pour l’Intelligence Artificielle (AFIA) et l’association internationale fran-

cophone d’Extraction et de Gestion des Connaissances (Association EGC) organisent, avec l’aide du
groupe de travail « Gestion et Analyse des données Spatiales et Temporelles » (GAST), une journée
commune « Gestion et Analyse des données Aériennes et Satellitaires » (G2AS’ 24) sur le thème de la
représentation, de la Gestion, de l’Analyse et du stockage des données Aériennes et Satellitaires. Cette
journée réunira les acteurs de la recherche académique ou industrielle autour de cette thématique.

Date et lieu
— Date : 17 avril 2024
— Lieu : EPITA, 14-16 rue Voltaire, 94270 Le Kremlin-Bicêtre

Programme
— 09h00 Mot d’accueil par Aurélie LEBORGNE (GT GAST), par Thierry GERAUD (LRE EPITA)

et par Thomas GUYET (AFIA).
— 09h30 « Présentation du projet SESAME Surveillance de l’État de SAnté des Mangroves » par

Franck NIVOLE (IRD Nouvelle-Calédonie, UMR Espace-DEV).
— 10h00 « Machine and deep learning for earth observation : advanced approaches and practical

use cases » par Roberto INTERDONATO (CIRAD, UMR TETIS, INRIA, Montpellier).
— 10h30 Pause.
— 10h45 « Données satellitaires : de l’application locale à des modèles de fondation » par Sylvain

LOBRY (LIPADE, Université Paris Cité).
— 11h15 « Interplay between data assimilation and Machine Learning for time series of satellite

images » par Lucas DRUMET (Lab-STICC, IMT Atlantique).
— 11h45 Posters.
— 12h00 Pause.
— 13h30 Discussion Posters.
— 14h00 « Analyse d’images aériennes historiques : application à une étude épidémiologique » par

Laure TOUGNE (LIRIS, Université Lumière Lyon 2).
— 14h30 « Utilisation de l’imagerie satellitaire – L’Espace au service de la Terre » par Henri GI-

RAUD (SERTIT, Université de Strasbourg).
— 15h00 « La Terre vue par la géodésie spatiale : des mesures massives pour une meilleure compré-

hension des processus géophysiques sous-jacents » par Samuel NAHMANI (UMR IPGP /
Université Paris Cité, CNRS, IGN ; Université Gustave Eiffel, ENSG, IGN).

— 15h30 Pause.
— 15h45 « Apprentissage profond pour le traitement de séries temporelles d’images satellites » par

Loïc LANDRIEU (IMAGINE – LIGM / École Nationale des Ponts et Chaussées).
— 16h15 « Traitement d’images de télédétection SAR et optiques pour la cartographie de l’occu-

pation des sols » par Flora WEISSGERBER (ONERA/DTIS/SAPIA).
— 16h45 Clôture.

Organisation
Cet événement est organisé par Clément IPHAR (LETG, UBO, Brest), Guillaume TOCHON (LRE,
EPITA, Kremlin-Bicêtre), Aurélie LEBORGNE (ICube, UNISTRA, Strasbourg), Loïc SALMON (ISEA,
UNC, Nouméa, Nouvelle-Calédonie), et Nida MEDDOURI (LRE, EPITA, Kremlin-Bicêtre).
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Humanités Numériques & IA 2024
L’Association Française pour l’Intelligence Artificielle (AFIA) et les groupes de travail Masses de Don-
nées, Informations et Connaissances en Sciences (MADICS) et Méthodes et Applications pour la Géo-
matique et l’Information Spatiale (MAGIS) organisent conjointement une première journée commune
sur le thème « Humanité Numérique et IA ».

Le vocable humanités numériques s’est imposé pour désigner les travaux de recherche relevant
tantôt : de la création, la gestion et la formalisation de processus sociaux à l’aide d’outils mathématiques
et informatiques ; ou encore de la formaliser de processus humains. L’analyse automatique de documents
anciens, de traitement automatique du langage naturel, de recherche d’informations ou encore de
simulation, posent de véritables défis scientifiques aux approches développées dans le domaine de
l’intelligence artificielle.

Date et lieu
— Date : 3 mai 2024
— Lieu : Datalab, BnF, Quai François Mauriac, 75706 Paris
— Distanciel : Egalement en distanciel via Zoom

Programme
— 09h15 Ouverture par Fatiha SAÏS (AFIA), Nathalie HERNANDEZ(GdR MADICS), Nathalie

ABADIE (GdR MAGIS), Tiphaine VACQUE (BnF) et Marie CARLIN (Datalab, BnF).
— 09h55 « La politique dans la machine : identifier, mesurer et limiter l’information politique ap-

prise par les algorithmes » par Tim FAVERJON(médialab Siences Po) et Pedro RAMA-
CIOTTI(médialab Siences Po, ISC-PIF, INSHS-CNRS).

— 10h15 «ISIDORE 2030 : refactorisation d’un moteur de recherche à l’ère des IA de traitement et
des IA génératives» par Stéphane POUYLLAU (Huma-Num)..

— 12h30 Clôture.

Organisation
Cet événement est organisé par Zied BOURAOUI (CRIL, Université d’Artois), Pierre MONNIN (I3S,
Université Côte d’Azur) et Fatiha SAÏS (LISN, Université Paris Saclay).

Inscriptions
La participation est gratuite mais l’inscription est obligatoire, à effectuer à partir de ce lien, pour
recevoir le lien Zoom de la demi-journée.
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Santé & IA 2024
L’Association française d’Informatique Médicale (AIM) et le collège Science de l’Ingénierie des Connais-
sances de l’(AFIA) organisent une septième journée commune Santé et IA, inscrite au sein de la Plate-
Forme Intelligence Artificielle 2024 (PFIA 2024).

Cette journée a pour objectif de faire un point sur les travaux menés actuellement en ingénierie des
connaissances dans le domaine de la santé.

En effet, l’ingénierie des connaissances peut permettre de répondre aux enjeux majeurs tels que la
progression du savoir médical, l’aide à la décision (qu’elle soit diagnostique, thérapeutique ou pronos-
tique), et plus largement d’apporter des solutions permettant de favoriser l’accès aux informations et
connaissances médicales. Ces méthodes peuvent être appliquées à de nombreux cas d’usage au service
des patients (que ce soit à l’échelle individuelle ou d’une population), pour les professionnels de santé,
étudiants en santé, chercheurs, décideurs et le grand public. Les données de santé ont de multiples
caractéristiques qui soulèvent des problématiques liées à l’extraction d’information, à la sécurité des
données à caractère personnel, à l’intégration de données réparties dans des systèmes hétérogènes, à la
recherche d’information, au traitement de données massives et à la compréhension des données.

Articles et présentations sont disponibles sur cette page : afia.asso.fr/les-journees-communes/sante-et-ia-
2024

Date et lieu
— Date : 1er Juillet 2024
— Lieu : PFIA 24, La Rochelle

Programme (session matinale)
— 9h30 « Chirurgie métabolique de précision » par François PATTOU (conférence invi-

tée)(Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1190-EGID).
— 10h30 Pause.
— 10h50 « Deep Reinforcement Learning for Controlled Piecewise Deterministic Markov Process

in Cancer Treatment Follow-up » par Alice CLEYNEN, Benoîte DE SAPORTA, Orlane
ROSSINI, Régis SABBADIN, Meritxell VINYALS.

— 11h15 « Contributions à l’Ordonnancement des Interventions en Chirurgie Ambulatoire : Q-
learning et Flow-Shop Hybride » par Lydia BOUCHLAGHEM, Adnène GUESSOUM,
Fatima GHEDJATI.

— 11h30 « Amélioration de la sécurité chirurgicale avec un jumeau numérique prédictif : le rôle des
systèmes multi-agents et de l’apprentissage par renforcement » par Bruno PEREZ.

— 11h45 « Interpretable AI for Dermoscopy Images of Pigmented Skin Lesions » par Marianne
DEFRESNE, Élise COUTIER, Paul FRICKER, Folkert BLOK, Hang NGUYEN.

— 12h10 « INM-Explain – Expliquer les controverses médicales : Application au cas des interven-
tions non médicamenteuses » par Houria SAYAH, Alya ZOUZOU, Jonathan DUCKES,
Audric GIRONDIN, Maéva MAÏO, Maximilien SERVAJEAN, Sandra BRINGAY.

— 12h30 Pause.

XXXIII

https://www.france-aim.org/
http://pfia2024.pfia.fr
https://afia.asso.fr/les-journees-communes/sante-et-ia-2024/
https://afia.asso.fr/les-journees-communes/sante-et-ia-2024/


Programme (session post-méridienne)
— 14h50 « Une Ontologie du Parcours de Soins » par François-Élie CALVIER, Thomas GUYET,

Nolwenn LEMEUR-ROUILLARD.
— 15h15 « Entrepôts de Données de Santé et Protection de la Vie Privée : Synthèse de discus-

sions Inter-CHU » par Antoine RICHARD, Manal AHIKKI, Marc BERARD, Camille
BOIN, Antoine BOUTET, Stéphane BREANT, Alice CALLIGER, Ariel COHEN, Jean-
François COUCHOT, Denis DELAMARRE, Caroline DUNOYER, Thibaut FABACHER,
Lucas GAUTHIER, David GIMBERT, Camille GIRARD-CHANUDET, Faustine GLAIS,
Romain GRIFFIER, Martin HILKA, Yannick JACOB, Vianney JOUHET, David LAIY-
MANI, Leonardo MOROS, Joris MULLER, David PELLECUER, Thomas PETIT-JEAN,
Maxime SALAUN, François TALBOT, Perceval WAJSBURT, Kevin YAUY.

— 15h30 « Chain Classifier pour le transcodage LOINC » par Théodore MICHEL-PICQUE, Sandra
BRINGAY, Pascal PONCELET, Namrata PATEL, Guilhem MAYORAL.

— 15h45 « Is DTW resilient to noise and effective for EEG functional connectivity assessment ? »
par Maxime BEDOIN, Nesma HOUMANI, Rita YABOURI, Jérôme BOUDY, Kiyoka
KINUGAWA.

— 16h00 Pause.
— 16h20 « Récentes avancées de l’inférence en langue naturelle pour les essais cliniques » par Ma-

thilde AGUIAR, Pierre ZWEIGENBAUM, Nona NADERI.
— 16h45 « Des pipelines faciles à réutiliser pour comparer les performances d’outils de reconnais-

sance d’entités nommées sur les textes cliniques en français » par Thibault HUBERT, Ghis-
lain VAILLANT, Olivier BIROT, Camila ARIAS, Antoine NEURAZ, Bastien RANCE,
Adrien COULET.

— 17h10 « Équilibrer qualité et quantité : comparaison de stratégies d’annotation pour la reconnais-
sance d’entités nommées en cardiologie » par Virgile BARTHET, Laura MONCEAUX-
CACHARD, Christine JACQUIN, Cyril GROUIN, Joconde WELLER, Pascal DEGroote,
Emmanuel MORIN, Pierre ZWEIGENBAUM.

Organisation
Cet événement est organisé par Adrien COULET (HeKA, Inria Paris & Inserm, Université Paris Cité),
Fleur MOUGIN (AHeaD, Université de Bordeaux & Inserm) et Lina SOUALMIA (LITIS & LIMICS,
Normandie Universités & Inserm).
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Société & IA 2024

L’AFIA, le groupe de travail Aspects Computationnels de l’Éthique (ACE) du GDR RADIA et
Inria Bordeaux ont organisé les journées « Société et IA » les 1er et 2 juillet 2024 dans le cadre de la
Plate-Forme Intelligence Artificielle de l’AFIA (PFIA 2024).

Depuis plusieurs années, des comités réunis à l’initiative d’université, d’États, de puissances supra-
étatiques comme la Commission Européenne, de sociétés savantes ou d’organisation non gouvernemen-
tales réfléchissent aux questions d’éthique de l’Intelligence Artificielle et à sa régulation. Ces réflexions
ont abouti entre autres sur la notion de systèmes informatiques dignes de confiance qui sont à mettre
en perspective avec les problématiques en éthique artificielle.

Ces journées avaient pour objectif de réunir les communautés travaillant sur l’Intelligence Artifi-
cielle de confiance, l’éthique artificielle et plus généralement sur tout ce qui est en lien avec l’impact
social de l’Intelligence Artificielle. Dans une volonté d’ouverture tant aux communautés de recherche
travaillant déjà sur ces problématiques, qu’aux non-spécialistes intéressés, nous avons encouragé toutes
les contributions relatives à ces sujets, qu’elles portent sur les aspects techniques, juridiques, philoso-
phiques ou sociologiques de l’Intelligence Artificielle ou sur les impacts industriels de son déploiement.

Date et lieu
— Date : 1-2 Juillet 2024
— Lieu : PFIA 24, La Rochelle

Programme (Lundi 1er Juillet 2024)
— 14h50 « Ouverture des journées » par Frédéric ALEXANDRE, Grégory BONNET, Ikram

CHRAIBIKaadoud, Jean-Gabriel GANASCIA.
— 15h00 « Un besoin de Confiance Artificielle pour l’Intelligence Artificielle » (conférence invitée)

par Laurent SIMON.
— 16h00 Pause.
— 16h20 « Détection de biais et intégration de connaissances expertes pour l’explicabilité en IA »

par Matthieu DELAHAYE, Lina FAHED, Florent CASTAGNINO et Philippe LENCA.
— 16h50 « Modéliser la confiance d’un agent décisionnel » par Baptiste PESQUET et Frédéric

ALEXANDRE.
— 17h20 « L’explicabilité appliquée aux modèles de diffusion » par Raphael TEITGEN, Jeanine

HARB et Jeanne LE PEILLET.

Programme (Mardi 2 Juillet 2024)
— 09h00 « La réglementation de l’intelligence artificielle dans l’Union européenne » (conférence

invitée) par Nathalie NEVEJANS.
— 10h00 Pause.
— 10h20 « La normalisation de l’IA : un déluge de réinterprétations de l’AI Act » par Hélène

HERMAN et Mélanie GORNET.
— 10h50 « IA générative et désinformation : quel impact sur les rapports de force en géopolitique ? »

par Alice MARANNE, Clara FONTAINE-SAY et Ikram CHRAIBI KAADOUD.
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— 11h20 « Quel sens donner à l’IA de confiance ? » (conférence invitée) par Cédric BRUN.
— 12h30 Pause.
— 14h50 « L’intelligence artificielle à la lumière de la mythologie grecque : rendre compréhensible

les impacts de l’IA pour le grand public » par Fabrice MUHLENBACH.
— 15h20 « Cadre conceptuel pour agents autonomes éthiques : application aux agents conversa-

tionnels » par Robert VOYER, Thierno TOUNKARA..
— 16h00 Pause.
— 16h20 « Définition de la compatibilité pour des préférences morales : une condition basée sur la

cohérence de Suzumura » par Guillaume GERVOIS, Gauvain BOURGNE et Marie-Jeanne
LESOT.

— 16h50 « Modèle d’éthique pour les MDP multi-agents » par Mihail STOJANOVSKI, Nadjet
BOURDACHE, Grégory BONNET et Abdel-Illah MOUADDIB.

— 17h20 « Équité subjective par les explications » par Sarra TAJOURI et Alexis TSOUKIÀS..

Organisation
Cet événement est organisé par Frédéric ALEXANDRE (Inria Bordeaux), Grégory BONNET (GREYC,
Université de Caen), Ikram CHRAIBI KAADOUD (Inria Bordeaux), Jean-Gabriel GANASCIA (LIP6,
Sorbonne Université)
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Agent & IA 2024
L’AFIA, le groupe de travail Affects, Compagnons Artificiels et Interactions (ACAI) et la commu-

nauté des Journées Francophones des Systèmes Multi-Agents (JFSMA) ont organisé la journée « Agent
et IA » le 4 juillet 2024 dans le cadre de la Plate-Forme Intelligence Artificielle de l’AFIA (PFIA 2024).

Cette journée a porté sur les agents et avait pour thème l’humain dans la boucle. Elle était composée
de deux parties :

— la matinée a été dédiée à un tutoriel animé par le groupe de travail ACAI : Affects, Compa-
gnons Artificiels et Interactions, avec un focus sur l’interaction humain-agent ;

— l’après-midi a été dédiée à la présentation de systèmes multi-agents dans le domaine des
Smart-Cities, avec un focus sur l’aspect mobilité.

Cette journée s’est voulue accessible et a visé également un objectif pédagogique, vous donnant
quelques pistes pour développer vous-mêmes vos agents logiciels.

Date et lieu
— Date : 4 Juillet 2024
— Lieu : PFIA 24, La Rochelle

Programme (session ACAI)
— 10h20 « Interaction entre une personne et un ou plusieurs agent(s) conversationnel(s) animé(s) »

par Brian RAVENET et Nicolas SABOURET.
— 12h30 Pause.

Programme (session JFSMA)
— 14h50 « Travaux et plateformes de la communauté Mobilité Intelligente de l’IMT » par Arnaud

DONIEC et Flavien BALBO.
— 15h20 « Architecture et comportements pour la simulation multiagent de véhicules et de l’infra-

structure connectée en condition atmosphérique difficiles » par Stéphane GALLAND.
— 15h40 « Vers des véhicules autonomes socialement désirables » par Joris DINNEWETH.
— 16h00 Pause.
— 16h20 « Résolution de conflits entre trajectoires de vol planifiées (contrats 4D) de drones dans

le trafic urbain » par Gauthier PICARD.
— 16h40 « Projet VILAGIL et action VILAGIL-MaaS » par Valérie CAMPS et Elsy KADDOUM.
— 17h20 « Projet autOCampus » par Marie-Pierre GLEIZES.
— 17h40 Table ronde.

Organisation
Cet événement est organisé par Valérie CAMPS (Universite Paul Sabatier), Elsy KADDOUM (Uni-
versité Toulouse 2 Jean-Jaurès), Brian RAVENET (IUT Orsay) et Nicolas SABOURET (Université
Paris-Saclay).
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Société & IA 2025
L’Association Française pour l’Intelligence Artificielle (AFIA) et l’Association Association Francophone
de l’Interaction Humain-Machine (AFIHM) organisent conjointement une journée commune « IA &
Société » de débats sur l’influence de l’IA dans la société.

Les interventions seront réparties en 2 demi-journées. Chaque demi-journée s’achève par un débat
entre les intervenants et un échange avec les participants.

Date et lieu
— Date : 10 mars 2025
— Lieu : Centre Inria de l’université de Lille, Parc scientifique de la Haute-Borne 40, avenue

Halley - Bât A - Park Plaza 59650 Villeneuve-d’Ascq

Programme
— 09h30 Café d’accueil.
— 09h50 Présentation de la journée.
— 10h00 « IA Générative : quand les sciences humaines s’en mêlent ! » par Alexandra DELMAS et

Juliette MASSART (onepoint).
— 10h30 « L’IA générative, la création et le droit d’auteur » par Céline CASTETS-RENARD (Uni-

versité d’Ottawa).
— 11h00 « Quels rôles peut jouer l’IA en matière de répression pénale ? » par Jean-Claude

PLANQUE (Université de Lille).
— 11h30 « Créer et juger avec l’IA : quels coûts et quelles conséquences ? (débat) ».
— 12h30 Pause déjeuner et posters.
— 14h00 « Pratique et politique de l’intelligence artificielle dans l’Art » par Sarah FDILI ALAOUI

(University of Arts, Londres).
— 14h30 « IA Explicable (eXplainable AI – XAI) : Fondements et Applications » par Samia

CHEHBI GAMOURA (Ecole de Management de Strasbourg).
— 15h00 « Comment appréhender les résultats complexe des modèles intégrés de transformation du

climat ? » par Thierry CHEVALIER (Capgemini).
— 15h30 « Comment s’approprier l’IA pour créer et expliquer des phénomènes complexes ? (dé-

bat) ».
— 16h30 Cocktail de clôture.

Organisation
Cet événement est organisé par Fabrice JAOUËN (ISEN) pour l’AFIA et le collège HumaniSIA et
Bruno FRUCHARD (Inria Lille) pour l’AFIHM.

Inscriptions
Les inscriptions à la journée sont gratuites et obligatoires et à effectuer sur le lien suivant. Un déjeuner
sous forme de buffet sera organisé sur place et inclus dans l’inscription.
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MAFTEC-12 2025
Le collège SMAA de l’Association Française pour l’Intelligence Artificielle (AFIA) et les groupes de
travail MAFTEC et ACE du GDR RADIA organisent conjointement une 12e journée commune « MAF-
TEC » sur le thème « ACE/MAFTEC et MAFTEC/SMAA ».

L’objectif principal du GT MAFTEC est de fédérer les recherches sur les différentes thématiques
de la planification. Le but des travaux concernés est de modéliser et résoudre des problèmes complexes
du monde réel, dans lesquels de nombreux agents (humains ou automatiques) interagissent de ma-
nière coopérative et robuste via des actions physiques, de communication et d’observation, ceci afin
d’atteindre des buts communs dans un environnement partiellement imprédictible.

Dans un contexte où les états et les puissances supra-étatiques multiplient les recommandations et
et le règlement de l’intelligence artificielle, le groupe de travail Aspects computationnels de l’éthique
(ACE) a comme objectifs : fédérer une communauté de recherche autour des problématiques en éthique
artificielle ; développer les travaux en éthique artificielle ; tisser des liens interdisciplinaires (aspects
juridiques et sociologiques de l’intelligence artificielle).

Date et lieu
— Date : 26-28 mars 2025
— Lieu : Maison des Sciences Humaines Alpes, 1221 rue des universités, St-Martin d’Hères

Programme (Jeudi 27 mars)

Introduction
— 09h00 Présentation MAFTEC : Tiago DE LIMA, Bruno ZANUTTINI
— 09h05 Présentation SMAA : Emmanuel ADAM, Gauthier PICARD
— 09h10 Présentation ACE : Grégory BONNET, Jean-Gabriel GANASCIA

MAFTEC + SMA
— 09h15 « Négociation pour la consommation adaptative d’allocation continue » par Ellie BEAU-

PREZ, Anne-Cécile CARON, Maxime MORGE, Jean-Christophe ROUTIER.
— 09h40 « Un modèle agent pour la résolution de problèmes d’optimisation complexes. Applica-

tion à la planification de missions de constellations de satellites hétérogènes » par Elsy
KADDOUM, Jean-Pierre GEORGÉ.

— 10h05 « Coordination Temporelle de Plans d’Agents Interdépendants : Apports et Pistes d’Amé-
lioration d’une Approche Distribuée » par Ajdin SUMIC, Thierry VIDAL.

— 10h30 Pause.

MAFTEC, aspects multi-agents
— 11h00 « Méthode de planification basée sur des contraintes de flux pour une mission de progres-

sion multi-agents avec des agents déployables et des contraintes de communication » par
Émile SIBOULET, Simon LACROIX, Arthur BIT-MONNOT.

— 11h25 « Planification et exécution pour systèmes multi-robots trans-médias : structuration du
problème et coordination/gestion des contraintes temporelles et séquentielles » par Virgile
DE LA ROCHEFOUCAULD, Simon LACROIX.

— 11h50 « Apprentissage par renforcement multi-objectifs distributionnel » par Farès CHOUAKI,
Aurélie BEYNIER, Nicolas MAUDET, Paolo VIAPPIANI.
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— 12h15 Repas.

MAFTEC, planification et connaissances
— 14h00 « A Simple Integration of Epistemic Logic and Reinforcement Learning » par Thorsten

ENGESSER, Thibaut LE MARRE, Emiliano LORINI, François SCHWARZENTRUBER,
Bruno ZANUTTINI.

— 14h25 « Interprétation post-hoc de politiques pour les POMDP » par Geoffrey LAFOREST,
Olivier BUFFET, Alexandre NIVEAU, Bruno ZANUTTINI.

— 14h50 « Planification pour l’adaptation d’agent autonome : du plan d’action à un plan d’expé-
rience » par Victor LAVAIRYE, François TERRIER, Florian NOYRIT.

— 15h15 Pause.

MAFTEC, calcul de stratégies
— 15h45 « Améliorer l’efficacité de la planification QBF avec des nouveaux codages d’arbres com-

pacts » par Frédéric MARIS.
— 16h10 « Computationally Feasible Strategies » par Catalin DIMA, Wojtek JAMROGA.
— 16h35 « The Complexity of Pure Maxmin Strategies in Two-Player Extensive-Form Games » par

Junkang LI, Bruno ZANUTTINI, Véronique VENTOS.
— 17h00 « Une Recherche Optimale Gloutonne Basée sur MaxSAT pour la Planification TOHTN »

par Gaspard QUENARD, Damien PELLIER.
— 17h25 rump session.

Programme (vendredi 28 mars 2025)

MAFTEC + ACE
— 09h25 « Un modèle éthique pour les MDP multi-agents » par Mihail STOJANOSKI, Nadjet

BOURDACHE, Grégory BONNET, Abdel-Illah MOUADDIB.
— 09h50 « Moral Evaluation of Speech Acts - Truthfulness, Lies and Ethical Dilemmas - Modeled

and Implemented with ASP » par Benjamin ICARD, Jean-Gabriel GANASCIA, Gauvain
BOURGNE.

— 10h15 Pause.
— 10h45 « A Model of Compliant and Epistemic Human-Aware Task Planner which Anticipates

Human Beliefs and Decision » par Rachid ALAMI.
— 11h10 « Apprentissage de décisions alignées sur des valeurs humaines, et humains dans la boucle »

par Rémi CHAPUT.
— 11h35 « A Computationally Grounded Framework for Cognitive Attitudes » par Emiliano LO-

RINI.
— 12h00 Repas.
— 13h45 Réunion organisation.

Organisation
Cet événement est organisé par Damien PELLIER (IMAG, Université de Grenoble Alpes).
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GAS 2025
L’Association Française pour l’Intelligence Artificielle (AFIA) et l’association internationale franco-
phone d’Extraction et de Gestion des Connaissances (Association EGC) organisent, avec l’aide du
groupe de travail « Gestion et Analyse des données Spatiales et Temporelles » (GAST), une journée
commune « Gestion et Analyse des données Aériennes et Satellitaires » (G2AS’ 24) sur le thème de la
représentation, de la gestion, de l’analyse et du stockage des données sportives.

À travers ces thématiques, cette journée offrira une vision globale des enjeux et des opportunités
qu’apporte l’analyse des données sportives, tant pour les chercheurs et analystes que pour les entraî-
neurs et pratiquants. Elle permettra d’échanger sur les avancées récentes et d’ouvrir des perspectives
pour une meilleure exploitation des données au service de la performance et de la compréhension du
sport.

Date et lieu
— Date : 13 mai 2025
— Lieu : Université de Caen, Campus 2, Avenue de la Côte de Nacre

Programme
— 09h00 Accueil.
— 09h30 Introduction.
— 10h00 « Surpoids, activité physique » par Guillaume WATTELEZ.
— 10h45 Pause.
— 11h00 « Tactiques en (e-)sport collectif » par Alexis MORTELIER.
— 11h45 « Graphes de phénomènes spatio-temporels, sports collectifs » par Camille GRANGE.
— 12h30 Repas.
— 14h00 Posters et démos.
— 14h15 « Analyse des mouvements de rééducation » par Maxime DEVANNE.
— 15h00 « Modèles markoviens, natation, escalade » par Nicolas VERGNE.
— 15h45 Pause.
— 16h00 « Tennis » par Nicolas BENGUIGUI.
— 16h45 « Tactiques à partir des données des sports d’équipe » par Albrecht ZIMMERMANN.
— 17h00 Mot de la fin.

Organisation
Cet événement est organisé par

— Clément Iphar, LETG/UBO (Brest) ;
— Albrecht Zimmermann, GREYC/UniCaen (Caen) ;
— Aurélie Leborgne, ICube/UNISTRA (Strasbourg) ;
— Loïc Salmon, ISEA/UNC (Nouméa – Nouvelle-Calédonie) ;
— Nida Meddouri, LRE/EPITA (Kremlin-Bicêtre).

Inscriptions
Si vous êtes intéressés pour participer (juste par votre présence ou par la présentation d’un poster) à
cette journée, veuillez vous inscrire via le lien https://forms.gle/dcRcEUJhXGob46yM7.
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Connaissances, Décisions & IA 2025
L’Association Française pour l’Intelligence Artificielle (AFIA), la Société d’Automatique, de Génie
Industriel et Productique (SAGIP), et le GDR MACS organisent conjointement une journée commune
« Connaissances, Décisions & IA ».

Cette journée a pour ambition de rassembler les communautés scientifiques, industrielles et aca-
démiques qui s’intéressent aux enjeux liés à la gestion des connaissances, à la prise de décision et à
l’Intelligence Artificielle. Dans un esprit d’ouverture, nous souhaitons favoriser les échanges entre cher-
cheurs, ingénieurs, praticiens et non-spécialistes autour de ces thématiques, afin de croiser les regards
et d’explorer l’ensemble des défis actuels et futurs.

Nous encourageons la participation et les contributions portant sur tous les aspects des connais-
sances et de la décision en lien avec l’IA : approches théoriques, méthodologiques, algorithmiques,
applications industrielles, questions organisationnelles, ou encore perspectives éthiques, juridiques, phi-
losophiques ou sociétales. L’objectif est de créer un espace de dialogue interdisciplinaire pour mieux
comprendre l’apport, les limites et les évolutions des systèmes intelligents dans les processus de décision
et de gestion des savoirs, au service des entreprises comme de la société.

Date et lieu
— Date : 6 octobre 2025
— Lieu : Conservatoire National des Arts et Métiers (CNAM), Salle 31.2.85, 2, rue Conté, 75003

PARIS FRANCE

Programme (Session matinale)
— 08h30 Café d’accueil.
— 09h00 Ouverture de Benoit LE BLANC (Président de l’AFIA) et Laurent Geneste (de la SAGIP).
— 09h10 « Introduction de la journée » par Davy MONTICOLO (Université de Lorraine) et Nada

MATTA (AFFILIATION).
— 09h20 « Intelligence Artificielle et aide à la décision, miroir (déformant) de nos usages ? » par

Florence SEDES (IRIT, Université de Toulouse).
— 10h05 « NutriKG - un graphe de connaissances pour modéliser les préférences et les besoins

nutritionnels » par Alexandre COMBEAU et Fatiha SAIS (LISN, Université Paris Saclay).
— 10h50 Pause.
— 11h15 « L’expertise dans une base de connaissances du système expert au système d’information

et de connaissance : Rex de l’implantation dans l’industrie sur les 35 dernières années »
par Alain BERGER (Directeur Général, société ARDANS – Knowledge Consulting &
Software Solutions).

Programme (Session post-méridienne)
— 13h30 « Approche d’ingénierie des connaissances à base de systèmes "personnels" et partagés /

LabCom Remind 4.0 » par Laurent GENESTE (ENI de Tarbes).
— 14h00 « Alignement de données hétérogènes et dynamiques pour la prise de décision : un défi

toujours ouvert ? » par Oumaima EL HADDADI (IRIT, Université de Toulouse).
— 14h30 « Intégration des LLM en entreprise : valoriser les connaissances internes sans compro-

mettre la confidentialité » par Pierre BOURGUEIL (Université de Technologie de Troyes).
— 15h00 « Lien entre connaissances et décisions, l’apport de l’Intelligence Artificielle en génie In-

dustriel » par Bernard KAMSU-FOGUEM (ENI de Tarbes).
— 15h30 « Table ronde » par l’ensemble des conférenciers.
— 16h00 Clôture.
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Organisation
Cet événement est organisé par Davy MONTICOLO (Université de Lorraine) pour le Conseil d’Admi-
nistration de l’AFIA et Nada MATTA (AFFILIATION) pour la SAGIP.

Inscriptions
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LA ROCHELLE

PROGRAMME
pfia2024.univ-lr.fr

TUTORIELS
8 tutoriels répartis sur 5 jours

JOURNÉES
Agents & IA

Santé & IA

Société & IA

ATELIERS
Défense et IA
Jeux et IA
MAFTEC
SOSEM
CÉCILIA
IA en Nouvelle-Aquitaine
GdR RADIA

CONFÉRENCES
APIA - Applications Pratiques de 
l’Intelligence Artificielle

CNIA - Conférence Nationale en 
Intelligence Artificielle

IC - Journées francophones d’Ingénierie 
des Connaissances

JIAF - Journées d’Intelligence Artificielle 
Fondamentale

RJCIA - Rencontres des Jeunes 
Chercheurs en Intelligence Artificielle

01-05 JUILLET
2024

2024
PFIA Plate-forme

Intelligence
Artificielle

La rencontre annuelle de la communauté
Intelligence Artificielle autour de conférences

et ateliers thématiques
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